From the Sector

Reset
192 results
05.05.2023

SGL Carbon: Business Development in Q1 2023

  • Sales increase by 4.7% to €283.7 million in Q1 2023
  • Adjusted EBITDA improves by 9.0% to €40.1 million
  • Growth based in particular on strong demand from the semiconductor industry

SGL Carbon generated Group sales of €283.7 million in Q1 2023 (Q1 2022: €270.9 million). This corresponds to an increase of €12.8 million or 4.7% compared to the same period of the previous year. Increased demand for specialty graphite components for the semiconductor industry from the Graphite Solutions business unit contributed in particular to the pleasing increase in sales. But also the Process Technology and Composite Solutions business units continued their positive business development.

Accordingly, adjusted EBITDA (EBITDApre) improved by 9.0% to €40.1 million in the reporting period (Q1 2022: €36.8 million).

  • Sales increase by 4.7% to €283.7 million in Q1 2023
  • Adjusted EBITDA improves by 9.0% to €40.1 million
  • Growth based in particular on strong demand from the semiconductor industry

SGL Carbon generated Group sales of €283.7 million in Q1 2023 (Q1 2022: €270.9 million). This corresponds to an increase of €12.8 million or 4.7% compared to the same period of the previous year. Increased demand for specialty graphite components for the semiconductor industry from the Graphite Solutions business unit contributed in particular to the pleasing increase in sales. But also the Process Technology and Composite Solutions business units continued their positive business development.

Accordingly, adjusted EBITDA (EBITDApre) improved by 9.0% to €40.1 million in the reporting period (Q1 2022: €36.8 million).

Sales development
In the first three months of fiscal year 2023, the business unit Graphite Solutions was the main driver of SGL Carbon's growth with an increase in sales of €21.3 million or 17.8%. This is due in particular to the reallocation of production capacities from the solar industry market segment to the semiconductor industry. The Process Technology (+€6.6 million) and Composite Solutions (+€4.0 million) business units also contributed to the increase in sales.

The Carbon Fibers (CF) business unit recorded a decline in sales of €24.0 million in the reporting period. The decline is mainly due to the scheduled expiry of the attractive supply contract for the BMW i3 in the middle of last year. Freed-up production capacities were compensated by orders from the wind industry in the 2nd half of 2022. But the necessary construction of wind turbines in Europe is currently stalling. Low building permits and high manufacturing costs are temporarily hampering the construction and expansion of wind parks and therefore the necessary increase in renewable energy.

Earnings development
In line with the sales development combined with higher capacity utilization and positive product mix effects, adjusted EBITDA (EBITDApre) improved from €36.8 million to €40.1 million in Q1 2023, representing a quarter-on-quarter increase of 9.0%.

Taking into account depreciation and amortization of €14.3 million (Q1 2022: €14.1 million) as well as one-off effects and non-recurring items of minus €0.1 million, EBIT in the reporting period amounted to €25.7 million (Q1 2022: €31.2 million). It should be noted that Q1 of the previous year was positively impacted by one-off effects and and non-recurring items amounting to €8.5 million. Accordingly, net profit for the period of €15.3 million was lower than in the same quarter of the previous year (€21.5 million).

Debt, equity and capitel expenditure
Net financial debt increased slightly to €174.2 million as of March 31, 2023 (Dec. 31, 2022: €170.8 million). The leverage ratio remains unchanged at 1.0. Due to the positive consolidated net income, the equity ratio increased again slightly compared to the end of fiscal 2022 to 39.5% (Dec. 31, 2022: 38.5%).

Looking at the capital expenditure in Q1 2023, it amounted to €19.0 million, which is higher than the average values of the previous quarters. "At the beginning of 2023, we had already announced the expansion of our investment activities to expand production capacities in the Graphite Solutions business unit. In previous years, our capital expenditure was in line with depreciation and amortization. In addition to these approximately €60 million, we will invest further €20 to €30 million in 2023, which will be financed by advance payments in the context of long-term supply contracts from our customers in the semiconductor industry. Our semiconductor customers secure future production capacities for graphite components, which are needed for their own growth. In return, SGL Carbon's long-term supply contracts will enable future profitable growth," said Dr. Torsten Derr, CEO of SGL Carbon.

Outlook
In line with the business performance in the first three months of 2023, the company confirms the sales and earnings guidance issued on March 23, 2023.

For the financial year 2023, Group sales are expected to be at the prior-year level and  EBITDApre between €160 - 180 million. Taking into account depreciation and amortization, EBITpre is forecast to be between €100 - 120 million. Furthermore, free cash flow at the end of fiscal 2023 is expected to be at the prior-year level and return on capital employed (ROCE) between 10% and 12%.

Source:

SGL CARBON SE

(c) adidas AG
21.04.2023

adidas TERREX and National Geographic launch hiking collection

adidas TERREX announces a multi-season collaboration with National Geographic, consisting of high-performance outdoor wear. The inaugural collection is built to celebrate the role of photography in the culture of outdoor sport - as well-equipped hikers turn their ability to explore more places, and spirit of adventure, into stunning content.

To celebrate this relationship, designers at adidas TERREX combed the National Geographic photography archives for stunning stills of some of the most remote yet moving locations on earth, integrated in unique all over prints in a bold new hiking collection. All pieces are unified by National Geographic’s iconic yellow icon.

Places celebrated in the collection include a snow-covered sandstone monocline in Comb Ridge, Utah, a 120-mile-long, north to south stretch that defines the State’s red rock landscape, as well as textured portraits of shale, - captured on the coast of Norway’s northernmost county - highlighting the sedimentary rock’s distinctive formations.

adidas TERREX announces a multi-season collaboration with National Geographic, consisting of high-performance outdoor wear. The inaugural collection is built to celebrate the role of photography in the culture of outdoor sport - as well-equipped hikers turn their ability to explore more places, and spirit of adventure, into stunning content.

To celebrate this relationship, designers at adidas TERREX combed the National Geographic photography archives for stunning stills of some of the most remote yet moving locations on earth, integrated in unique all over prints in a bold new hiking collection. All pieces are unified by National Geographic’s iconic yellow icon.

Places celebrated in the collection include a snow-covered sandstone monocline in Comb Ridge, Utah, a 120-mile-long, north to south stretch that defines the State’s red rock landscape, as well as textured portraits of shale, - captured on the coast of Norway’s northernmost county - highlighting the sedimentary rock’s distinctive formations.

The 51-piece collection includes women’s, men’s, and gender-neutral offerings – all built to equip the wearer in multi-terrain environments:

  • A part of the collection is the RAIN.RDY Jacket; a 2.5L waterproof and seam-sealed outer garment built to facilitate epic adventures. The men’s jacket features a bold print of the shell formations in the Porsanger Peninsula, Norway, while the women’s is inspired by stills of White Sands National Park in New Mexico.
  • A long sleeve shirt is finished with the bold National Geographic yellow icon and reflective details.
  • The TERREX Swift R3 GORE-TEX Hiking shoes offer the peak combination of a lightweight construction and cushioning as seen in trail running shoes with the stability of a hiking boot. Finished in a print inspired by a stunning aerial shot of Earth, the hiking shoes come with a GORE-TEX lining and membrane seal so water is kept out, and a Continental™ Rubber outsole for optimal grip in wet or dry conditions.
  • The WIND.RDY: GET SHELTERED Jacket, with wind-resistant technology and a water repellent ripstop fabric, allows explorers to feel protected and confident in many weather conditions. The men’s and women’s versions come with bold prints inspired by photography including that of sandstone and snow at Comb Ridge, Utah. Smart design features including a bungee-cord enabled adjustable hem, a lightweight fabric and reflective details. Additionally, it features a bold new lenticular logo design that alternates between Terrex and National Geographic from different perspectives – and is made in part with recycled materials.
More information:
adidas Outdoor outdoor apparel
Source:

adidas AG

06.04.2023

C&S becomes co-owner of the brand Siviglia

After the recent acquisition of Texo S.R.L. which has strengthened the company's presence in the luxury segment, C&S takes a further step forward in the creation of a widespread garment manufacturing hub in the heart of Italy. C&S takes ownership of the Seville brand together with the Bianchetti family, who remain co-owners covering mainly style research and development functions. The Italian style, which amounts to an aesthetic identity and a guarantee of artisan quality, a cultural orientation toward manufacturing excellence and product design, finally to an approach to the market characterized by availability, openness and interaction with the customer.

This acquisition strengthens C&S direct contact with retail, going alongside HAIKURE, PDF and other brands still being finalized, and will be able to generate a profitable exchange with the Style Services Luxe and Style Services Denim divisions, through which C&S stands out as an exceptional partner for all the brands that choose to rely on its experience in the world of jeans, luxury and formalwear.

After the recent acquisition of Texo S.R.L. which has strengthened the company's presence in the luxury segment, C&S takes a further step forward in the creation of a widespread garment manufacturing hub in the heart of Italy. C&S takes ownership of the Seville brand together with the Bianchetti family, who remain co-owners covering mainly style research and development functions. The Italian style, which amounts to an aesthetic identity and a guarantee of artisan quality, a cultural orientation toward manufacturing excellence and product design, finally to an approach to the market characterized by availability, openness and interaction with the customer.

This acquisition strengthens C&S direct contact with retail, going alongside HAIKURE, PDF and other brands still being finalized, and will be able to generate a profitable exchange with the Style Services Luxe and Style Services Denim divisions, through which C&S stands out as an exceptional partner for all the brands that choose to rely on its experience in the world of jeans, luxury and formalwear.

High quality and Made in Italy trousers, but there is more, the brand Siviglia from the Marche region brings to C&S a wealth of tailoring skills and product construction. Born in Marotta (PU) in 2006 from the Bianchetti family, Siviglia is a reality that has experienced rapid commercial success since its entry into the market thanks to the intuition of the iconic trousers with fabric inserts at mid-thigh inspired by the Spanish horsemen, hence the name that recalls the Andalusian capital.

The success of Siviglia is built on coats, trousers and jeans characterized by fit and linear style, thanks to the continuous research on the product, on the fabrics and on the emerging trends, in a personal reinterpretation of the codes of elegance. The corporate style permeates not only the choice of materials and accessories, but is distinguished by the packaging components and the use of visual and communicative languages in line with the brand identity. By interpreting the contemporary and foreseeing the future needs of a constantly evolving market, Siviglia aims to provide its customers with the best in the broadest sense, including among its qualitative goals the reduction of the environmental impact of productions and materials used.

More information:
C&S Siviglia Bianchetti
Source:

Menabò Group srl

Photo Fibre Extrusion Technology Ltd (FET)
23.03.2023

FET prepares for INDEX 23 Exhibition in Geneva

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will shortly be exhibiting at INDEX 23, the leading nonwovens exhibition in Geneva, 18-21 April.

As well as featuring its latest meltblown and spunbond technology, FET will focus on its new Fibre Development Centre. Construction and fit-out of this new purpose-built building is now fully operational. This modern two-storey development provides state-of-the-art facilities, including enhanced laboratory for client testing and product development.

Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients across the globe and will enable continued growth of the company through innovation.  

Complementing FET’s highly successful meltblown technology, the more recent spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

Source:

Fibre Extrusion Technology Ltd (FET)

© Aid by Trade Foundation
16.03.2023

The GoodTextiles Foundation and Cotton made in Africa join forces again

  • Precious water for villages that are running on dry land

The GoodTextiles Foundation has worked to improve drinking water supplies in sub-Saharan Africa in another joint project with Cotton made in Africa (CmiA). In three villages in Togo particularly affected by climate change, the partners built wells and trained people in the use of water. The curriculum included the topics of disease prevention, hygiene and health care.

In 2016, the textile company Dibella (Bocholt) established the GoodTextiles Foundation with the aim of making textile value chains more sustainable. It raises funds and implements its own support projects to benefit people at all stages of the textile industry. Now the foundation has once again supported a project in sub-Saharan Africa initiated by Cotton made in Africa (Hamburg). Funding is being provided for three villages in Togo that, according to a needs assessment by CmiA's local partner, the cotton company Nouvelle Société Cotonnière du Togo (NSCT), have no direct access to drinking water.

  • Precious water for villages that are running on dry land

The GoodTextiles Foundation has worked to improve drinking water supplies in sub-Saharan Africa in another joint project with Cotton made in Africa (CmiA). In three villages in Togo particularly affected by climate change, the partners built wells and trained people in the use of water. The curriculum included the topics of disease prevention, hygiene and health care.

In 2016, the textile company Dibella (Bocholt) established the GoodTextiles Foundation with the aim of making textile value chains more sustainable. It raises funds and implements its own support projects to benefit people at all stages of the textile industry. Now the foundation has once again supported a project in sub-Saharan Africa initiated by Cotton made in Africa (Hamburg). Funding is being provided for three villages in Togo that, according to a needs assessment by CmiA's local partner, the cotton company Nouvelle Société Cotonnière du Togo (NSCT), have no direct access to drinking water.

Difficult water procurement
The areas where CmiA's drought-resistant cotton is grown include the north and interior of Togo, where cotton farmers are particularly affected by the effects of climate change due to prolonged periods of drought. Many village communities lack access to clean drinking water, and people draw contaminated water from more distant rivers or waterholes and carry the heavy load back with difficulty.

Guide to clean water
As part of a joint project between the GoodTextiles Foundation, Aid by Trade Foundation (holder of the CmiA standard) and NSCT, three drought-affected villages - Namare/Puob-n-kpaad, Tchokoroko and Aloba - will now receive their own water supply.

The funds - 11,756 euros will be provided by the GoodTextiles Foundation, and 4,419 euros will come from the Cotton Society - will be used to construct a well operated by hand pumps in each village. The construction work is to be completed by March 2023 and the 2,300 inhabitants will be taught the basics of water handling, disease prevention and hygiene measures in so-called WASH training courses.

Driving force: UN SDGs
For years, we have aligned our company with the UN's 17 Sustainable Development Goals (Global Goals for Sustainable Development). Through the sponsorship project, we are not only contributing to SDG 6 "Clean water and sanitation", but also to gender equality (SDG 5). In the African countries from which we source CmiA cotton, the physically strenuous task of procuring water is still the responsibility of women. The construction of the wells now leads to a significant improvement of their living situation," reports Ralf Hellmann, managing director of Dibella and chairman of the foundation.

Continued under their own responsibility
Once the wells have been handed over to the village communities, "water committees" will take over their management and maintenance, as well as responsibility for further hygiene training for the residents. The operation of the wells will be financed on the basis of a fund made up of small contributions from the beneficiary communities.

Source:

The GoodTextiles Foundation

24.02.2023

Kelheim Fibres und SUMO: Absorbent pads for washable diapers

Kelheim Fibres and SUMO are presenting their high-performance absorbent pads for the reusable Sumo diaper at this year's Cellulose Fibres Conference. The Sumo diaper is a sustainable and washable cloth diaper made entirely from biobased materials, offering high performance and innovative design.

The Sumo diaper offers a reusable alternative, consisting of a waterproof shell and absorbent pads. To enhance the performance of the pads, Sumo collaborated with Kelheim Fibres, a leading viscose specialty fibre manufacturer with decades of experience in the hygiene sector.

Together with the Saxon Textile Research Institute STFI, Sumo and Kelheim Fibres have developed a high-performance absorbent pad that is free of fossil-based materials and has already been awarded the Techtextil Innovation Award. The basis for the innovative construction are Kelheim's functionalized specialty viscose fibres with modified cross-sections, which ensure particularly high absorbency and extremely low rewet values.

Kelheim Fibres and SUMO are presenting their high-performance absorbent pads for the reusable Sumo diaper at this year's Cellulose Fibres Conference. The Sumo diaper is a sustainable and washable cloth diaper made entirely from biobased materials, offering high performance and innovative design.

The Sumo diaper offers a reusable alternative, consisting of a waterproof shell and absorbent pads. To enhance the performance of the pads, Sumo collaborated with Kelheim Fibres, a leading viscose specialty fibre manufacturer with decades of experience in the hygiene sector.

Together with the Saxon Textile Research Institute STFI, Sumo and Kelheim Fibres have developed a high-performance absorbent pad that is free of fossil-based materials and has already been awarded the Techtextil Innovation Award. The basis for the innovative construction are Kelheim's functionalized specialty viscose fibres with modified cross-sections, which ensure particularly high absorbency and extremely low rewet values.

To ensure the washability of the product, needle-punched/thermally bonded nonwovens were chosen, consisting of a mixture of specialty viscose and PLA bicomponent fibres. By combining nonwovens, typically used in single-use applications, with reusable products, the partners have chosen a new approach.

Natalie Wunder, project manager at Kelheim Fibres, and Luisa Kahlfeldt, founder and designer of SUMO, explain in their joint presentation at the Cellulose Fibre Conference how open innovation has led to successful development collaboration, how this response to current consumer needs has emerged, and what steps are planned for the future.

Source:

Kelheim Fibres GmbH

21.02.2023

Polartec®: New technology reduces fiber fragmentation in laundering tests

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

  • Iconic 200 Series fleece to be the first fabric made from this new process.

Polartec®, a Milliken & Company brand, announces Polartec® Shed Less Fleece, a new milestone in its industry-leading efforts to reduce textile fiber fragment shedding. Shed Less is a process that combines yarn construction, knitting, chemistry, and manufacturing to reduce home laundry fiber fragment shedding by an average of 85%. The first fabric to receive this new technology is the brand’s iconic Polartec® 200 Series Fleece, the modern version of the original PolarFleece® launched in 1981, and in 1993, the first performance fleece knit from yarn made from recycled plastic bottles.

The Shed Less process works by engineering the lofted fibers that give fleece its soft hand the ability to resist breaking and rubbing off during home laundering, cited as one contributing factor to the spread of fibers fragments (commonly referred to as microfibers). Polartec® Shed Less Fleece achieves this while maintaining all of the attributes that continue to make Polartec fleece a staple of midlayer collections - lightweight, breathable and warm.

The brand used the AATCC (American Association of Textile Chemists and Colorists) TM212-2021 test method for fiber fragment release during home laundering. This test was conducted with large sample sizes to account for variability. The testing concluded that Shed Less Fleece reduced fiber fragment shedding by an average of 85% compared to the baseline fabric.

“In 2016 we began looking into how we might test for fiber loss because there wasn’t a lot of research on the issue.” said Aimee LaValley, Polartec Textile Development, Dye and Chemistry Manager. “This led to new products like Polartec Power Air™, new manufacturing processes, as well as our participation in the TextileMission workgroup to study the issue on an interdisciplinary basis.”

TextileMission was a three year collaborative initiative of academia and industry to reduce the impact of textile microplastics funded by the German Federal Ministry of Education and Research. Founding partners include The Association of the German Sporting Goods Industry, Hochschule Niederrhein - University of Applied Science; TU Dresden - Institute of Water Chemistry; Vaude Sport; WWF Germany; Adidas AG; Henkel AG; Miele & CIE; and Polartec, LLC.

Polartec® Shed Less Fleece will be initially launched in the United States and will be available to customers beginning March 1, 2023. The brand plans to apply the Shed Less process to many other industry-leading fabric platforms and manufacturing facilities around the world.

(c) nova-Institut GmbH
24.01.2023

Six nominees for„Cellulose Fibre Innovation of the Year 2023“

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

Here are the six nominees
Vybrana – The new generation banana fibre – GenCrest Bioproducts (India)

Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the Banana Pseudo stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and Bio Fertilizers & organic manure.

HeiQ AeoniQ™ – technology for more sustainability of textiles – HeiQ (Austria)
HeiQ AeoniQ™ is the disruptive technology and key initiative from HeiQ with the potential to change the sustainability of textiles. It is the first climate-positive continuous cellulose filament yarn, made in a proprietary manufacturing process and the first to reproduce the properties of polyester and nylon yarns in a cellulosic, biodegradable, and endlessly recyclable fibre.
HeiQ AeoniQ™ can be manufactured from different cellulosic raw materials such as pre- and post-consumer textile waste, biotech cellulose, and non-valorized agricultural waste, such as ground coffee waste or banana peels. It naturally degrades after only 12 weeks in the soil. Each ton of HeiQ AeoniQ™ saves 5 tons of CO2 emissions. The first garments made with this innovative cellulosic filament fiber were commercially launched in January 2023.

TENCEL™ LUXE – lyocell filament yarn – Lenzing (Austria)
TENCEL™ LUXE is LENZING’s new versatile lyocell yarn that offers an urgently needed sustainable filament solution for the textile and fashion industry. A possible botanical alternative for silk, long-staple cotton, and petrol-based synthetic filaments, is derived from wood grown in renewable, sustainably managed forests, and produced in an environmentally sound, closed-loop process that recycles water and reuses more than 99 % of organic solvent. Certified by The Vegan Society, it is suitable for a wide range of applications and fabric developments, from finer high fashion propositions to denim constructions, seamless and activewear innovations, and even agricultural and technical solutions.

Nullarbor™ – Nanollose & Birla Cellulose (Australia/India)
In 2020, Nanollose & Birla Cellulose started a journey to develop and commercialize tree-free lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to a joint patent application with the patent “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose & Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.

Circulose® – makes fashion circular – Renewcell (Sweden)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant will eventually reach 120,000 tons of annual capacity.

Sparkle sustainable sanitary pads – Sparkle Innovations (United States)
Globally, around 300 billion period products are discarded every year, resulting in millions of tons of non-biodegradable waste. Since most conventional sanitary pads contain up to 90 % plastics, they do not biodegrade for around 600 years. Sparkle has designed sustainable, plastic-free, biodegradable and compostable Sparkle sanitary pads. From product to packaging, they are made up of around 90 % cellulose-based materials with top sheet, absorbent core, release paper, wrapping paper and packaging made of cellulose-based fibres. Whether Sparkle pads end up in a compost pit, are incinerated or end up in a landfill, they are a more sustainable alternative compared to conventional pads that contain large amounts of plastics, complex petro-chemical based ingredients and artificial fragrances. When tested according to ISO 14855-1 by a leading independent lab in Europe, Sparkle pads reached over 90 % absolute biodegradation within 90 days in commercial composting conditions.

Photo: Carbios
13.01.2023

Carbios and Novozymes deepen collaboration in biorecycling of PET

Carbios and Novozymes announced an exclusive long-term global strategic partnership. This major agreement ensures the long-term production and supply of Carbios’ proprietary PET-degrading enzymes at an industrial scale for the world’s first biological PET-recycling plant due to start production in 2025 in Longlaville (France), as well as Carbios’ future licensee customers.
 
Carbios and Novozymes have had a partnership since 2019 to develop enzyme-based solutions and address  the sustainability challenge of plastic pollution, both within PET-recycling[1] and PLA-biodegradation[2].  Building on the current Joint Development Agreement (JDA), under the new agreement, Carbios and Novozymes will extend their collaboration to develop, optimize and produce enzymes that will subsequently be supplied by Novozymes to all licensees of Carbios’ technology.  The new agreement grants both parties exclusivity in the field of the partnership.
 

Carbios and Novozymes announced an exclusive long-term global strategic partnership. This major agreement ensures the long-term production and supply of Carbios’ proprietary PET-degrading enzymes at an industrial scale for the world’s first biological PET-recycling plant due to start production in 2025 in Longlaville (France), as well as Carbios’ future licensee customers.
 
Carbios and Novozymes have had a partnership since 2019 to develop enzyme-based solutions and address  the sustainability challenge of plastic pollution, both within PET-recycling[1] and PLA-biodegradation[2].  Building on the current Joint Development Agreement (JDA), under the new agreement, Carbios and Novozymes will extend their collaboration to develop, optimize and produce enzymes that will subsequently be supplied by Novozymes to all licensees of Carbios’ technology.  The new agreement grants both parties exclusivity in the field of the partnership.
 
The strategic partnership supports the large-scale industrial deployment of Carbios’ patented PET-recycling technology starting with Carbios’ future industrial reference unit in Longlaville (France), which will be the world’s first biological PET-recycling plant. Construction will begin later this year, and both building and operating permits having been filed with local authorities.  Production at the plant is set to start in 2025 and the processing capacity will be 50,000 tonnes of waste per year.

Source:

Carbios

09.01.2023

Shelton Vision AI: Tailored machine learning solutions for the textiles industry

Over the past three years, a dedicated AI development team at BTMA member Shelton Vision has been developing tailored machine learning solutions for the textiles industry.

The aim has been to elevate the detection process and the accuracy of naming and grading subtle defects in textiles, in real time within production environments.

“Big Data ‘off-the-shelf’ systems such as those behind technolgies like facial recognition and Google Maps involve reading many thousands of single images each second and simply take too long to accumulate sufficient data for what’s required in this specific case,” says Shelton Vision CEO and Managing Director Mark Shelton. “A feature of the textile industry is that in many sectors, the product range changes several times within a year and it is not uncommon to have to inspect hundreds, if not thousands of different styles in a year based on precise settings.”

In terms of defect types, he adds, there may typically be over 100 that need to be accurately detected, classified (named) and graded in real time.

Over the past three years, a dedicated AI development team at BTMA member Shelton Vision has been developing tailored machine learning solutions for the textiles industry.

The aim has been to elevate the detection process and the accuracy of naming and grading subtle defects in textiles, in real time within production environments.

“Big Data ‘off-the-shelf’ systems such as those behind technolgies like facial recognition and Google Maps involve reading many thousands of single images each second and simply take too long to accumulate sufficient data for what’s required in this specific case,” says Shelton Vision CEO and Managing Director Mark Shelton. “A feature of the textile industry is that in many sectors, the product range changes several times within a year and it is not uncommon to have to inspect hundreds, if not thousands of different styles in a year based on precise settings.”

In terms of defect types, he adds, there may typically be over 100 that need to be accurately detected, classified (named) and graded in real time.

“Added to this is the need to ‘filter out’ the random occurrence of ‘non defects’, such as loose threads, lint and dust on the surface – the number of which can be higher than actual defects – and it is clear that a bespoke system is required.”
The development team has consequently established metadata for identifying defect properties, enabling the successful identification of faults from a much smaller number of images.

“The system employs a unique combination of machine learning for automated style training and novel algorithms for defect detection, to provide high quality images for the AI real time defect classification and grading software,” Shelton explains. “Due to the inherent variation in fabric features – raw materials, construction, texture, colour and finishes, as well as the differing product quality standards in value chains and the regional variations in what defects are called – our AI engine uses models built for each individual company or group of companies, or product value chain.”

The AI models are constructed so that the user operatives can populate them with their own data produced by the vision system or by obtaining defect images from another imaging source (eg a mobile phone camera).  

The occurrence of defects is sporadic and many defect types occur infrequently, although when they do, they can have severe consequences. These scenarios re-enforce the need for the AI engine to be quickly set up and able to operate accurately with limited data sets of typically between 30 and 50 good quality images per defect type.

A further feature is a tool enabling the user to periodically ‘clean up’ the AI data during the set up phase. This is used to resolve conflicting data and to correct mis-named images.

Generally, the highest cost component of fabric production is the raw material and in addition to finished product inspection, a cost effective use for vision systems is in process operation.

Generally, the highest cost component of fabric production is the raw material and in addition to finished product inspection, a cost effective use for vision systems is in process operation.

“There is a need for the real time detection of defects that are being created in separate processes, such as printing or coating and for real time automated systems that can accurately determine the defects and their severity and provide a reliable signal for an operative to rectify the issue, This can result in considerable savings.

Prior to Shelton introducing powerful customised machine vision and real time defect classification, the only systems available were those that required manual sifting through vast numbers of images, which included both real defects and ‘non defect’ images. The task was very often overwhelming and did not provide much benefit beyond manual fabric inspection.

More information:
Shelton Vision fabric inspection
Source:

AWOL for British Textile Machinery Association (BTMA)

Infinited Fiber Company
14.10.2022

Infinited Fiber Company accelerates scaling plans amid turbulence

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 
“We are not immune to the global market context in which we operate. The supply chain issues stemming from the Covid-19 pandemic are still wreaking havoc, and the ongoing war in Ukraine has dealt a heavy blow to the global utility, commodity, and financial markets – and to us. We are satisfied with the progress at the site of our planned commercial-scale factory and the opening of the factory remains our key priority. The current, unstable market environment has highlighted the need for us to also accelerate efforts to simultaneously pursue other avenues for scaling production, with the ultimate aim of serving our customers in the best possible way in the long run,” said Infinited Fiber Company CEO and cofounder Petri Alava.
 
Infinited Fiber Company said in June that it planned to build a factory to produce Infinna™, a textile fiber that can be created 100% from cotton-rich textile waste, at the site of a discontinued paper mill in Kemi, Finland. The factory is expected to create around 270 jobs in the area and to have an annual production capacity of 30,000 metric tons, equivalent to the fiber needed for about 100 million T-shirts. The future factory’s customer-base includes several of the world’s leading apparel companies, with most of the future production capacity already sold out for several years.
 
Since June, Infinited Fiber Company has advanced the site-specific basic engineering, recruitment planning, vendor selection, and permit processes according to plan. The limited component availability caused by the continuing impacts of the Covid-19 pandemic and the war in Ukraine have, however, prolonged significantly the delivery times for some of the key equipment and machinery needed for the factory. As a result of these developments, Infinited Fiber Company has re-evaluated its overall factory project timeline. The first commercial fiber deliveries from Kemi are now expected to begin in January 2026. The scope of the project remains unchanged and construction work at the site is expected begin during 2023 as previously communicated.
 
In addition, the European energy crisis sparked by the war in Ukraine has caused the electricity prices in Finland to roughly triple, and the prices of some of the key chemicals needed in the fiber regeneration process have risen by some 200-300% since the start of the war.
 
“We of course don’t have a crystal ball. But according to our advisors and other experts, utility and commodity prices are forecast to normalize before 2026, when we now expect the first commercial fiber deliveries from Kemi to be shipped. In addition to the likely normalization of the market, the extended timeline enables us to undertake the necessary measures to develop the profitability of the future factory. The growing demand for Infinna™, despite the general turbulence, is an encouraging and clear indication of the fashion industry’s commitment to circularity,” said Petri Alava.

Source:

Infinited Fiber Company

Photo: Sellers Textile Engineers
Hybrid Shearing Cylinder
10.10.2022

The Hybrid Shear by Sellers Textile Engineers

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

BTMA member Sellers Textile Engineers is marking its 110th anniversary this year with the introduction of a new concept in carpet shearing, as the essential final step in ensuring tuft uniformity and ‘just new’ freshness in finished carpet rolls.

The company has for many years offered two options in the construction of its shearing cylinders – the first, namely the ‘strap-on’, incorporates spiral blades bolted to the cylinder body and the second, known as the ‘caulked-in’, includes spirals which are fixed very securely in a machined groove within the machine.

The new Sellers’ Hybrid Shearing Cylinder combines the benefits of both, resulting in an improved cut and finer finish, in addition to longer repeatable finishing and increased rigidity.

“The Hybrid Shearing Cylinder has all the advantages of the ‘strap-on’ spiral blade to provide a sharper and cleaner cut, along with enhanced rigidity which significantly lengthens the intervals between the necessary regrinding of the blade,” explains Sellers Director Neil Miller. “We currently have six Hybrid Shearing Cylinders operating in the field and the earliest, which has been installed in both No1 Head position, where the majority of the shearing operation and heaviest cut is performed, and also in No3 Head, where the sharper cutting angle has resulted in a much improved surface quality.”

Sellers shearing machines have led the field in carpet finishing for many decades, enabling the leading manufacturers to stay competitive by enabling the highest quality of finish to be achieved economically and efficiently.

The latest advanced features of these machines include a load cell tension control drive system, an automated touchscreen for easy operator control and fault diagnosis, an enhanced cleaning system including cylinder and blade separation and fully controllable pivoting beds. Further options include thickness monitoring, seam detection and metal detection systems.

“The Hybrid Shearing Cylinder will become standard on our latest machines and also be made available for retrofitting, to provide significant benefits to our existing users,” says Miller. “All of our equipment is designed, manufactured, assembled and tested at our plant in the UK, and as one of the few remaining European engineering companies to make all of our components in-house – with now over a century of accumulated know-how – flexibility in design allows our finishing solutions to be targeted to specific customers and their product requirements. Aligned to this is a lead in process control systems which ensure the accurate control, reliability and repeatability of the processing parameters on all of our machines.”

Sellers remains committed to providing complete finishing solutions for all carpet, tile and artificial grass products. Its range includes machines for tufted secondary backing, both conventional, powder and extrusion lamination, Wilton and Axminster products, artificial grass and foam lines, coating lines for bitumen, PVC, PU and other polymers, as well as shearing for all carpet products.

Ongoing developments on the company’s coating and drying lines have resulted in improved guiding and product tension control as well as dryer efficiency, reducing heat loss and optimising energy use. These include a re-design of the fan pressure boxes and impingement nozzles to increase airflow efficiency, modulating gas burners and introducing easy clean, accessible filters.

In addition, the proven dual zone system has been enhanced, giving a temperature differential of up to 80°C between top and bottom zones. Dryers can be heated by either gas or steam and operation and access have been simplified with controls via touchscreen and PLC.

An extensive range of ancillary equipment is available to provide maximum flexibility to cover product requirements, for both new processing lines and as upgrades to existing equipment.

“Carpet manufacturing is now based on well-established, tried and trusted processes and it’s rare for new innovations to be introduced into this sector,” says Jason Kent, CEO of the British Textile Machinery Association. “The new Sellers Hybrid Shearing Cylinder can provide a competitive edge for manufacturers which is currently being proven in the field. It’s one of a number of new innovations the company is planning to showcase at next year’s ITMA exhibition in Milan.”

Photo: AWOL
20.09.2022

Halley Stevensons: Unique waxed cotton finishing with new Monforts line

Monforts has installed and commissioned a new Montex finishing range at the Baltic Works of Halley Stevensons in Dundee, Scotland, to further boost the weatherproofing specialist’s highly flexible operations.

The range, with a working width of two metres, was built at the Montex assembly plant in Austria and consists of a Montex®Coat coating unit in knife execution for paste and foam coating and a Montex 8500 6F stenter.

Founded in 1864, Halley Stevensons has amassed unique technical know-how and manufacturing experience in the art of waxed cotton for weatherproofed fabrics and is able to provide international orders in custom colours and finishes to very low minimum quantities where required. The company exports worldwide and its premium brand customers include Belstaff, Barbours, Filson and J.Crew.

The range has replaced one of the company’s older stenter/coating lines and has already enabled Halley Stevensons to recreate various products with lower coating applications at higher speeds than was previously possible.

Monforts has installed and commissioned a new Montex finishing range at the Baltic Works of Halley Stevensons in Dundee, Scotland, to further boost the weatherproofing specialist’s highly flexible operations.

The range, with a working width of two metres, was built at the Montex assembly plant in Austria and consists of a Montex®Coat coating unit in knife execution for paste and foam coating and a Montex 8500 6F stenter.

Founded in 1864, Halley Stevensons has amassed unique technical know-how and manufacturing experience in the art of waxed cotton for weatherproofed fabrics and is able to provide international orders in custom colours and finishes to very low minimum quantities where required. The company exports worldwide and its premium brand customers include Belstaff, Barbours, Filson and J.Crew.

The range has replaced one of the company’s older stenter/coating lines and has already enabled Halley Stevensons to recreate various products with lower coating applications at higher speeds than was previously possible.

Waxed cotton was originally developed by sailors in the early 15th century when Scottish North Sea herring fleets began treating flax sailcloth with fish oils and grease in an attempt to waterproof their sails. Remnants of these sails were used by the sailors as capes to withstand the high winds and sea spray.

By the mid 1850s, sailcloth was being treated with linseed oil, but while initially highly effective, it would yellow and stiffen through weathering over time and eventually lose its waterproofing qualities.

In the years that followed, various treatments were applied to cottons in an attempt to find the most effective weatherproofing solution, and the combination of densely-woven cotton impregnated with a paraffin waxed coating proved most successful. For over 150 years, Halley Stevensons created many different variations of both woven constructions and finishing treatments and now supplies thousands of metres of waxed cotton every year, with each roll produced to custom specifications.

“The beauty of waxed cotton is its durability and longevity,” says Managing Director James Campbell. “The fabrics are breathable, with the wax adjusting to ambient temperatures to be softer and more breathable in warm weather and stiffer and more wind proof in cold conditions.”
While traditional waxes are petroleum or paraffin based, Halley Stevensons has always been comfortable about using a waste product from industry and reusing it to make products that last a lifetime.  

“We are always exploring different finishing techniques and one of our most popular finishes is our hybrid aero – an emulsified blend of waxes,” Campbell says. “This fabric is water repellent but has little wax in the mixture so the handle is much drier to touch than the traditional wet waxes.”

The company has also recently launched a new 100% plant-based wax – Ever Wax Olive – consisting of a blend of olive oil, rape seed and castor bean with comparable water repellence to petroleum and a far better rating than other natural waxes which have come before it.

“The high tradition of skills and fabric innovation imposed by our original guildsmen is still our benchmark standard of honest workmanship today,” Managing Director James Campbell concludes “We use responsibly sourced cotton fabrics and processes that are gentle to the product and low impact to the environment. Our dyeing methods use very low levels of water and our waxes are simply heated up for application and cooled down to store when not in use, meaning no waste discharges. Now, with this new Monforts line, we are also achieving running speeds two-to-three times faster than with the older stenter, combined with less gas usage. It’s proved a great partnership.”

09.09.2022

Lenzing invests in renewable energy expansion

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

  • Partnership with green power producer Enery and Energie Steiermark realizes construction of a photovoltaic plant with 5.5 MWpeak capacity
  • Strategic investments in renewables boost energy independence and reduce carbon footprint

The Lenzing Group has signed an electricity supply contract with green power producer Enery and Energie Steiermark to finance a photovoltaic plant in the Deutschlandsberg region (Styria). The electricity generated will supply the fiber and pulp plant at the Lenzing site after commissioning from the fourth quarter of 2023. The electricity supply contract is limited to 20 years.

The plant’s output will amount to 5.5 MWpeak. This corresponds to the average annual electricity demand of more than 1,700 households. Several photovoltaic systems are already being installed at the Lenzing site, including the largest ground-mounted plant in the province of Upper Austria, whose commissioning is imminent.

In 2019, Lenzing became the first fiber manufacturer to set a target to reduce its carbon emissions by 50 percent by 2030 and to be climate neutral by 2050. This carbon reduction target has been confirmed by the Science Based Targets Initiative. Lenzing is also currently investing in reducing carbon emissions at other sites worldwide. Only recently, the Lenzing Group announced that its Indonesian site will also be relying on green energy in the future.

Source:

Lenzing AG

08.09.2022

Monforts at ITMA ASIA + CITME

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

Monforts will highlight its technologies for special technical textile applications at this year’s ITMA ASIA + CITME which takes place at the National Exhibition and Convention Center in Shanghai, China, from November 20-24.

One of Monforts' developments is the Montex 8500 XXL stenter system for the production of technical fabrics in widths of up to 6.8 metres. Among the products made on this system are treated nonwovens for the geotextiles and filter media markets, tarpaulins, advertising banners, black-out curtains, membranes and many more.

On Montex©Coat coating lines, meanwhile, the possibilities range from the single-sided application of finishing agents for outdoor clothing and adding functionality to home textiles, to the creation of materials for sophisticated lightweight construction and automotive and aerospace components.

“Many more applications are possible, such as the overdyeing of denim, the creation of double-face coated materials, fabrics awnings, tents and medical drapes and the pre-treatment of substrates for digital printing”, explains Gunnar Meyer, Monforts area sales manager for China. “A range of different doctor blades and their combinations can be supplied to meet individual requirements, including air knife, roller knife, foam, screen and magnetic roller coating. The latter option is recommended for lines with working widths of over 2.4 metres.”

In addition, Monforts can provide the necessary explosion-proof ranges for solvent-based coatings and high temperature processes up to 320°C, such as the PTFE coating of nonwoven filter material. These lines are equipped with special burners, stenter chains, and insulation.

Source:

 A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

(c) PURE LOOP
07.09.2022

PURE LOOP: High-strength synthetic nonwoven made with a recycled content of 10 percent

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

Geosynthetics have become an indispensable part of the construction industry. PP nonwovens, for example - mechanically bonded continuous fibres made from specially UV-stabilised polypropylenes - are often used in blanket form as barriers, screens and filters, and their strength extends the service life of construction projects. Whether for road construction, or as barrier on glaciers or against weeds - there are myriad applications.

TenCate Geosynthetics uses the PURE LOOP ISEC evo technology to recycle this type of PP nonwoven. The European company, with locations in Austria, France and the Netherlands, is specialised in the development and production of geotextiles for modern civil engineering applications. The edge trimmings and production rejects generated during manufacturing used to be recycled at the Linz site, but not fed back into the company's own production process.

"The demands on us were high," recalls Patrick Wiesinger, project manager at PURE LOOP. "The PP nonwoven is highly tear resistant, which means its a very challenging recycling process. Our ISEC evo machine conserves the quality of the production waste really well during recycling, so we were able to achieve the specified increase in quality for the recyclates."

Another advantage of PURE LOOP technology is the wide range of shapes in which the production scrap can be delivered for processing. "Our ifeed technology with double feed ram system and singleshaft shredder offers the ideal conditions for direct processing of these large rolls - and without the need for prior preparation of the input material by employees before the material is fed into the recycling process", emphasizes Patrick Wiesinger. With the ISEC evo recycling machine TenCate can now manufacture its high-strength PP nonwoven product with a recyclate content of up to 10 percent.

Source:

PURE LOOP, EREMA Group GmbH

Foto: Freudenberg Performance Materials
11.08.2022

Freudenberg Friction Inserts at WindEnergy Hamburg 2022

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

FFI help to improve the reliability of connections and thus of the entire wind turbine. Furthermore, they eliminate slipping and prevent fretting of connections.

Other examples of applications for FFI are highly loaded flange connections between the rotor shaft and gearbox, connections between the main bearing and the machine carrier housing, the gearbox to generator, or at the pitch gear or ring gear. They increase the friction co-efficient between two components.

Source:

Freudenberg Performance Materials

10.08.2022

SGL Carbon: More capacities for graphite products for use in the semiconductor industry

  • Rising global demand for particularly high-performance silicon carbide (SiC)-based semiconductors

  • Increase in production capacities at the Shanghai (China), St. Marys (USA) and Meitingen (Germany) sites

SGL Carbon will significantly increase capacities for the production of graphite products for the semiconductor industry by 2024. As part of the investment budget for the Business Unit Graphite Solutions set out in the medium-term planning, a mid-range double-digit million euro amount will be made available for the expansion of production over the next two years. The company is thus responding to the strong growth in demand in this sector and strengthening its commitment to the global megatrend of digitalization.

  • Rising global demand for particularly high-performance silicon carbide (SiC)-based semiconductors

  • Increase in production capacities at the Shanghai (China), St. Marys (USA) and Meitingen (Germany) sites

SGL Carbon will significantly increase capacities for the production of graphite products for the semiconductor industry by 2024. As part of the investment budget for the Business Unit Graphite Solutions set out in the medium-term planning, a mid-range double-digit million euro amount will be made available for the expansion of production over the next two years. The company is thus responding to the strong growth in demand in this sector and strengthening its commitment to the global megatrend of digitalization.

The expansion program will take place in several steps over the next two years. In St. Marys, North America, and at the Chinese site in Shanghai, capacities for purification and for high-precision, computer-controlled processing of graphite components and felts will be expanded. In Meitingen (Germany), a new plant for the production of carbonized and graphitized soft felt is under construction. Further capacity expansions at various locations are being planned.

Source:

SGL CARBON SE

(c) Fraunhofer UMSICHT/Mike Henning
Prof. Christian Doetsch (l.) and Prof. Manfred Renner (r.)
09.08.2022

Fraunhofer UMSICHT: New institute directors

Prof. Manfred Renner and Prof. Christian Doetsch will take joint leadership of the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT from August 2022. As renowned scientists, they have most recently shaped the direction of the institute as heads of the Products division and Energy division respectively, and will now follow in the footsteps of Prof. Eckhard Weidner, who has entered retirement.

This is the first time in its history that Fraunhofer UMSICHT is led by two directors. Both institute directors began their professional careers at the institute and from August they will have a joint hand in its future.

Prof. Manfred Renner and Prof. Christian Doetsch will take joint leadership of the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT from August 2022. As renowned scientists, they have most recently shaped the direction of the institute as heads of the Products division and Energy division respectively, and will now follow in the footsteps of Prof. Eckhard Weidner, who has entered retirement.

This is the first time in its history that Fraunhofer UMSICHT is led by two directors. Both institute directors began their professional careers at the institute and from August they will have a joint hand in its future.

Prof. Manfred Renner holds a doctorate in mechanical engineering, specializing in process engineering and business development. Since 2006, he has held various roles at Fraunhofer UMSICHT, most recently heading up the Products division and overseeing its 126 employees and its budget of 14.8 million euros. He has set international standards through his award-winning research into a free of water tanning leather tanning process that uses compressed carbon dioxide. With the development of innovative aerogel-based insulation materials for building facades, he has made a significant contribution to environmentally friendly, circular applications in the construction industry and initiated a number of industrial projects. One of the notable technological breakthroughs made by his team was the development of a new type of fire-resistant glass, which can withstand even the most extreme heat. This won his development team the Joseph von Fraunhofer Prize in October 2020.

Alongside becoming institute director, Prof. Renner will also take over the leadership of the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE in August 2022. In this role, he will represent the Fraunhofer-Gesellschaft on a national and international level with regard to the transformation of industry and society to a circular economy. In addition, he will start his professorship in Responsible Process Engineering at the Faculty of Mechanical Engineering of the Ruhr-Universität Bochum. Over the course of his professorship, he will shape the systemic development of the circular economy at a corporate, regional and European level.

Prof. Christian Doetsch has worked in energy research for more than 25 years, spending most of this time at Fraunhofer UMSICHT. As head of the Energy division, he managed a team of around 145 employees and was responsible for a budget of approximately 10.4 million euros. His technological focal points are energy storage, Power-to-X technologies including hydrogen electrolysis and chemical conversion, catalysts, and energy system modeling and optimization. His overarching aim is the integration of renewable energies into a cross-sectoral, resilient energy system.

In 2015, Doetsch co-founded the award-winning start-up Volterion GmbH & Co. KG, which develops redox flow batteries. He attained high visibility on a global scale by redesigning stacks, one of the main components of redox flow batteries, an achievement for which he, his team and Volterion representatives were awarded the Joseph von Fraunhofer Prize in May 2021. The energy expert also acts as deputy spokesperson for the Fraunhofer Energy Alliance and task manager for the energy storage group at the International Energy Agency (IEA). He also co-founded the “Open District Hub e. V.,” an association that promotes the energy transition in the sector by means of energy systems integration.

Since January 2020, he has been Professor of Cross Energy Systems at the Faculty of Mechanical Engineering of the Ruhr-Universität Bochum. In this role, he conducts research into ecological evaluation and resilience of cross-sectoral energy systems.

Source:

Fraunhofer UMSICHT

26.07.2022

RUDOLF turns 100 presenting a modernization of its brand

RUDOLF, a global provider of specialty chemicals, sustainable solutions and services for the global textile industry celebrates the beginning of a whole new chapter with a new corporate brand identity.

RUDOLF’s products have always been rooted in science and experience, whereas RUDOLF’s brand has always been a celebration of trust, reliability and inclusiveness. The new brand identity is directly extracted from the historical and cherished company’s heritage mark and it is a very modern interpretation of the same. A very contemporary brand identity for a very contemporary organization that proudly steps into its second centenary of operations – with a global mindset.

Since 1922 RUDOLF has been fueling the textile, construction and other industries with very same innovative energy so necessary to ensure continuous progress and to solve some of our civilization's current and future issues. An agent of positive change for a more sustainable living.

RUDOLF, a global provider of specialty chemicals, sustainable solutions and services for the global textile industry celebrates the beginning of a whole new chapter with a new corporate brand identity.

RUDOLF’s products have always been rooted in science and experience, whereas RUDOLF’s brand has always been a celebration of trust, reliability and inclusiveness. The new brand identity is directly extracted from the historical and cherished company’s heritage mark and it is a very modern interpretation of the same. A very contemporary brand identity for a very contemporary organization that proudly steps into its second centenary of operations – with a global mindset.

Since 1922 RUDOLF has been fueling the textile, construction and other industries with very same innovative energy so necessary to ensure continuous progress and to solve some of our civilization's current and future issues. An agent of positive change for a more sustainable living.

“Turning 100 years old is a very important milestone” says Dr. Wolfgang Anton Schumann, current MD at RUDOLF “However, it isn’t a finish line at all but, rather, the beginning of a whole new chapter. As we change pace, we send out a very important signal and transform what is most precious, intimate and meaningful to us. We change the essence of who we are: our corporate branding. We took inspiration from our heritage mark with the idea of using it as launch pad to the future. Because the future isn’t going to be what it used to be”.

Source:

Rudolf Group