From the Sector

Reset
8 results
Charlotte Witts Photo FET
Charlotte Witts
12.07.2024

New R&D appointment for FET wet spinning team

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Furthermore, FET has a development policy of bringing young people into the industry and has invested heavily in recent years to this end, helping to address the skills gap in the UK textile industry. The company’s R&D department comprises ten scientists and engineers who work closely with customers on process development and new product trials.

Charlotte Witts will be focusing on the wet spinning process which is fortuitous as FET has just finished commissioning their own in-house low viscosity wet spinning system. Over the coming year she will focus on spinning a number of bio-sourced polymers (e.g. alginate, chitosan, gelatin, recombinant proteins). These materials require a strong scientific understanding of the underlying chemistry to successfully produce a high-quality yarn. Furthermore, FET regularly gets customer requests to conduct trial work on these materials to de-risk the equipment purchase process.

Source:

Fibre Extrusion Technology Limited

nominees Graphic: nova Institut
19.01.2024

Nominated Innovations for Cellulose Fibre Innovation of the Year 2024 Award

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

From Resource-efficient and Recycled Fibres for Textiles and Building Panels to Geotextiles for Glacier Protection: Six award nominees present innovative and sustainable solutions for various industries in the cellulose fibre value chain. The full economic potential of the cellulose fibre industry will be introduced to a wide audience that will vote for the winners in Cologne (Germany), and online.

Again nova-Institute grants the “Cellulose Fibre Innovation of the Year” award in the context of the “Cellulose Fibres Conference”, that will take place in Cologne on 13 and 14 March 2024. In advance, the conferences advisory board nominated six remarkable products, including cellulose fibres from textile waste and straw, a novel technology for dying cellulose-based textiles and a construction panel as well as geotextiles. The innovations will be presented by the companies on the first day of the event. All conference participants can vote for one of the six nominees and the top three winners will be honoured with the “Cellulose Fibre Innovation of the Year” award. The Innovation award is sponsored by GIG Karasek (AT).

In addition, the ever-growing sectors of cellulose-based nonwovens, packaging and hygiene products offer conference participants insights beyond the horizon of traditional textile applications. Sustainability and other topics such as fibre-to-fibre recycling and alternative fibre sources are the key topics of the Cellulose Fibres Conference, held in Cologne, Germany, on 13 and 14 March 2024 and online. The conference will showcase the most successful cellulose-based solutions currently on the market or those planned for the near future.

The nominees:

The Straw Flexi-Dress: Design Meets Sustainability – DITF & VRETENA (DE)
The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry – Honext Material (ES)
HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, it is verified in the Product Environmental Footprint.

LENZING™ Cellulosic Fibres for Glacier Protection – Lenzing (AT)
Glaciers are now facing an unprecedented threat from global warming. Synthetic fibre-based geotextiles, while effective in slowing down glacier melt, create a new environmental challenge: microplastics contaminating glacial environments. The use of such materials contradicts the very purpose of glacier protection, as it exacerbates an already critical environmental problem. Recognizing this problem, the innovative use of cellulosic LENZING™ fibres presents a pioneering solution. The Institute of Ecology, at the University of Innsbruck, together with Lenzing and other partners made first trials in 2022 by covering small test fields with LENZING™ fibre-based geotextiles. The results were promising, confirming the effectiveness of this approach in slowing glacier melt without leaving behind microplastic.

The RENU Jacket – Advanced Recycling for Cellulosic Textiles – Pangaia (UK) & Evrnu (US)
PANGAIA LAB was born out of a dream to reduce barriers between people and the breakthrough innovations in material science. In 2023, PANGAIA LAB launched the RENU Jacket, a limited edition product made from 100% Nucycl® – a technology that recycles cellulosic textiles by breaking them down to their molecular building blocks, and reforming them into new fibres. This process produces a result that is 100% recycled and 100% recyclable when returned to the correct waste stream – maintaining the strength of the fibre so it doesn’t need to be blended with virgin material.
Through collaboration with Evrnu, the PANGAIA team created the world’s first 100% chemically recycled denim jacket, replacing a material traditionally made from 100% virgin cotton. By incorporating Nucycl® into this iconic fabric construction, dyed with natural indigo, the teams have demonstrated that it’s possible to replace ubiquitous materials with this innovation.

Textiles Made from Easy-to-dye Biocelsol – VTT Technical Research Centre of Finland (FI)
One third of the textile industry’s wastewater is generated in dyeing and one fifth in finishing. But the use of chemically modified Biocelsol fibres reduces waste water. The knitted fabric is made from viscose and Biocelsol fibres and is only dyed after knitting. This gives the Biocelsol fibres a darker shade, using the same amount of dye and no salt in dyeing process. In addition, an interesting visual effect can be achieved. Moreover, less dye is needed for the darker colour tone in the finished textile and the possibility to use the salt-free dyeing is more environmentally friendly.
These special properties of man-made cellulosic fibres will reassert the fibres as a replacement for the existing fossil-based fibres, thus filling the demand for more environmentally friendly dyeing-solutions in the textile industry. The functionalised Biocelsol fibres were made in Finnish Academy FinnCERES project and are produced by wet spinning technique from the cellulose dope containing low amounts of 3-allyloxy-2-hydroxypropyl substituents. The functionality formed is permanent and has been shown to significantly improve the dyeability of the fibres. In addition, the functionalisation of Biocelsol fibres reduces the cost of textile finishing and dyeing as well as the effluent load.

A New Generation of Bio-based and Resource-efficient Fibre – TreeToTextile (SE)
TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn't exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

More information:
Nova Institut nova Institute
Source:

nova Institut

FET: Benefits of new polymer development (c) FET
FET’s Fibre Development Centre
06.10.2023

FET: Benefits of new polymer development

Fibre Extrusion Technology Ltd (FET) of Leeds, UK is celebrating a year of achievements since its new Fibre Development Centre was first opened. This period has shown a marked acceleration in the number of client technical trials conducted, involving the ever-increasing development of new polymers.

FET designs, develops and manufactures extrusion equipment for a range of high value textile material applications worldwide, offering melt spinning, wet spinning and spunbond/meltblown options. Since its inception in 1997, a major part of FET’s service portfolio has always been to collaborate with industrial and research establishments in testing, evaluating and developing high value materials with diverse, functional properties. FET’s previous Process Development Laboratory presided over the development of about 60 new polymer types in multifilament, monofilament and nonwoven formats.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK is celebrating a year of achievements since its new Fibre Development Centre was first opened. This period has shown a marked acceleration in the number of client technical trials conducted, involving the ever-increasing development of new polymers.

FET designs, develops and manufactures extrusion equipment for a range of high value textile material applications worldwide, offering melt spinning, wet spinning and spunbond/meltblown options. Since its inception in 1997, a major part of FET’s service portfolio has always been to collaborate with industrial and research establishments in testing, evaluating and developing high value materials with diverse, functional properties. FET’s previous Process Development Laboratory presided over the development of about 60 new polymer types in multifilament, monofilament and nonwoven formats.

Since the new Fibre Development Centre came on stream, this process has accelerated and the number of new polymers has now increased to over 70, with considerably enhanced facilities more than doubling capacity and increasing efficiency. Clients frequently spend several days on site participating in development trials and technical sales meetings, so the new Centre is designed to make their stay even more efficient and comfortable.

With more new trials booked for the rest of the year and well into 2024, it is expected that many more new polymers will be developed, with sustainable fibres leading the way.

Source:

Fibre Extrusion Technology Ltd (FET)

(c) FET
FET Melt Spinning system
05.05.2023

FET exhibits at ITMA 2023

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting at ITMA 2023, taking place between 8-14 June Milan, Italy. FET has commissioned its biggest ever stand to reflect the company’s commitment to this event and the textile industry.

FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide. Central to FET’s success has always been its ability to provide customers with advanced facilities and equipment, together with unrivalled knowledge and expertise in research and production techniques.

The new FET Fibre Development Centre will further improve this service, allowing clients to trial their own products in an ideal environment. Resident equipment in the Fibre Development Centre reflects the wide range of fibre extrusion systems offered by FET to clients worldwide and will enable continued growth of the company through innovation.  

For the first time at ITMA, the new FET Spunbond range will feature. This system provides opportunities for the scaled development of new nonwoven fabrics based on a wide range of fibres and polymers, including bicomponents. Recent customers to benefit from FET spunbond systems include the University of Leeds and an integrated metlblown / spunbond system at the University of Erlangen-Nuremberg in Germany.

FET’s established expertise remains in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

A major theme at ITMA will again be sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials. “This year we are celebrating FET’s 25th anniversary” says FET Managing Director Richard Slack “and we look forward to meeting customers at ITMA, where we can discuss their fibre technology needs.”

Source:

Fibre Extrusion Technology Ltd

(c) FET Ltd
17.01.2023

FET looks forward following sucessful year

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

Fibre Extrusion Technology Limited (FET) of Leeds, England, a supplier of laboratory and pilot melt spinning systems, is celebrating a record breaking year of sales and product innovation. “Sales revenue for 2022 has easily beaten our previous high” said FET Managing Director, Richard Slack “and the research projects we have collaborated in have become increasingly challenging in terms of technical specification.”

Prestigious new projects during 2022 included a multifilament melt spinning line for Senbis Polymer Innovations, Netherlands enabling the development of textile fibres from recycled polymers or biopolymers; a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research in collaboration with the renowned Henry Royce Institute; and a FET-103 Monofilament line for RHEON LABS of London to help develop a hyper viscoelastic fibre from RHEON™ which displays high strain-rate sensitive properties. The latter two of these examples were aided by significant UK grants to develop advanced materials.

FET is now looking forward to 2023 with a record order book. The company’s newly opened Fibre Development Centre features over £1.5 million investment in customer laboratory systems that will further enable fibre trials and product R&D. Three new polymer types were developed with clients in 2022 and several more are lined up in 2023, which is expected to bring the total of different polymer types to more than 40 in multifilament, monofilament and nonwoven formats.

FET will be exhibiting at two major exhibitions in 2023; INDEX 23, a leading Nonwovens show at Geneva in April; and ITMA, Milan, an international textile and garment technology exhibition in June.

Source:

FET Ltd

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

(c) FET
FET-100 Series Melt Spinning System
13.03.2022

FET gearing up for Techtextil 2022

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

With just 3 months to go before Techtextil Frankfurt, UK company Fibre Extrusion Technology Limited (FET), is looking forward to exhibiting at this trade show once again. Techtextil attracts international blue-chip companies at the cutting edge of technology, seeking innovative solutions to technical challenges, so this event represents an ideal opportunity to demonstrate how FET can help achieve their goals.

FET is an acknowledged leader in laboratory and pilot meltspinning equipment for a vast range of applications, such as precursor materials used in high value technical textiles, sportswear, medical devices and specialised novel fibres from exotic and difficult to process polymers. Where melt spinning solutions are not suitable, FET provides a viable alternative with pilot and small scale production wet spinning systems.

However, FET will also showcase at Techtextil its more recent laboratory scale spunbond system, which enables client development of nonwoven fabrics in a number of formats and polymers. FET already has a number of spunbond systems in the field, including composite systems which utilise both spunbond and meltspun functions.

A major theme to be highlighted on the FET stand is Sustainability. The FET range of laboratory and pilot extrusion lines is ideally suited for both process and end product development of sustainable materials.

FET has successfully processed almost 30 different polymer types in multifilament, monofilament and non-woven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes.

Source:

DAVID STEAD PROJECT MARKETING LTD for FET