From the Sector

Reset
318 results
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr Thomas Gries with the award winner Flávio André Marter Diniz
11.07.2023

Future cost reduction through ultra-thin PE carbon fibres

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

  • ITA Master's graduate wins Hanns Voith Foundation Award 2023

In his Master's thesis, Flávio André Marter Diniz, a graduate of the Institut für Textiltechnik of RWTH Aachen University (ITA), developed ultra-thin polyethylene (PE) carbon fibres with a filament diameter 2-3 times smaller than usual. In addition, the use of PE-based precursors will make it possible to reduce the price of carbon fibres by 50 per cent in the future, thus opening up a wide range of other possible applications in key industries such as wind power, aerospace and automotive. For this groundbreaking development, Marter Diniz was awarded the Hanns Voith Prize with the Hanns Voith Foundation Award in the category "New Materials". The prize is endowed with € 5,000 in prize money.

Flávio André Marter Diniz won the prize in the category "New Materials" for his master thesis entitled "Investigation of the stabilisation and carbonisation process for the production of ultra-thin polyethylene-based carbon fibres".

The use of carbon fibres in highly stressed lightweight construction solutions, such as today's growth applications of wind turbines or pressure tanks, has become indispensable due to their excellent mechanical properties and low density. High manufacturing costs of conventional PAN precursor-based carbon fibres make the material very cost-intensive. In addition, it is not sufficiently available. New manufacturing approaches that develop alternative raw materials and manufacturing processes can be a key and growth engine for further industrial composites applications.

The aim of the work was to develop a new and cost-effective manufacturing process for high-quality ultra-thin carbon fibres using a polyethylene precursor. For this purpose, the sulphonisation process, which is time-consuming today, was to be significantly shortened. As a result, Mr. Marter Diniz produced novel ultra-thin polyethylenebased carbon fibres with a filament diameter < 3 μm with an excellent surface quality of the fibres without detectable structural defects. The fibre diameter is 2-3 times smaller than that of conventional PANbased CF. This provides the basis for mechanically high-quality material properties. At the same time, Mr. Marter Diniz was able to reduce the sulphonisation time by 25 percent. The developed material and technology set important milestones on the way to cheaper carbon fibres. With PE-based precursors, the price of CF can be reduced by 50 percent compared to conventional PAN-based CF.  

A total of five other young scientists were awarded in six categories (Drive Technology, Innovation & Technology/Artificial Intelligence, New Materials, Paper, Hydropower and Economic Sciences. This year, for the 10th time, the Hanns Voith Foundation awarded the Hanns Voith Prize to outstanding young scientists.

Source:

ITA Institut für Textiltechnik of RWTH Aachen University

DITF: Textile structures regulate water flow of rain-retaining "Living Wall" (c) DITF
Outdoor demonstrator on the Research CUBUS. At the top is the textile water reservoir with all inputs and outputs and textile valve for rapid emptying. Below are the substrate blocks with integrated hydraulic textiles
30.06.2023

DITF: Textile structures regulate water flow of rain-retaining "Living Wall"

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Climate change is causing temperatures to rise and storms to increase. Especially in inner cities, summers are becoming a burden for people. While densification makes use of existing infrastructure and avoids urban sprawl, it increases the amount of sealed surfaces. This has a negative impact on the environment and climate. Green facades bring more green into cities. If textile storage structures are used, they can even actively contribute to flood protection. The German Institutes of Textile and Fiber Research (DITF) have developed a corresponding "Living Wall".

The plants on the green facades are supplied with water and nutrients via an automatic irrigation system. The "Living Walls" operate largely autonomously. Sensory yarns detect the water and nutrient content. The effort for care and maintenance is low.

Innovative hydraulic textile structures regulate water flow. The rock wool plant substrate on which the plants grow has a large volume in a small space thanks to its structure. Depending on how heavy the precipitation is, the rainwater is stored in a textile structure and later used to irrigate the plants. In the event of heavy rainfall, the excess water is discharged into the sewage system with a time delay. In this way, the "Living Walls" developed at the DITF help to make efficient use of water as a resource in post-densified urban areas.

The research project also scientifically investigated the cooling performance of a green facade. Modern textile technology in the substrate promotes the "transpiration" of the plants. This creates evaporative cooling and lowers temperatures in the surrounding area.

The work of the Denkendorf research team also included a cost-benefit calculation and a life-cycle analysis. Based on the laboratory and outdoor studies, a "green value" was defined that can be used to evaluate and compare the effect of greening buildings as a whole.

Photo: BTMA by AWOL Media
Pictured at the new installation (left to right) are Jayessh S Nanavati of Sainite Exports, JR Mehta of Candour Techtex, Barry Goodwin, and Sanjay Jain, Amba's coating technologist in India
02.06.2023

Amba Projex supports growth for India’s Candour Techtex

Candour Techtex, a Melegaon JR Group company, is satisfied with the latest coating and lamination line supplied by UK’s Amba Projex and has ordered a second, wider one to meet increasing demand.

Based in High Peak near Manchester, BTMA member Amba Projex has over 40 years’ experience in the design and manufacture of special purpose technical textile machines, with coating and laminating installations around the world.

Amba will be working closely with Candour over the next five years, to establish an Indian technical textiles powerhouse capitalising on the UK technology provider’s long experience in the field.

Formerly Chandni Textiles Engineering Industries, Candour Techtex of the Malegaon JR Group assumed its new name in 2022 to reflect its focus on a wide range of technical textiles at its new plant in Malegaon in the Nashik District of Maharashtra.

Candour Techtex, a Melegaon JR Group company, is satisfied with the latest coating and lamination line supplied by UK’s Amba Projex and has ordered a second, wider one to meet increasing demand.

Based in High Peak near Manchester, BTMA member Amba Projex has over 40 years’ experience in the design and manufacture of special purpose technical textile machines, with coating and laminating installations around the world.

Amba will be working closely with Candour over the next five years, to establish an Indian technical textiles powerhouse capitalising on the UK technology provider’s long experience in the field.

Formerly Chandni Textiles Engineering Industries, Candour Techtex of the Malegaon JR Group assumed its new name in 2022 to reflect its focus on a wide range of technical textiles at its new plant in Malegaon in the Nashik District of Maharashtra.

The company was founded in 1986 and at its existing plant in Ankleshwar, Gujarat, produces an annual 1.2 million metres of light velvet fabrics mainly for the domestic market for apparel and light home furnishings. In 2020 it also began operations at a plastic moulded components division in Gonde, Nashik, with a capacity of 4,500 tons per annum.

Blackout fabrics
In particular, the new Amba Projex system enables blackout fabrics to be produced efficiently and at scale.

Blackout fabrics are installed in rooms where complete light shielding is required, such as in public institutions like hospitals, and retirement homes, in hotels and conference rooms, and also in the home, especially in bedrooms.

They obtain their light impermeability by a special three-layer blackout coating which works on textiles of all colours. Only the middle layer of the three coatings needs to be black for obtaining the necessary light absorption. The fabrics are usually also treated for permanent flame-retardancy, and also with water or stain-repellent finishes. In addition to locking out light and providing maximum privacy, blackout curtains also help to insulate a home and reduce energy costs, in addition to protecting furniture and carpets from fading due to sunlight exposure.

(c) Messe Frankfurt (HK) Ltd
02.06.2023

Over 366 Exhibitors at Cinte Techtextil China 2023

With four months until the technical textiles and nonwovens show opens its doors, floor space booked by international suppliers is already more than double the area of the previous edition, which attracted 366 exhibitors from eight countries and regions. Taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, this year’s fair will see the European Zone return to the fairground. The high-traffic zone is set to welcome a number of new and returning exhibitors eager to showcase their products to a business-hungry domestic market.

Speaking at the fair’s previous edition in 2021, Mr Roberto Galante, Plant Manager of FMMG Technical Textiles (Suzhou) Co Ltd, said: “The Chinese market is a big opportunity for everybody, because every day the market is demanding more. The potential here is incredible, and there is more demand for overseas brands. These brands are known for their very high quality, and while China’s industry has developed very well in the past few years, it still needs support from overseas brands with high quality products. This fair is good for us, and we exhibit here every year.”

With four months until the technical textiles and nonwovens show opens its doors, floor space booked by international suppliers is already more than double the area of the previous edition, which attracted 366 exhibitors from eight countries and regions. Taking place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, this year’s fair will see the European Zone return to the fairground. The high-traffic zone is set to welcome a number of new and returning exhibitors eager to showcase their products to a business-hungry domestic market.

Speaking at the fair’s previous edition in 2021, Mr Roberto Galante, Plant Manager of FMMG Technical Textiles (Suzhou) Co Ltd, said: “The Chinese market is a big opportunity for everybody, because every day the market is demanding more. The potential here is incredible, and there is more demand for overseas brands. These brands are known for their very high quality, and while China’s industry has developed very well in the past few years, it still needs support from overseas brands with high quality products. This fair is good for us, and we exhibit here every year.”

Multiple domestic and international exhibitors have confirmed their participation at Cinte Techtextil China 2023, with the European Zone playing host to FMMG and other key industry players, such as:

  • Bekaert, Belgium
  • Fil Man Made Group, Italy
  • SANITIZED, Switzerland
  • SCANTECH, France

Outside the European Zone, additional international suppliers will showcase their diverse product applications at the fairground, with categories including Coating & Bondtec (Stahl); Fibre & Yarn (Barnet); Nonwovens Equipment (Dilo); Technology & Machinery (Picanol); and Testing Equipment & Certification (TESTEX). Other European exhibitors in these categories include Autefa Solutions, Reifenhauser Heinsberg, Reifenhauser Reicofil, and SICAM.

Chinese suppliers set to complement international contingent
A comprehensive range of domestic exhibitors are eager to meet new buyers and renew old business connections at this year’s fair, including:

  • Shanghai Shenda Kebao New Materials
  • SIJIA New Material (Shanghai)
  • Zhejiang Jinda New Materials
  • Zhejiang Hailide New Material

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

Source:

Messe Frankfurt (HK) Ltd

(c) KARL MAYER GROUP
02.06.2023

KARL MAYER GROUP with sustainable technical textiles at ITMA

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

KARL MAYER GROUP will be presenting a WEFTTRONIC® II G at the ITMA with new features and upgrades for greater efficiency. This warp knitting machine with weft insertion produces lattice structures from high-strength polyester, which are firmly established in the construction industry in particular. With a working width of 213", it offers productivity and further advantages through design innovations. New features include weft thread tension monitoring, management and the new VARIO WEFT laying system. The component for the weft insertion aims at maximum flexibility. It allows the patterning of the weft yarn to be changed quickly and easily electronically, without mechanical intervention during yarn insertion and without limits on repeat lengths. In addition, there is less waste.

The KARL MAYER GROUP also supports its customers with well thought-out Care Solutions. The new support offers include retrofit packages for retrofitting control and drive technology for weft insertion and composite machines, and service packages that bundle various services. These include machine inspections and the replacement of all drive belts. The customer benefits from fixed prices that cover the costs of technician assignments, various discount options and transparent services.

A new solution for the vertical greening of cities is presented from the field of application for technical textiles. The core of the innovation is a grid textile produced on warp knitting machines with weft insertion by KARL MAYER Technische Textilien GmbH. The knitted lattice fabric is made of flax. It is used as a climbing aid for fast-growing plants, and after the greening phase, in autumn, it can be recycled together with these plants as biomass in pyrolysis plants to produce electricity and activated carbon. In summer, the planted sails lower the ambient temperature through evaporation effects. In addition, photosynthesis creates fresh air and binds CO2. Other important advantages are low soil requirements and flexible placement in public spaces. The greening system was developed by the company Micro Climate Cultivation, OMC°C, with the support of KARL MAYER Technische Textilien.

The KARL MAYER GROUP will also be exhibiting a sustainable composite solution made from natural fibres. The reinforcing textile of the innovative lightweight material is a multiaxial non-crimp fabric, which was also produced from the bio-based raw material flax on a COP MAX 4 from KARL MAYER Technische Textilien. The boatbuilding specialist GREENBOATS uses natural fibre composites to achieve sustainable products. The fact that it succeeds in this is shown, for example, by the Global Warming Potential (GWP): 0.48 kg of CO2 per kilogram of flax reinforcement compares with 2.9 kg of CO2 per kilogram of glass textile.

Source:

KARL MAYER Verwaltungsgesellschaft mbH

12.04.2023

Comeback of CIOSH trade fair in Shanghai

As a trade fair for safety and occupational health in China, the 104th China International Occupational Safety & Health Goods Expo (CIOSH 2023), organized by China Textile Commerce Association (CTCA) and Messe Düsseldorf (Shanghai) Co., Ltd. (MDS), will be grandly held at the Shanghai New International Expo Centre (SNIEC) Hall E1-E7 from 13-15 April 2023. Following three years of epidemic prevention and control measures, the situation has stabilized in China, allowing the labor protection market to enter a phase of rapid recovery and rebound. CIOSH 2023 will attract over 1,500 exhibitors from 14 countries, showcasing their latest protective equipment and technology in an exhibition area exceeding 80,000 square meters.

As a trade fair for safety and occupational health in China, the 104th China International Occupational Safety & Health Goods Expo (CIOSH 2023), organized by China Textile Commerce Association (CTCA) and Messe Düsseldorf (Shanghai) Co., Ltd. (MDS), will be grandly held at the Shanghai New International Expo Centre (SNIEC) Hall E1-E7 from 13-15 April 2023. Following three years of epidemic prevention and control measures, the situation has stabilized in China, allowing the labor protection market to enter a phase of rapid recovery and rebound. CIOSH 2023 will attract over 1,500 exhibitors from 14 countries, showcasing their latest protective equipment and technology in an exhibition area exceeding 80,000 square meters.

Integrating Online and Offline Platforms
CIOSH 2023 encompasses four major sectors: Safety at Work, Security at Work, Health at Work, and Emergency Rescue Management. Renowned domestic and international exhibitors, including 3M, Honeywell, Ansell, SATA, JSP, MSA, DELTAPLUS, Lakeland, Cortina, UVEX, CM Chaomei, Xing Yu Gloves, DS, East Asia Glove, Hanvo, SOMO Zhongmai Safety, SAFETY-INXS, and TELPS, will assemble on site. At the same time, CIOSH 2023 has introduced an innovative online platform - CIOSH VIRTUAL. By offering online displays, live streaming, interactive features, and real-time communications, it breaks time and space constraints, facilitating exhibitors and visitors to continue their business exchanges and cooperations beyond the physical exhibition. So far, nearly 1,300 companies have joined the CIOSH VIRTUAL, showcasing more than 3,000 products online and attracting over 70,000 views.

CIOSH Industry Technical Seminar, Sustainable Development Emerges as the Key Focus
The annual Industry Technical Seminar, held concurrently with CIOSH, serves as a platform for professionals to discuss product solutions, share industry insights, and exchange ideas on relevant policies. In 2021, China integrated climate change mitigation measures into its 14th Five-Year Plan, established a 2030 carbon peaking action plan, and proactively pursued the goal of carbon neutrality by 2060. Under the development objectives of "carbon peaking" and "carbon neutrality," the sustainable development of the personal protective equipment (PPE) industry has become the primary theme of this year's seminar. Experts from China Carbon Low-carbon Certification (Jiangsu) Co., Ltd., China Certification Centre, Inc., and SGS-CSTC Standards Technical Services Co., Ltd., will examine related policies, the effects of "carbon neutrality" on the PPE industry chain and the industries using PPE from different angles. They will also explore the future direction of PPE and offer professional guidance for the transformation of relevant enterprises.

Fall Protection Zone
Falls from height are one of the most common accidents that cause serious injury or death to workers. Effective fall protection requires not only protective equipment, but also professional instructions and training. Therefore, CIOSH set up a new Fall Protection Zone in 2021, which received unanimous acclaim. CIOSH 2023 has continued to invite SKYLOTEC, rothoblaas, JECH, Mode and NTR Safety, five companies that specialize in protection at height, to conduct on-site demonstrations on fall testing, fall protection solutions and aerial rescue, and provide visitors with the most professional fall protection guidance and training.

Occupational Health
CIOSH has always implemented the strategy of expanding the business scope in a diversified way, which devotes itself to providing innovative opportunities and new driving forces for the sustainability of the occupational safety and health industry. This year, focusing on the "occupational health" sector, the exhibition will launch an Ergonomics Zone and an Exoskeleton Technology Zone for the first time.

Celliant -how it works (c) Hologenix
06.04.2023

Hologenix: Infrared technology with potentially positive impact on diabetic patients

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

The diabetic community has always been a priority for Hologenix, creators of CELLIANT® infrared technology, so the company embarked on an initial study to test the hypothesis that the technology can positively impact diabetic patients with vascular impairment, now published in Journal of Textile Science & Engineering. Another study is underway as well with more research on the horizon.

According to statistics cited in the International Diabetes Federation Diabetes Atlas, 9th edition, globally, close to a half billion people are living with diabetes and that number is expected to increase by more than 50 percent in the next 25 years.
 
The introduction of the study in the Journal of Textile Science & Engineering also reports that diabetic patients frequently suffer from a combination of peripheral neuropathy and peripheral artery disease, which particularly affects their feet. It further states that it has been estimated that the lifetime risk for the development of foot ulcers in diabetic patients can be as high as 25 percent and that the risk of amputation is 10 to 20 times higher than in non-diabetic subjects.
 
The study was performed by Lawrence A. Lavery, D.P.M., M.P.H., a Professor in the Department of Plastic Surgery at UT Southwestern Medical Center. His clinic and research interests involve diabetic foot complications, infections and wound healing, and he participated in the conception, design, implementation and authorship of the Journal of Textile Science & Engineering study.  

CELLIANT technology is a patented process for adding micron-sized thermo-responsive mineral particles to fibers, in this case polyethylene terephthalate (PET) fibers. The resulting CELLIANT yarns were woven into stockings and gloves containing either 82% CELLIANT polyester, 13% nylon and 5% spandex or for the placebo, 82% polyester with no CELLIANT, 13% nylon and 5% spandex. CELLIANT products absorb body heat and re-emit the energy back to the body as infrared energy, which is non-invasive and increases temporary blood flow and cell oxygenation levels in the body.

The objective of the study was to “evaluate changes in transcutaneous oxygen (TcPO2) and peripheral blood flow (laser Doppler, LD) in the hands and feet of diabetic patients with vascular impairment when CELLIANT gloves and stockings are worn.” While there was not a statistically significant result across all subjects, the study did show that some patients wearing CELLIANT stockings for 60 minutes had an increase of as much as 20% in tissue oxygenation and 30% in localized blood flow. According to the study’s conclusion, “the trends that were observed in favor of CELLIANT stockings suggest that a larger well-designed clinical trial should be undertaken and may provide evidence of clinical efficacy in treatment of the diabetic foot.”
 
The study also notes that “There have been no documented or observed side effects of wearing CELLIANT stockings, and they are relatively inexpensive compared to conventional pharmaceutical interventions.”

Hologenix has embarked on a more comprehensive trial, “Study to Evaluate CELLIANT Diabetic Medical Socks to Increase Tissue Oxygenation and Incidence of Complete Wound Closure in Diabetic Foot Wounds” – NCT04709419, which focuses on the impact of CELLIANT technology to potentially improve tissue oxygenation and wound healing outcomes.
 
“We are excited to explore whether future studies of infrared, with its most common biological effects of increased localized blood flow and cellular oxygenation, could result in a breakthrough in diabetic patients with vascular impairment,” said Seth Casden, Hologenix Co-founder and CEO. “We see a huge potential opportunity with this research for helping to fulfill our core mission of improving people’s health and well-being by potentially reducing the impact of diabetes, and we are actively seeking partners to expand our research efforts.”

Source:

Hologenix

Dr Ioana Slabu and Benedict Bauer with the nanomodified stent. Photo Peter Winandy
30.03.2023

Nanomodified polymerstent: Novel technology for tumour therapy

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

Ioana Slabu of the AME explains: "Not only can we drastically reduce treatment costs, but above all we can provide relief for millions of patients worldwide.
 
A manufacturing process and proof of concept for magnetic hyperthermia are already in place. This novel technology has a very high development potential because it can also be used for tumours in other parts of the body such as the prostate, stomach, intestine or urinary bladder or for cardiovascular diseases.  

The AiF/IGF project started under the project title "ProNano" funded by BMWK. Now the approval for the follow-up project "ProNano2" has also been received. The approved project is called: "Validation of the innovation potential of heatable stents for heat-induced treatment of cavity tumours" and is funded by BMBF in course of the VIP+ program. With the Clinic for General, Visceral and Transplantation Surgery of the University Hospital Aachen and the Institute for Technology and Innovation Management at RWTH Aachen University, the consortium is enriched by clinical and economic expertise. Every year, RWTH Aachen University honours particularly innovative university projects with the Innovation Award. Professor Malte Brettel, Prorector for Business and Industry, presented the certificates to four outstanding projects as part of RWTHtransparent.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Photo Mahlo GmbH + Co. KG
23.03.2023

Mahlo at the INDEX 2023: Nonwovens in focus

When the nonwoven industry meets at the leading trade fair INDEX in Geneva from 18 to 21 April, Mahlo GmbH + Co KG awaits trade visitors from all over the world to inform them about the right measurement technology enabling more efficient and high-quality production of nonwovens.

With a wide range of sensors, different measuring techniques and the corresponding measuring bridges, practically all tasks regarding the control of basis weight, moisture, thickness, fibre content, and air permeability can be solved in a cost-efficient and practical way.

When the nonwoven industry meets at the leading trade fair INDEX in Geneva from 18 to 21 April, Mahlo GmbH + Co KG awaits trade visitors from all over the world to inform them about the right measurement technology enabling more efficient and high-quality production of nonwovens.

With a wide range of sensors, different measuring techniques and the corresponding measuring bridges, practically all tasks regarding the control of basis weight, moisture, thickness, fibre content, and air permeability can be solved in a cost-efficient and practical way.

As an example, Wulbeck mentions spunlace products. They mainly consist of fibres such as cotton, PE, PET or rayon. They absorb light in the near-infrared range. Water and all other materials have different spectral ranges and can thus be distinguished. The near-infrared sensor Infrascope NIR determines the moisture content and the basis weight of different materials by attenuating the light in certain wavelengths. Due to its very high spectral resolution, the sensor can distinguish between components with very similar but not identical IR absorption and achieves high measurement accuracy. "Up to 0.05 g/m2 of the respective coating weight is possible," says Wulbeck.

"We want to support manufacturers in optimising their production processes and thus also the end product," says Matthias Wulbeck, Mahlo product manager for QCS. Because, like many other industries, the nonwoven sector is struggling with challenges such as rising prices for energy and raw materials, long delivery times and uncertain supply chains. In order to continue to produce economically and on time, it is therefore necessary to save resources and avoid faulty production as well as unnecessary process times. "Our Qualiscan QMS measurement and control system helps to do just that."

Source:

Mahlo GmbH + Co. KG

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

21.02.2023

Polartec®: New technology reduces fiber fragmentation in laundering tests

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

The brand used the AATCC (American Association of Textile Chemists and Colorists) TM212-2021 test method for fiber fragment release during home laundering. This test was conducted with large sample sizes to account for variability. The testing concluded that Shed Less Fleece reduced fiber fragment shedding by an average of 85% compared to the baseline fabric.

“In 2016 we began looking into how we might test for fiber loss because there wasn’t a lot of research on the issue.” said Aimee LaValley, Polartec Textile Development, Dye and Chemistry Manager. “This led to new products like Polartec Power Air™, new manufacturing processes, as well as our participation in the TextileMission workgroup to study the issue on an interdisciplinary basis.”

TextileMission was a three year collaborative initiative of academia and industry to reduce the impact of textile microplastics funded by the German Federal Ministry of Education and Research. Founding partners include The Association of the German Sporting Goods Industry, Hochschule Niederrhein - University of Applied Science; TU Dresden - Institute of Water Chemistry; Vaude Sport; WWF Germany; Adidas AG; Henkel AG; Miele & CIE; and Polartec, LLC.

Polartec® Shed Less Fleece will be initially launched in the United States and will be available to customers beginning March 1, 2023. The brand plans to apply the Shed Less process to many other industry-leading fabric platforms and manufacturing facilities around the world.

13.02.2023

CELLIANT cleared to market in 50+ countries

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

  • Registered in majority as a class 1 medical device  

CELLIANT -  a performance textile that converts body heat into infrared energy - is designated as a Class 1 Medical Device in Australia, Canada, the EU and European Economic Area (EEA), Japan, New Zealand, the United Arab Emirates, the United Kingdom and the United States. CELLIANT is cleared to market in China, India, Indonesia, Korea, Malaysia, Mexico, Peru, Philippines, Russia, Saudi Arabia, Singapore, South Africa, Taiwan, Thailand and Vietnam, with more countries and regions to follow.

In 2017, the FDA determined that products containing CELLIANT are medical devices as defined in section 201(h) of the Federal Food, Drug and Cosmetic Act and are general wellness products because they are intended to temporarily increase blood flow and local circulation at the site of the application in healthy individuals.
 
At Hologenix®, whose CELLIANT® infrared technology is an ingredient in world-class brands across many categories, science matters. The company has a distinguished Science Advisory Board composed of experts in the fields of photobiology, nanotechnology, sleep medicine, diabetes and wound care. The Science Advisory Board has overseen nine peer-reviewed published studies that collectively demonstrate CELLIANT’s effectiveness and the benefits of infrared energy. This claim set provides the basis for products containing CELLIANT to be designated as a Class 1 Medical Device in 38 countries and cleared to market in 15, with more countries and regions to follow. This elevated status in 53 countries translates to CELLIANT being an ideal partner for global companies who are seeking innovation in textiles to distinguish their products.   

“We have laid the groundwork for our partner brands to capitalize on the benefits of our infrared technology and to enhance their ability to do business,” said Seth Casden, Hologenix co-founder and CEO.  “We firmly believe that regulatory status matters and that is why we have grown the number of countries we have such relationships with by over a third in the last three years. It is definitely a competitive advantage of our company and CELLIANT.”

“Globally, the awareness of the benefits of infrared textiles, which absorb body heat and reflect it back as therapeutic infrared energy, has grown exponentially over the last 10 years,” continued Casden. “And in the United States infrared is gaining a strong foothold.”

Source:

Hologenix

(c) Baldwin Technology Company Inc.
08.02.2023

Majocchi uses Baldwin’s Corona Treatment Technology

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Majocchi, an Italian textile manufacturer, reports that it has achieved functional and visual appeal with its key fabrics since installing Baldwin Technology Co. Inc.’s corona surface treatment technology.  

Based in Tavernerio (Como), Majocchi has a history of being a technological innovator in the textile industry. Within a decade of its conception in 1941, Majocchi became a global supplier of waterproof cotton for rainwear manufacturers. In the 1960s, the company began producing nylon and technical fabrics, which paved the way for it to become a leading provider of textiles for urban fashion, technical workwear and the military today.

Majocchi has partnered with U.S -based Baldwin Technology Co. to utilize its unrivaled corona surface-treatment technology to produce superior wettability and adhesion.  

Corona treatment is a technique that temporarily modifies a substrate’s surface tension  properties. The corona oxidation process improves the penetration and absorption of liquids on cellulosic and synthetic fabrics. Utilizing corona treatment before resin application on fabrics such as lycra and nylon facilitates superior adhesion and resin distribution. As a result, corona-treated fabrics provide exceptional color and tonal quality.  

Majocchi uses Baldwin’s Corona Pure Model to apply polyurethane and acrylic-based coatings to its fabrics. The system allows Majocchi to administer a controllable, uniform coating to achieve the desired functionality and aesthetics.

The system is 2,000 millimeters wide with a discharging station and four ceramic electrodes designed for textile applications with the flexibility of customizing plasma dosage for a given fabric structure, width and process speed. The Corona Pure model allows for fabric treatment up to 300 gr/m² in thickness. The system is customizable, with single-sided and dual-sided treatment capabilities. The “Easy Change” feature allows for a seamless replacing of electrodes and rapid cleaning and removal of fiber and dust residue, maintaining optimal exhaust air flow. The treatment system is built with a swiveling housing mechanism, which provides clearance for changes in textile thickness and protects the ceramic electrodes.

More information:
Baldwin Majocchi Coatings Covid-19
Source:

Baldwin Technology Company Inc.

(c) Messe Frankfurt (HK) Ltd
08.02.2023

Cinte Techtextil China 2023 set for September

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

With China easing its pandemic restrictions, foreign exhibitors and buyers can look forward to quarantine-free travel when participating at this year’s industry showcase in Shanghai. The technical textile and nonwovens fair is scheduled to take place from 19 – 21 September 2023 at the Shanghai New International Expo Centre, amid positive market forecasts for both sectors. The organisers are anticipating a strong showing and the conclusion of an inconsistent period for in-person textile business.

“The industry has demonstrated incredible patience and resilience over the course of the pandemic,” said Ms Wilmet Shea, General Manager of Messe Frankfurt (HK) Ltd. “With both markets growing and China opening its borders, we are excited at the prospect of providing participants with an international, business-friendly platform and expect to welcome a healthy number of exhibitors later this year.”

The global technical textile and nonwovens markets are both set to perform strongly over the next few years. According to Grand View Research, the technical textile market is forecast to expand at a CAGR of 4.7% from 2022 to 2030[1]. The nonwoven fabrics market is anticipated to display an even stronger CAGR of 5.6% during the same period[2], with Asia-Pacific to maintain its position as the biggest regional market.

As one of Asia’s leading trade fairs for the abovementioned sectors, Cinte Techtextil China is the preferred platform for multiple industry players. Speaking at the previous edition in 2021, Mr Seven Shen, Sales Manager at Libero Trading (Shanghai) Co Ltd, China, said: “We have been exhibiting at this fair for years, and know we will meet our target customers at every edition. The buyers here are all highly specialised.”

During his interview at the same edition, Mr Eric Ni, Senior Manager, China Supply Chain Marketing for Cotton Council International, USA, commented: “We hope to use this platform to meet more companies and brands in the nonwovens industry who are interested in US cotton, and to meet up with old friends to discuss the current situation and industry trends. The fair’s buyers are quality, and we have found some new potential clients at this edition.”

Many buyers at the previous edition also gave positive appraisals. “As a professional trade fair for technical textile and nonwoven products, Cinte Techtextil China is not only a platform to gather qualified industry players, but also the best place to showcase new products and innovations,” said Mr Lin Bin, Technical Director at Zhejiang Xinna Medical Device Technology Co Ltd, China. “Specific and high quality products enhance sourcing efficiency for buyers, and exposure to new trends and market developments ensures my company visits here regularly.”

The fair’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry.

[1] “Technical Textile Market Size, Share & Trends Analysis Report 2022-2030”, 2022, Grand View Research, https://bit.ly/3IAxQIK, (Retrieved: January 2023)
[2] “Nonwoven Fabrics Market Size”, 7 September 2022, GlobeNewswire, https://bit.ly/3CxPE3u, (Retrieved: January 2023)

Source:

Messe Frankfurt (HK) Ltd

17.01.2023

Freudenberg Performance Materials: New brand for filter media

Freudenberg Performance Materials announces the launch of Filtura, its new product brand for filter media solutions. Filtura is a comprehensive portfolio of innovative high-performance filter media products and customized solutions for air and liquid filtration. The company is debuting Filtura at Filtech, the international trade fair for the filtration technology industry, in Cologne in February 2023.

Freudenberg Performance Materials’ established Colback®, Enka®solutions, Evolon®, Karbofil and Lutradur® brands are being brought together under the Filtura brand. With the new brand, the specialist for technical textiles is pooling its know-how more effectively across products lines and giving innovations for the filter media market a further boost. Filtura will enable Freudenberg Performance Materials to extend its position in this market.

Freudenberg Performance Materials announces the launch of Filtura, its new product brand for filter media solutions. Filtura is a comprehensive portfolio of innovative high-performance filter media products and customized solutions for air and liquid filtration. The company is debuting Filtura at Filtech, the international trade fair for the filtration technology industry, in Cologne in February 2023.

Freudenberg Performance Materials’ established Colback®, Enka®solutions, Evolon®, Karbofil and Lutradur® brands are being brought together under the Filtura brand. With the new brand, the specialist for technical textiles is pooling its know-how more effectively across products lines and giving innovations for the filter media market a further boost. Filtura will enable Freudenberg Performance Materials to extend its position in this market.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

30.12.2022

Toray creates Fiber that adsorbs Pathogenic Proteins in Blood

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray Industries, Inc., announced that it has combined nanotechnology and fiber technology to create a cross-shaped polymethyl methacrylate (PMMA) nanopore fiber that efficiently adsorbs pathogenic proteins in the blood.

The company developed this fiber by employing its PMMA hollow fiber membrane spinning technology. Changing the nanopore size on the surface and inside the fiber makes it possible to control the types of protein that this material adsorbs. This could become a fundamental blood purification technology for a range of protein adsorption columns that cause diseases.

The fiber’s cross-shaped cross section has a larger surface area than fibers with round ones. This provides much better contact between the blood and fiber and significantly enhances protein adsorption efficiency.

Toray is the only company to have commercialized a PMMA hollow-fiber membrane artificial kidney for dialysis treatment. Its new nanopore fiber benefits from PMMA’s good protein adsorption and biocompatibility. Using the structural formation of a stereocomplex from two PMMA types entangled spirally during the spinning process to form the fiber shape, Toray made it possible for the fiber itself to develop pores of several to dozens of nanometers. Depending on the pore size, large proteins cannot go inside the pores. If they are too small, they are not trapped. This enables selective adsorption of moderately sized proteins trapped in pores.

The fiber pore sizes are adjustable to the diameters of target proteins for a range of diseases. These include inflammatory proteins in sepsis, autoantibodies in autoimmune diseases, and causative proteins in chronic illnesses. Toray’s technology is thus fundamental to developing disease-causing protein adsorption columns to purify blood.

Toray’s cross-shaped cross section suppresses inter-fiber adhesion, increasing the surface area per volume and enabling highly efficient protein adsorption. For blood purification applications, higher capacity adsorption columns increase blood removal amounts from the body, which can be especially stressful for the elderly and children. The new fiber’s highly efficient protein adsorption should contribute to compact, high-performance protein adsorption columns.

Source:

Toray Industries, Inc.,

(c) Hologenix
21.12.2022

Celliant® with Repreve® receives ISPO Textrends awards

Hologenix®, creators of CELLIANT®, is pleased to announce CELLIANT® with REPREVE® – introduced with global textile solutions provider UNIFI®, makers of REPREVE® – has been awarded a Selection in the Fibers & Insulation Category of ISPO Textrends Fall/Winter 2024/25.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that CELLIANT® with REPREVE®, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved the honor. CELLIANT® with REPREVE® is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.

CELLIANT is a natural blend of IR-generating bioceramic minerals, which, when embedded into textiles, allows them to convert body heat into infrared energy, returning it to the body and temporarily increasing local circulation and cellular oxygenation. This aids significantly in muscle recovery, increases endurance, and improves overall performance in healthy individuals, among other benefits.

Hologenix®, creators of CELLIANT®, is pleased to announce CELLIANT® with REPREVE® – introduced with global textile solutions provider UNIFI®, makers of REPREVE® – has been awarded a Selection in the Fibers & Insulation Category of ISPO Textrends Fall/Winter 2024/25.

Twice a year, ISPO recognizes innovative fibers, fabrics and components that are used to manufacture sports apparel. Both companies are excited that CELLIANT® with REPREVE®, whereby CELLIANT infrared (IR) technology is embedded into REPREVE, a brand of recycled fiber, has achieved the honor. CELLIANT® with REPREVE® is a performance fiber made from recycled materials that have been enhanced with IR technology to provide wellness benefits to the consumer.

CELLIANT is a natural blend of IR-generating bioceramic minerals, which, when embedded into textiles, allows them to convert body heat into infrared energy, returning it to the body and temporarily increasing local circulation and cellular oxygenation. This aids significantly in muscle recovery, increases endurance, and improves overall performance in healthy individuals, among other benefits.

REPREVE recycled performance fiber consists of high-quality fibers made from 100% recycled materials, including post-consumer plastic bottles and pre-consumer waste. It is also certified and traceable with UNIFI’s U TRUST® verification and FiberPrint™ technology, which provide assurance that the product comes from recycled materials. Compared to virgin fiber, REPREVE helps to offset the use of petroleum, conserving water and energy and emitting fewer greenhouse gasses.

This award marks the third year in a row that Hologenix has had its CELLIANT technology recognized in the Fall/Winter Textrends Awards. CELLIANT in pure white was a Top Ten Winner in last year’s awards. The prior year, CELLIANT Viscose was a Selection Winner as well.

Source:

Hologenix, LLC

© ITM/TU Dresden
Woven hemisphere for usage in radome antennaes
15.12.2022

AVK Innovation Award 2022 to young engineers from ITM at TU Dresden

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

Continuous simulation aided engineering from CAD design to integrally woven 2D and 3D preforms by means of highly complex weave development for spatial constructions is a unique at the ITM, which was indispensable for the development of these promising woven high-tech structures. This technology is completely new and has never been carried out in this way before. The fabric structures are characterised by a high innovation level due to their geometric diversity and purposes. It can be used in numerous applications and further more contributes to the development of completely new fields of application. The technology can be implemented on all Jacquard weaving machines with only an additional device and the preform geometry is only determined by the control of the Jacquard machine. The preform geometry can be used in the full working width of the weaving machine.

Professor Chokri Cherif, Institute Director of the ITM, and his team are very pleased about these continuous research success in the constantly growing research field of 3D weaving technology, which are achieved at the ITM in close cooperation with industry and users. "This award is a special honour for our institute and confirms that the many years of our excellent research in the field of near-net-shape 3D weaving for the fibre-reinforced plastics sector plays a significant role and that we are making a significant contribution to the sustainable and resource-efficient production of lightweight structures with our development".

Source:

ITM/TU Dresden

12.12.2022

ANDRITZ recycling line for agricultural plastic waste nets

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

RecyOuest, France, has successfully started up the world's first recycling line for agricultural plastic waste nets at its mill in Argentan. The innovative recycling line featuring a unique dry-cleaning system was delivered, installed and commissioned by the international technology group ANDRITZ in August 2022.

RecyOuest, based in Argentan, France, is a green economy company that handles the recycling contaminated filamentary thermoplastics such as round bale nets and twines. With its recycling process, RecyOuest is part of a circular economy approach.

The ANDRITZ recycling line can process up to 8,000 tons of waste and produce recycling fibers for nonwoven applications and also for pellets made of waste from agricultural single-use plastic nets and twines. These pellets are then returned to the plastics industry by mixing both recycled and virgin raw materials, thus reducing the amount of virgin plastic used.

This line, inspired by the techniques from textile wastes recycling, is equipped with a unique mechanical dry-cleaning system that allows resource savings by avoiding the use of water and chemicals. This state-of-the-art ANDRITZ equipment allows RecyOuest to produce recycling fibers for nonwoven applications and also pellets for ever new eco-designed nets and twines for the agricultural sector, with the lowest possible environmental impact.

Source:

ANDRITZ AG

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.