From the Sector

Reset
10 results
FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

Photo: FET
FET-103 Monofilament meltspinning system
10.10.2022

RHEON LABS: Fibre with unique strain-rate sensitive characteristics

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

RHEON LABS, a fast-growing materials technology company based in Battersea, London, has completed an extensive 6 month trial with FET, a world leader in laboratory and pilot meltspinning equipment. Backed by a £173,000 grant from Innovate UK for feasibility studies, RHEON LABS has further developed its RHEON™ technology, a reactive polymer that dynamically stiffens when subjected to force. The technology can control energy of any amplitude or frequency, from small vibrations to forces at ballistic-speeds and therefore has a wide range of applications.
 
This Innovate UK Smart Grant-backed project aims to develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. Creating a fibre with unique strain-rate sensitive properties will be a world first. It will enable the creation of a 'breakthrough-generation' of stretch textiles that can actively absorb, dampen and control energy during movement, rather than simply acting as a spring.

For close-fitting activewear and sports bras, the ability to actively control muscle mass or soft tissue movement during exercise will be a game-changing advancement. It will allow brands to engineer garments that relax during everyday use but actively stiffen during exercise for improved support and performance.
The Innovate UK grant was awarded under the category of Hyper-Viscoelastic Fibre Extrusion for Textile Manufacture. Fibre Extrusion Technology Limited (FET) enabled the customer trials at its bespoke Fibre Development Centre in Leeds, England using its in-house FET-103 Monofilament meltspinning facilities, in harness with RHEON and FET technical operatives. The next phase will be to upscale the trials of preferred materials on RHEON’s own new FET-103 meltspinning line, with FET’s continued support and expertise on hand.
 
Creating a fibre with unique strain-rate sensitive characteristics could be as radical a change in the market as the initial introduction of stretch fibre with the launch of Lycra™. The textiles would have a multitude of beneficial properties and would provide significantly less compression in the garment than conventional materials, substantially improving user comfort, support and performance.

Source:

DAVID STEAD PROJECT MARKETING LTD

Photo: FET
02.08.2022

FET at Techtextil 2022: Principle theme was Sustainability

The company’s principle theme at Techtextil was Sustainability, since FET extrusion systems are ideally suited for both process and end-product development of sustainable materials. These systems are designed to be material efficient, can be bespoke designed and offer both flexibility and a high level of processing capability. They are supplied as self-contained units for ease of installation in a laboratory or small scale process evaluation environment.

FET’s enhanced Fibre Development Centre enables clients to develop and trial their own sustainable fibres and FET has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats

The innovative stand at Techtextil was specifically designed to highlight FET’s total commitment to all aspects of sustainability. It utilised as many sustainable components as possible and met with much comment and approval from visitors.

The company’s principle theme at Techtextil was Sustainability, since FET extrusion systems are ideally suited for both process and end-product development of sustainable materials. These systems are designed to be material efficient, can be bespoke designed and offer both flexibility and a high level of processing capability. They are supplied as self-contained units for ease of installation in a laboratory or small scale process evaluation environment.

FET’s enhanced Fibre Development Centre enables clients to develop and trial their own sustainable fibres and FET has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats

The innovative stand at Techtextil was specifically designed to highlight FET’s total commitment to all aspects of sustainability. It utilised as many sustainable components as possible and met with much comment and approval from visitors.

Fibre Extrusion Technology Limited (FET) of Leeds, England enjoyed another successful Techtextil in Frankfurt, with high quality enquiries from technical companies and organisations worldwide, but in particular from customers based in Europe.

Source:

DAVID STEAD PROJECT MARKETING LTD for FET

(c) FET
FET-100 Series Melt Spinning System
13.03.2022

FET gearing up for Techtextil 2022

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

A major theme to be highlighted on the FET stand is Sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials.

FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes.

Source:

DAVID STEAD PROJECT MARKETING LTD for FET

(c) Fibre Extrusion Technology
11.11.2021

FET hails INDEX20 impact

Fibre Extrusion Technology, UK is celebrating a successful INDEX20 nonwovens exhibition in Geneva, Switzerland, which closed on 22 October. Although the company has a long history in supplying meltspinning equipment for the nonwovens sector, this represents its first venture at a dedicated nonwovens show.
 
FET’s Managing Director, Richard Slack explains. “Techtextil and ITMA have previously been our main exhibitions of choice, but INDEX20 was an ideal vehicle for FET to launch our new laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers.”
 
FET already has spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions. The growth in global nonwovens technology, partly driven by demand for pandemic-related materials, is forecast to continue.
 

Fibre Extrusion Technology, UK is celebrating a successful INDEX20 nonwovens exhibition in Geneva, Switzerland, which closed on 22 October. Although the company has a long history in supplying meltspinning equipment for the nonwovens sector, this represents its first venture at a dedicated nonwovens show.
 
FET’s Managing Director, Richard Slack explains. “Techtextil and ITMA have previously been our main exhibitions of choice, but INDEX20 was an ideal vehicle for FET to launch our new laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers.”
 
FET already has spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions. The growth in global nonwovens technology, partly driven by demand for pandemic-related materials, is forecast to continue.
 
“We were delighted with the response at INDEX”, continued Richard Slack. “There was considerable interest shown in the new spunbond system and its potential for lab scale innovation. It’s clear that the industry is seeking new alternatives to synthetics at the moment, and our technology is able to assist with the testing and assessment of many of the new feedstocks being pioneered in this extremely inventive sector, where everyone is suddenly talking and cooperating with everyone else, regardless of whether they are generally competitors. We recorded in excess of 20 serious enquiries from totally new contacts and sectors, including blue chip companies in the hygiene, medical and packaging industries.”
 
“There were initial concerns about projected attendance figures, especially from China and USA companies, but we experienced good footfall from key decision makers, especially those from Europe. It was encouraging to at last experience the opportunity for face-to-face contact with old and new customers on a large scale and we are now starting to reap the benefits with enquiries continuing to flow in”.

Source:

Fibre Extrusion Technology

(c) FET by AWOL Media
27.09.2021

FET at INDEX 2020 with new lab-scale spunbond system

The UK’s Fibre Extrusion Technology (FET) will introduce its new lab-scale spunbond system at the forthcoming INDEX 2020 nonwovens exhibition taking place in Geneva, Switzerland, from October 19-22.

The new spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

FET has already supplied one of these new spunbond lines to University of Leeds in the UK, and a second, in combination with a metlblown line, to the University of Erlangen-Nuremberg in Germany.

“Our new spunbond technology is unique in providing the ability to process a wide range of polymers, including those normally not considered appropriate for the spunbond process, at the scale required to fully explore material combinations and bring new products to market,” says FET Managing Director Richard Slack. “FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system.”

The UK’s Fibre Extrusion Technology (FET) will introduce its new lab-scale spunbond system at the forthcoming INDEX 2020 nonwovens exhibition taking place in Geneva, Switzerland, from October 19-22.

The new spunbond range provides unprecedented opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents.

FET has already supplied one of these new spunbond lines to University of Leeds in the UK, and a second, in combination with a metlblown line, to the University of Erlangen-Nuremberg in Germany.

“Our new spunbond technology is unique in providing the ability to process a wide range of polymers, including those normally not considered appropriate for the spunbond process, at the scale required to fully explore material combinations and bring new products to market,” says FET Managing Director Richard Slack. “FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system.”

Source:

FET / AWOL Media

(c) FET
FET meltspinning system for biomedical applications
15.09.2021

FET: Further Gains in the Biomedical sector

Fibre Extrusion Technology of Leeds, UK has delivered nine meltspinning systems to clients in the biomedical sector since the onset of the Covid-19 pandemic, with a similar number currently on order for 2021/22. This way FET could confirm the position as an acknowledged world leader in meltspinning equipment for the production of precursor materials used in medical devices and as a default supplier for absorbable suture production systems, with orders virtually doubling year on year.

Recent installations include a multi-functional system that can produce both multifilament and monofilament pre-cursor fibres, but nonwoven systems have been particularly prominent, driven by the burgeoning demand for FFP3 masks, gowns and other medical products required during the pandemic. These have been sold to medical device manufacturing companies across the globe, including the Far East, USA and Europe. Research organisations have also invested in FET systems for biomedical applications, the most recent being the University of Leeds in a laboratory scale Spunbond system.

Fibre Extrusion Technology of Leeds, UK has delivered nine meltspinning systems to clients in the biomedical sector since the onset of the Covid-19 pandemic, with a similar number currently on order for 2021/22. This way FET could confirm the position as an acknowledged world leader in meltspinning equipment for the production of precursor materials used in medical devices and as a default supplier for absorbable suture production systems, with orders virtually doubling year on year.

Recent installations include a multi-functional system that can produce both multifilament and monofilament pre-cursor fibres, but nonwoven systems have been particularly prominent, driven by the burgeoning demand for FFP3 masks, gowns and other medical products required during the pandemic. These have been sold to medical device manufacturing companies across the globe, including the Far East, USA and Europe. Research organisations have also invested in FET systems for biomedical applications, the most recent being the University of Leeds in a laboratory scale Spunbond system.

The FET in-house Process Development Laboratory and ongoing collaboration with biomaterial polymer suppliers has helped to optimise the biomedical melt spinning technology. The Laboratory is at the disposal of customers for all aspects of confidential testing and evaluation. To further increase this competitive edge, FET will be opening a new Process Development Laboratory and Visitor Centre in early 2022.

More information:
meltspinning FET
Source:

Projectmarketing for FET

(c) Fibre Extrusion Technology
04.08.2021

New FET meltspinning system upgrade for NIRI

Fibre Extrusion Technology Ltd of Leeds, UK has installed a new meltspinning system to upgrade research facilities at NIRI, the Nonwovens Innovation & Research Institute Ltd UK, a global leader in nonwoven engineering and product development.

Established in 1998, FET is a leading supplier of laboratory and pilot meltspinning systems with installations in over 35 countries and has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats.
 
The installation comprises a FET-102 Series Laboratory Meltblown Spinning System and FET-103 Monofilament Meltspinning System. This advanced equipment enhances NIRI’s extensive pilot facilities and state-of-the-art analytical laboratory for fast tracking innovation. In particular, the FET meltblown system will be utilised for R&D, pilot projects, sampling and prototyping, proof of concept testing and for designing cost-effective, sustainable and innovative products.

Fibre Extrusion Technology Ltd of Leeds, UK has installed a new meltspinning system to upgrade research facilities at NIRI, the Nonwovens Innovation & Research Institute Ltd UK, a global leader in nonwoven engineering and product development.

Established in 1998, FET is a leading supplier of laboratory and pilot meltspinning systems with installations in over 35 countries and has now successfully processed almost 30 different polymer types in multifilament, monofilament and nonwoven formats.
 
The installation comprises a FET-102 Series Laboratory Meltblown Spinning System and FET-103 Monofilament Meltspinning System. This advanced equipment enhances NIRI’s extensive pilot facilities and state-of-the-art analytical laboratory for fast tracking innovation. In particular, the FET meltblown system will be utilised for R&D, pilot projects, sampling and prototyping, proof of concept testing and for designing cost-effective, sustainable and innovative products.

NIRI supports global manufacturing companies to identify new opportunities for meltblown nonwovens, develop their next generation of products and accelerate their commercialisation activities. NIRI’s new upgraded laboratory and pilot system from FET can process a wide range of polymer types, including chemically recycled polymers, bio-polymers and many difficult-to-process materials.

Source:

Project Marketing for Fibre Extrusion Technology

23.07.2021

FET installs new Spunbond system at University of Leeds

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

Fibre Extrusion Technology Ltd, UK has completed the installation and commissioning of a new FET Laboratory Spunbond system for the University of Leeds.

This FET spunbond system is now an integral part of the research facilities of the CCTMIH (Clothworkers’ Centre for Textile Materials Innovation for Healthcare), led by Prof. Stephen Russell based in the School of Design, University of Leeds, who commented “The new spunbond system is perfectly suited to our academic research work, and is already proving itself to be extremely versatile and intuitive to use”.
 
This spunbond system complements existing research lab facilities at the university, which covers all areas of fibre and fabric processing, physical testing and characterisation. It forms part of a wider investment in facilities to support fundamental, academic research on ‘future manufacturing’ for medical devices, where the focus is on studying small-scale processing of unconventional polymers and additive mixes to form spunbond fabrics with multifunctional properties.
 
Key to this research is developing the underlying process-structure-performance relationships, based on the measured data, to provide detailed understanding of how final fabric performance can be controlled during processing.

As a rule, many exciting materials developed in academic research struggle to progress beyond the bench, because of compatibility issues with key manufacturing processes such as spunbond. By leveraging mono, core-sheath and island-in-the-sea bicomponent technology, the Leeds University team is working with polymer and biomaterial research scientists, engineers and clinicians to explore the incorporation of unusual materials in spunbond fabrics, potentially widening applications.
 
FET has built on its melt spinning expertise to develop a true laboratory scale spunbond system and is currently working on a number of other such projects globally with research institutions and manufacturers.

Source:

Fibre Extrusion Technology Ltd / Project Marketing Ltd

FET new premises to enable expansion drive (c) FET
25.05.2021

FET new premises to enable expansion drive

Fibre Extrusion Technology Ltd of Leeds, UK has now commenced construction of a new purpose-built Research & Development Centre to enable continued growth through innovation. This modern two-storey development will be situated on the adjacent site, providing state-of-the-art facilities, including a Visitor Centre and enhanced Process Development Laboratory (PDL) for client testing and product development. Central to FET’s success has been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques. The new expanded premises will further improve this service.

Clients frequently spend several days on site participating in development trials and technical sales meetings, so the Visitor Centre is designed to make their stay more efficient and comfortable. Sales, administration and design departments will also be housed in the new building.

Fibre Extrusion Technology Ltd of Leeds, UK has now commenced construction of a new purpose-built Research & Development Centre to enable continued growth through innovation. This modern two-storey development will be situated on the adjacent site, providing state-of-the-art facilities, including a Visitor Centre and enhanced Process Development Laboratory (PDL) for client testing and product development. Central to FET’s success has been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques. The new expanded premises will further improve this service.

Clients frequently spend several days on site participating in development trials and technical sales meetings, so the Visitor Centre is designed to make their stay more efficient and comfortable. Sales, administration and design departments will also be housed in the new building.

The addition of the Visitor Centre will free up a considerable amount of space for production and other facilities in the existing premises. This major refurbishment phase for the existing premises is scheduled for completion at the end of 2021. As a result, FET’s manufacturing capacity will increase by more than 50% to cope with customer demand.  

Substantial year-on-year growth has driven this initiative and FET’s current order book in excess of £10million has provided the opportunity for equipping the company infrastructure for the future. Sustainability has been at the forefront of FET’s growth, supporting customers in their development of sustainable textiles and this principle is reflected in the choice of building materials and products for the Visitor Centre wherever possible.

It is expected that the new Visitor Centre will be opened in the first quarter of 2022.

Source:

Project Marketing Ltd