From the Sector

Reset
138 results
Photo NASA
05.11.2024

Fibre-reinforced materials for next-generation space missions

A new generation of space materials left Earth November. 5 as they head to the International Space Station (ISS) to undergo testing in the brutal conditions of low Earth orbit.

Developed at the University of Bristol, these high-performance materials could be used to build future space stations, spacecraft for interplanetary travel or a new ISS.

They will be placed on the Bartolomeo platform, located on the front of the ISS, where they will orbit Earth up to 9,000 times over the next 12 to 18 months at speeds of 17,000 mph.

The carbon fibre reinforced composites will need to survive temperatures between -150ºC and +120ºC, space debris travelling seven times faster than a bullet, severe electromagnetic radiation, high vacuum and atomic oxygen, which erodes even the toughest materials.

Prof Ian Hamerton, Professor of Polymers and Sustainable Composites in the University of Bristol’s world-leading Bristol Composites Institute, said:  

A new generation of space materials left Earth November. 5 as they head to the International Space Station (ISS) to undergo testing in the brutal conditions of low Earth orbit.

Developed at the University of Bristol, these high-performance materials could be used to build future space stations, spacecraft for interplanetary travel or a new ISS.

They will be placed on the Bartolomeo platform, located on the front of the ISS, where they will orbit Earth up to 9,000 times over the next 12 to 18 months at speeds of 17,000 mph.

The carbon fibre reinforced composites will need to survive temperatures between -150ºC and +120ºC, space debris travelling seven times faster than a bullet, severe electromagnetic radiation, high vacuum and atomic oxygen, which erodes even the toughest materials.

Prof Ian Hamerton, Professor of Polymers and Sustainable Composites in the University of Bristol’s world-leading Bristol Composites Institute, said:  

“Space is the most challenging environment for which to design new materials. You’re pitting your materials expertise, skills and ingenuity against extremes of temperature, mechanical stress, radiation, high speed impacts and more.

“Any one of those might be difficult, and, unfortunately, gaining access to repair them is not an easy option, so the materials we build must survive without maintenance.  

“The opportunity to test our materials in the proving ground of space is priceless and will help our University of Bristol scientists on the ground improve fibre-reinforced materials for next-generation space missions.”

There are four laboratory-made polymers heading to the ISS, each of which has been reinforced with carbon fibres and two contain nanoparticles. All four are the result of University of Bristol research and one is patented.

 If the materials cope in the harsh environment, they could be used to create longer-lasting space components, allowing spacecraft to travel further, and spend more time in space.

Future communities on new planets will need protection against galactic cosmic radiation. Dr Ali Kandemir, Senior Research Associate at the University of Bristol, is one of several Bristol researchers, supported by the UK Space Agency (UKSA), examining the effects of simulated galactic cosmic radiation on the materials, in a European Space Agency (ESA) project.

Dr Kandemir said: “We want materials that are resilient in the space environment and, importantly, materials that can shield humans from that radiation.

“We also want to make these materials sustainable, so that when they reach the end of their life they can be recycled and used again for the same purpose.”

The launch of the Space X Dragon CRS-2 spacecraft this morning is the culmination of five years of work for Prof Hamerton and his team.

It has included the efforts of early career researchers, postgraduates and several Aerospace Engineering undergraduates at the University of Bristol, whose final year research projects have been linked to the space materials project.

The practical support of the University of Bristol-hosted National Composites Centre (NCC) was crucial to the scale up of the composite materials.

Prof Kate Robson Brown, Vice-President for Research, Innovation and Impact at University College Dublin, and a collaborator on the project, said:

“After nearly five years of research to develop novel composite materials for space applications it is very exciting to see our experiment launch to the International Space Station.

“I am proud to be part of this mission, and to be working with the multidisciplinary and multisector research team to deliver integrated real world and digital testing for innovative materials which will help to drive growth in the new space economy.

“This mission also demonstrates how space research funding creates career changing opportunities for early career researchers and PhD students in a sector of huge value to both Ireland and the UK.”

Funding to support the project was supplied by the ESA, the UKSA, Oxford Space Systems and others.

 

Source:

University of Bristol

Alterra’s Akron Plant in Ohio, 2024 Source: Alterra
Alterra’s Akron Plant in Ohio, 2024
04.11.2024

Cooperation to build chemical recycling plants

Neste, Alterra and Technip Energies have signed a collaboration agreement to advance the circularity of plastics by providing the industry a standardized technology solution for chemical recycling, also referred to as “advanced recycling”.

The partners aim to globally offer a standardized modular solution, based on Alterra’s proprietary liquefaction technology, to parties interested in building capacity for chemical recycling.

This solution will come in the form of readily designed and engineered liquefaction plant modules, which will allow for lower pre-investment costs, accelerated implementation time, high predictability on project economics and reduced overall capital costs. Contributing to more effective execution of chemical recycling capacity projects, the solution helps the industry to reduce dependency on virgin fossil resources and accelerate the circularity of polymers and chemicals.

Neste, Alterra and Technip Energies have signed a collaboration agreement to advance the circularity of plastics by providing the industry a standardized technology solution for chemical recycling, also referred to as “advanced recycling”.

The partners aim to globally offer a standardized modular solution, based on Alterra’s proprietary liquefaction technology, to parties interested in building capacity for chemical recycling.

This solution will come in the form of readily designed and engineered liquefaction plant modules, which will allow for lower pre-investment costs, accelerated implementation time, high predictability on project economics and reduced overall capital costs. Contributing to more effective execution of chemical recycling capacity projects, the solution helps the industry to reduce dependency on virgin fossil resources and accelerate the circularity of polymers and chemicals.

Alterra’s technology is a thermochemical liquefaction process, which converts hard-to-recycle plastics into a liquid hydrocarbon product. This liquid intermediate product can then be further refined into high-quality raw materials for new plastics and chemicals. As of today, Neste alone has processed more than 6,000 tons of plastic-derived feeds, including ISCC PLUS certified oil from Alterra’s industrial-scale site in Akron, Ohio.

Combining the expertise of three companies in one solution
Alterra and Neste started collaborating in chemical recycling in 2021, jointly improving aspects of Alterra’s technology and creating respective value chains. Alterra and Technip Energies started their collaboration in chemical recycling in 2022. The three companies now join efforts in a unique endeavor: Alterra and Neste will license the liquefaction technology and Technip Energies will design, engineer and deliver the standardized liquefaction plant solution to interested parties globally.

12.09.2024

INDA Showcases Sustainability Advancements in Nonwovens and Manufacturing

INDA, the Association of the Nonwoven Fabrics Industry, announces the release of the International Fiber Journal’s (IFJ) special sustainability issue dedicated to nonwovens. This special edition, which was sponsored by INDA, is a key piece of the association’s 2024 strategic sustainability initiative, launched at the beginning of 2024 in response to feedback that sustainability remains one of the nonwovens industry’s highest priorities.

The IFJ special issue features exclusive content from industry leaders, including Kimberly-Clark Corporation, Glatfelter, Lenzing Fibers, NatureWorks LLC, Hollingsworth & Vose, MANN+HUMMEL, Nexus Circular, Henkel Corporation, and INDA. This edition explores key sustainability topics, structured around three core pillars vital to the industry’s future: Responsible Sourcing, Innovations in Sustainability, and End-of-Life Solutions. Featured topics include:

INDA, the Association of the Nonwoven Fabrics Industry, announces the release of the International Fiber Journal’s (IFJ) special sustainability issue dedicated to nonwovens. This special edition, which was sponsored by INDA, is a key piece of the association’s 2024 strategic sustainability initiative, launched at the beginning of 2024 in response to feedback that sustainability remains one of the nonwovens industry’s highest priorities.

The IFJ special issue features exclusive content from industry leaders, including Kimberly-Clark Corporation, Glatfelter, Lenzing Fibers, NatureWorks LLC, Hollingsworth & Vose, MANN+HUMMEL, Nexus Circular, Henkel Corporation, and INDA. This edition explores key sustainability topics, structured around three core pillars vital to the industry’s future: Responsible Sourcing, Innovations in Sustainability, and End-of-Life Solutions. Featured topics include:

  • Environmentally sustainable nonwoven materials
  • Circularity in single-use plastics
  • Potential of post-consumer recycled (PCR) materials in nonwovens
  • Navigating regulatory challenges
  • Advances in bio-based nonwovens
  • The role of plastics and polymers in sustainability

“This special issue of the International Fiber Journal is a vital part of our multi-faceted sustainability initiative aimed at providing new and enhanced offerings to INDA members and the nonwovens industry. We are excited to see the industry come together to share insights on the sustainability challenges we face,” said Tony Fragnito, President of INDA.

Source:

INDA, the Association of the Nonwoven Fabrics Industry

FET at COMPAMED 2024 (c) FET
FET extrusion system
06.09.2024

FET at COMPAMED 2024

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting for the first time at COMPAMED 2024 in Düsseldorf, taking place between between 11 – 14 November 2024, to reflect the company’s increasing profile in the medical sector. COMPAMED is a international trade fair for the medical technology supplier sector, showcasing a range of high-quality medical technology components, services and production equipment for the medical industry.

FET are experts in medical fibre technology and innovations, designing and delivering high performance equipment for a range of precursor medical products. This includes turnkey solutions for nonwoven medical devices, wound care and dressings and synthetic absorbable sutures.

Fibre Extrusion Technology Ltd (FET) of Leeds, UK will be exhibiting for the first time at COMPAMED 2024 in Düsseldorf, taking place between between 11 – 14 November 2024, to reflect the company’s increasing profile in the medical sector. COMPAMED is a international trade fair for the medical technology supplier sector, showcasing a range of high-quality medical technology components, services and production equipment for the medical industry.

FET are experts in medical fibre technology and innovations, designing and delivering high performance equipment for a range of precursor medical products. This includes turnkey solutions for nonwoven medical devices, wound care and dressings and synthetic absorbable sutures.

FET’s expertise lies in laboratory and pilot melt spinning equipment for a vast range of applications, especially precursor materials used in high value medical devices and specialised novel fibres from exotic and difficult to process polymers. FET has processed over 100 different polymer types and its systems can melt spin resorbable polymers in multifilament, monofilament and nonwoven formats, collaborating with specialist companies worldwide to promote greater sustainability through innovative manufacturing processes. Where melt spinning solutions are not suitable, FET provides an alternative with pilot and small scale production wet and gel spinning systems.

Source:

Fibre Extrusion Technology Ltd (FET)

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves (c) DITF
06.09.2024

DITF: 3D Printing Setting for Lignin-Coated Protective Gloves

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

Protective gloves, such as those used for work, sport or household gardening, retrieve their protective function from a special coating. This coating provides abrasion resistance, makes the material waterproof and resistant to chemicals or oil, and even protects against cuts and punctures. Until now, coatings made of oil-based polymers, nitrile rubber or latex have been the main materials used. Scientists at the German Institutes of Textile and Fiber Research Denkendorf (DITF) have succeeded in developing a robust yet flexible glove coating using environmentally friendly lignin in a 3D printing process.

Coatings that are subject to mechanical stress always suffer from a certain degree of abrasion that is dispersed in the surrounding area. This is also the case with coated protective gloves. In order to avoid long-term pollution of the environment, materials should be used whose abrasion particles are biodegradable. The aim of the research project was to improve conventional protective equipment and integrate more sustainable materials.

The biopolymer lignin is a natural component of plant cells that is produced in large quantities as a by-product of paper manufacturing. Due to its properties, it represents an environmentally friendly alternative to oil-based coating polymers.

The scientists developed biopolymer compounds containing lignin, which were used to produce thermoplastic materials that can be processed using 3D printing.

Lignin has few polar groups, which makes lignins hydrophobic and therefore insoluble in water. For this reason, they biodegrade slowly. This makes them particularly suitable for durable coating materials.

Despite this durability, lignin particles that are released into the environment through abrasion biodegrade faster than the abrasion of conventional coatings. This is due to the much higher surface/volume ratio.

The use of 3D printing makes it possible to produce the coating precisely and efficiently. The 3D printing process also makes it possible to adapt the glove to the individual needs of the wearer. This increases wearer comfort and promotes freedom of movement.

The research project shows that the use of lignin not only offers ecological benefits, but that protective gloves coated with it are also particularly durable and resistant. They meet safety standards and at the same time contribute to sustainability in the world of work.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

23.08.2024

Expansion of service and spare parts business at Oerlikon Polymer Processing Solutions

The Oerlikon Polymer Processing Solutions Division of the Swiss Oerlikon Group is expanding its customer services and spare parts business in the area of machines and systems for the production of carpet yarns (BCF) and industrial yarns (IDY). To this end, the company concluded an agreement with the Truetzschler Group, based in Moenchengladbach, Germany, in August. Technology experts and service staff from Oerlikon Neumag are now the new contacts for customer services and the spare parts business for Truetzschler's BCF and IDY technologies installed in the market. The Moenchengladbach-based textile machinery manufacturer is withdrawing from this business segment in order to concentrate on the spinning, card clothing and nonwovens businesses in future.

Oerlikon Polymer Processing Solutions offers complete solutions for the manmade fiber industry. They range from extrusion and polycondensation plants to texturized yarn, and are accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a harmonized technology that guarantees high quality of the yarns produced.

The Oerlikon Polymer Processing Solutions Division of the Swiss Oerlikon Group is expanding its customer services and spare parts business in the area of machines and systems for the production of carpet yarns (BCF) and industrial yarns (IDY). To this end, the company concluded an agreement with the Truetzschler Group, based in Moenchengladbach, Germany, in August. Technology experts and service staff from Oerlikon Neumag are now the new contacts for customer services and the spare parts business for Truetzschler's BCF and IDY technologies installed in the market. The Moenchengladbach-based textile machinery manufacturer is withdrawing from this business segment in order to concentrate on the spinning, card clothing and nonwovens businesses in future.

Oerlikon Polymer Processing Solutions offers complete solutions for the manmade fiber industry. They range from extrusion and polycondensation plants to texturized yarn, and are accompanied by automation and digital solutions. The supply of all process steps from a single source ensures a harmonized technology that guarantees high quality of the yarns produced.

Based in Neumuenster, Germany, Oerlikon Neumag, a branch of Oerlikon Textile GmbH & Co. KG and a brand of the Oerlikon Polymer Processing Solutions Division, has been an established and broadly positioned international supplier with proven expertise in the field of BCF for decades. The division's sister company Oerlikon Barmag from Remscheid, Germany, contributes its expertise in the field of IDY systems.

Source:

Oerlikon Textile GmbH & Co. KG

Graphic by TBI
14.08.2024

Controlled biodegradation of PLA by incorporation of an optimized enzyme

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

The Toulouse Biotechnology Institute (TBI), a joint INSA Toulouse/ INRAE/ CNRS research unit, and Carbios, a French green chemistry company pioneering the world of bioplasturgy, presented a study entitled ”An engineered enzyme embedded into PLA to make self-biodegradable plastic”. This study reinforces Carbios and TBI's pioneering work in the field of enzymatic degradation of plastics.

The work describes the engineering strategies deployed to ensure the development of an enzyme capable of biologically depolymerizing polylactic acid (PLA)-based plastic materials over a wide temperature and pH range, reflecting the natural variations found in the life cycle of domestic compost.

It also describes the methodologies and challenges involved in obtaining homogeneous incorporation of the enzyme into PLA films at high temperatures (170°C), while retaining sufficient activity to enable the plastic produced to degrade completely and rapidly under domestic and industrial composting conditions, as well as in anaerobic digestion (methanization). It highlights the optimization process used to obtain an enzyme capable of withstanding the 170°C required to melt it into PLA by extrusion. The new enzymatic material is shown to disintegrate and biodegrade at a much faster rate than the 26 weeks required for certification for use in home composting, and also to help produce more biomethane, another source of waste recovery. It is also stated that the enzymatic material remains intact during long-term storage, and that its degradation will only be activated when transferred to composting or methanization conditions, thus guaranteeing its compatibility with PLA-based commercial applications such as flexible packaging or short-life items like food containers.

This work was mainly carried out within the INSA/Carbios PoPlaB (Polymers, Plastics and Biotechnology) cooperative laboratory at TBI and was supported by a grant for scientific research (THANAPLAST project, OSEO ISI contract number I 1206040W).

 

More information:
PLA enzymatic
Source:

Toulouse Biotechnology Institute (TBI)

07.08.2024

CARBIOS and FCC Environment: Joint project for UK-based PET biorecycling facility

CARBIOS and FCC Environment UK, a recycling and waste management companies in the UK, have signed a Letter of Intent (LOI) to jointly study the implementation of a UK-based plant using CARBIOS’ PET biorecycling licensed technology.  CARBIOS’ biorecycling technology is key to supporting FCC’s continuing goal of contributing to the circular economy by exploring new processes and technologies to produce recycled PET (r-PET) from PET plastic and textiles. For CARBIOS, this LOI confirms interest from the waste management sector, in addition to plastic producers, and would mean a foothold for its technology in the UK.

CARBIOS and FCC Environment UK, a recycling and waste management companies in the UK, have signed a Letter of Intent (LOI) to jointly study the implementation of a UK-based plant using CARBIOS’ PET biorecycling licensed technology.  CARBIOS’ biorecycling technology is key to supporting FCC’s continuing goal of contributing to the circular economy by exploring new processes and technologies to produce recycled PET (r-PET) from PET plastic and textiles. For CARBIOS, this LOI confirms interest from the waste management sector, in addition to plastic producers, and would mean a foothold for its technology in the UK.

FCC’s continuing contribution to the UK circular economy
Recycling has plateaued in the UK in recent years, but UK Government policy very much supports a continual move to a more circular economy which FCC Environment supports. Achieving a circular economy however requires innovation and investment to deliver real environmental change. Exploring biorecycling is one way of doing this, so FCC is keen to understand this technology better by seeking an evidence based view on the advantages of using enzymes for the treatment of PET such as lower energy consumption and better circularity of the polymers back into the PET production lines. The depolymerization process developed by CARBIOS also facilitates the recycling of all kinds of PET waste, including problematic fractions such as polyester textiles, into high-quality recycled PET.

UK PET biorecycling plant would process hard-to-recycle waste
In order to tackle the plastic waste crisis, CARBIOS has developed a enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products. CARBIOS has ambitious plans to become a leading technology provider in the recycling of PET by 2035. In addition to the world’s first industrial-scale enzymatic PET recycling plant which is currently under construction in Longlaville, France, this UK-based plant would process PET waste that is currently not recyclable using conventional recycling technologies, such as colored, multilayered or textile waste.

05.08.2024

CARBIOS and SASA enter discussions for PET biorecycling facility in Turkey

CARBIOS and SASA, a manufacturer of polyester, fiber, filament yarn, polyester-based polymers, specialty polymers and intermediates, have signed a Letter of Intent (LOI) to cooperate through SASA’s potential acquisition of a license for CARBIOS’ unique PET biorecycling technology. This licensing agreement would allow SASA to construct and operate an enzymatic depolymerization plant in Adana, Turkey, with a capacity of 100,000 tons per year of prepared PET waste, and would give access to a circular recycling technology, enabling the production of polyester pellets, fibers and textiles from various waste sources, including polyester textile waste. With CARBIOS' biorecycling technology, SASA would diversify its offering to meet the growing global demand for sustainable materials in the textile industry, primarily catering to the European market.

CARBIOS and SASA, a manufacturer of polyester, fiber, filament yarn, polyester-based polymers, specialty polymers and intermediates, have signed a Letter of Intent (LOI) to cooperate through SASA’s potential acquisition of a license for CARBIOS’ unique PET biorecycling technology. This licensing agreement would allow SASA to construct and operate an enzymatic depolymerization plant in Adana, Turkey, with a capacity of 100,000 tons per year of prepared PET waste, and would give access to a circular recycling technology, enabling the production of polyester pellets, fibers and textiles from various waste sources, including polyester textile waste. With CARBIOS' biorecycling technology, SASA would diversify its offering to meet the growing global demand for sustainable materials in the textile industry, primarily catering to the European market.

Less than 1% of textile waste is currently recycled into new textile fibers[1].  With European regulations moving towards the incorporation of more recycled content (at least 20% of recycled fibers by 2030), demand for recycled polyester in the EU is anticipated to increase, naturally positioning Turkey as a major producer alongside Asian countries.  In this context, SASA is striving to become the largest supplier of high value-added polyester in the region and beyond. To achieve this, SASA aims to introduce recycling as part of its activities, which already encompass the whole value chain from PET production to fiber and textile conversion. CARBIOS’ PET biorecycling technology plays an important part in SASA’s ongoing transformation strategy, which includes back integration, capacity expansion, even higher competitiveness, as well as circularity.

CARBIOS has developed a enzymatic depolymerization technology that enables efficient and solvent-free recycling of PET plastic and textile waste into virgin-like products. CARBIOS has ambitious plans to become a leading technology provider in the recycling of PET by 2035. After the recent announcement of a joint Letter of Intent with Zhink Group in China, this new Letter of Intent for a potential licensing agreement in Europe confirms global traction for CARBIOS biorecycling technology, and marks another significant step in the international roll-out of its licensing model. In addition to the world’s first industrial-scale enzymatic PET recycling plant which is currently under construction in Longlaville, France, this potential plant in Turkey would process PET waste that is currently not recyclable using conventional recycling technologies.

[1] System Circularity and Innovative Recycling of Textiles | Circular Cities and Regions Initiative (europa.eu)

Source:

Carbios

Call for Borealis Scientific Innovation Award (c) Borealis
22.07.2024

Call for Borealis Scientific Innovation Award

Achieving Borealis’ vision of leading a sustainable transformation through innovative plastics and base chemicals solutions to create a fully circular future requires fresh thinking. Through the Borealis Scientific Innovation Awards (BSIA), Borealis provides a platform for ideas that accelerate the circular transformation and encourages the dedication and diligence needed to drive sustainable progress.
 
This year, the BSIA will recognize peer-reviewed publications or theses (publication paper, Bachelor, Master, PHD, Postdoc) that describe an innovative idea within the focus area of new solutions for the sustainable production and use of plastics. This includes e.g. new catalysts, energy efficient polymerization processes, recycling of polymers and polymeric materials for energy transformation.  
 

Achieving Borealis’ vision of leading a sustainable transformation through innovative plastics and base chemicals solutions to create a fully circular future requires fresh thinking. Through the Borealis Scientific Innovation Awards (BSIA), Borealis provides a platform for ideas that accelerate the circular transformation and encourages the dedication and diligence needed to drive sustainable progress.
 
This year, the BSIA will recognize peer-reviewed publications or theses (publication paper, Bachelor, Master, PHD, Postdoc) that describe an innovative idea within the focus area of new solutions for the sustainable production and use of plastics. This includes e.g. new catalysts, energy efficient polymerization processes, recycling of polymers and polymeric materials for energy transformation.  
 
The call for submissions is open thinkers from the professional and academic scientific communities, from entrepreneurs, engineers, chemical engineers and start-ups to university researchers. Applicants can submit their peer-reviewed publication or theses (publication paper, Bachelor, Master, PHD, Postdoc) until September 15, 2024 via the Borealis website.  
 
Upon submission, a panel of Borealis research representatives will review the applications and select three winners. The awardees will be invited to present their work in person at an award ceremony at the Borealis Innovation Headquarters in Linz, Austria.  
 
The awards consist of a certificate, a cash prize (EUR 5,000 for first place, EUR 2,000 for second place, and EUR 1,000 for third place), a Borealis-funded trip to Linz, Austria and, of course, the invaluable opportunity for exposure and networking.

Source:

Borealis

Charlotte Witts Photo FET
Charlotte Witts
12.07.2024

New R&D appointment for FET wet spinning team

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Fibre Extrusion Technology Ltd (FET) of Leeds, UK has continued the ongoing process of strengthening its Research & Development team. The latest addition is Charlotte Witts, who is currently studying for a degree in Chemistry at Nottingham University and will work at FET for a 12-month period. She will continue her studies in chemistry as distant learning modules whilst also working at FET. FET designs, develops and manufactures extrusion equipment for a wide range of high value textile material applications worldwide.

“I’m really excited to be joining the team at FET and getting stuck in to the role. Sustainability is a big passion of mine, so I’m looking forward to learning how FET develops new technologies that support the textile industry in this endeavour. I hope that my previous studies within this area will help to foster new ideas.”

Furthermore, FET has a development policy of bringing young people into the industry and has invested heavily in recent years to this end, helping to address the skills gap in the UK textile industry. The company’s R&D department comprises ten scientists and engineers who work closely with customers on process development and new product trials.

Charlotte Witts will be focusing on the wet spinning process which is fortuitous as FET has just finished commissioning their own in-house low viscosity wet spinning system. Over the coming year she will focus on spinning a number of bio-sourced polymers (e.g. alginate, chitosan, gelatin, recombinant proteins). These materials require a strong scientific understanding of the underlying chemistry to successfully produce a high-quality yarn. Furthermore, FET regularly gets customer requests to conduct trial work on these materials to de-risk the equipment purchase process.

Source:

Fibre Extrusion Technology Limited

BioTurf Bild TFI - Institut für Bodensysteme an der RWTH Aachen e.V.
BioTurf
01.07.2024

Aachen researchers develop sustainable artificial turf

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

"Every year, around 500 kilograms of plastic granules are produced per artificial turf pitch, which have to be refilled as infill. This also corresponds to the amount that potentially enters the environment as microplastics per sports pitch," explains Dr Claudia Post from TFI. With an estimated 25,000 artificial turf pitches in the EU, artificial turf in Europe alone produces 12,750 tonnes of microplastics that end up in the environment every year! The TFI - Institut für Bodensysteme an der RWTH Aachen e.V., Institute for Research, Testing and Certification in Europe for Indoor Building Products, has developed the innovative artificial turf system together with the ITA (Institute for Textile Technology at RWTH Aachen University) and in collaboration with the company Morton Extrusionstechnik (MET), a specialist in artificial turf fibres.

"New artificial turf pitches will be phased out by 2031 at the latest due to the ban on plastic granules. Even now, artificial turf pitches with infill material are no longer being subsidised," says Dr Claudia Post. For grassroots sports, clubs, cities and local authorities, converting their existing artificial turf pitches will be a mammoth task in the coming years, as artificial turf pitches have to be replaced every 10-15 years. With BioTurf, an environmentally friendly alternative is now available! The surface can be played on like any other, whether running, passing or kicking. Short, heavily crimped blades support longer blades and this simple approach increases playing comfort. BioTurf fulfils all quality requirements and standards for the highest footballing demands.

"BioTurf is an innovative, holistic solution," emphasises Dirk Hanuschik from TFI. "We use rapeseed oil and agricultural waste that does not compete with food production. BioTurf is also almost completely recyclable".
This is in stark contrast to conventional artificial turf, which can currently only be thermally utilised, i.e. burned to generate heat.

As BioTurf does not require the traditional latex process at all, the energy-intensive drying process can be dispensed with, which has a positive effect on the price. Latex is also difficult to recycle. In contrast, BioTurf uses the new thermobonding technology. Here, the thermoplastic pile yarns are thermally fused to the backing. Further development steps still need to be taken in the endeavour to develop a 100% mono-material artificial turf, as a few percent polypropylene still needs to be processed in the backing in addition to the polyethylene fibre material in order to protect it during thermobonding. However, this does not hinder its recyclability.

Source:

TFI - Institut für Bodensysteme an der RWTH Aachen e.V.

31.05.2024

Stratasys: First Quarter 2024 Financial Results

Stratasys Ltd., a company in polymer 3D printing solutions, announced their financial results for the first quarter 2024.

First Quarter 2024 Financial Results Compared to First Quarter 2023:

Stratasys Ltd., a company in polymer 3D printing solutions, announced their financial results for the first quarter 2024.

First Quarter 2024 Financial Results Compared to First Quarter 2023:

  • Revenue of $144.1 million compared to $149.4 million.
  • GAAP gross margin of 44.4%, compared to 43.8%.
  • Non-GAAP gross margin of 48.6%, compared to 47.3%.
  • GAAP operating loss of $24.5 million, compared to an operating loss of $16.8 million.
  • Non-GAAP operating loss of $1.2 million, compared to non-GAAP operating income of $1.5 million.
  • GAAP net loss of $26.0 million, or $0.37 per diluted share, compared to a net loss of $22.2 million, or $0.33 per diluted share.
  • Non-GAAP net loss of $1.7 million, or $0.02 per diluted share, compared to non-GAAP net income of $1.1 million, or $0.02 per diluted share.
  • Adjusted EBITDA of $4.1 million, compared to $7.0 million.
  • Cash generated by operating activities of $7.3 million, compared to cash used by operating activities of $17.9 million in the year-ago quarter.

2024 Financial Outlook:
Based on current market conditions and assuming that the impacts of global inflationary pressures, relatively high interest rates and supply chain costs do not impede economic activity further, the Company is reiterating its outlook for 2024 as follows:

  • Full-year revenue of $630 million to $645 million.
  • Compare to 2023 revenue of approximately $616 million excluding divestments and annualizing Covestro.
  • Full-year non-GAAP gross margins of 49.0% to 49.5%, improving sequentially throughout the year.
  • Full-year operating expenses in the range of $292 million to $297 million.
  • Full-year non-GAAP operating margins in a range of 2.5% to 3.5%.
  • GAAP net loss of $88 million to $72 million, or ($1.24) to ($1.01) per diluted share.
  • Includes one-time extraordinary costs associated with Stratasys’ strategic alternatives process.
  • Non-GAAP net income of $9 million to $14 million, or $0.12 to $0.19 per diluted share.
  • Adjusted EBITDA of $40 million to $45 million.
  • Capital expenditures of $20 million to $25 million.
  • Positive cash flow from operating activities.

Non-GAAP earnings guidance excludes $29 million to $31 million of share-based compensation expense, $26 million to $28 million of projected amortization of intangible assets, and reorganization and other expenses of $29 million to $35 million. Non-GAAP guidance includes tax adjustments of $2 million to $3 million on the above non-GAAP items.

Source:

Stratasys Ltd.

03.05.2024

Stahl joins GO!PHA alliance

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

More information:
Stahl PHA polymers GO!PHA
Source:

Stahl

Wacker Chemical Corporation under New Management Foto: WACKER
Christoph Kowitz
16.04.2024

Wacker Chemical Corporation under New Management

Christoph Kowitz, currently head of WACKER’s Corporate Research Department, takes charge of the Group’s U.S. subsidiary Wacker Chemical Corporation (WCC) at the beginning of May. He succeeds David Wilhoit who has been responsible for WACKER’s North and Central American business since 2015 and is now retiring.

Christoph Kowitz has already held various management positions. After obtaining his doctorate in organic chemistry and polymer chemistry, he began his professional career as a product developer at BASF AG in Ludwigshafen in 1996. From 1997 onwards, he worked for several years as a management consultant for McKinsey in Asia and Europe. After several management positions in the chemical industry, including Germany-based specialty chemicals manufacturer Cognis, Kowitz moved to WACKER in 2013, where he headed the Performance Silicones unit within the WACKER SILICONES division. Since 2018, he has been Head of Corporate R&D and thus also responsible for innovation management within the Group.

Christoph Kowitz, currently head of WACKER’s Corporate Research Department, takes charge of the Group’s U.S. subsidiary Wacker Chemical Corporation (WCC) at the beginning of May. He succeeds David Wilhoit who has been responsible for WACKER’s North and Central American business since 2015 and is now retiring.

Christoph Kowitz has already held various management positions. After obtaining his doctorate in organic chemistry and polymer chemistry, he began his professional career as a product developer at BASF AG in Ludwigshafen in 1996. From 1997 onwards, he worked for several years as a management consultant for McKinsey in Asia and Europe. After several management positions in the chemical industry, including Germany-based specialty chemicals manufacturer Cognis, Kowitz moved to WACKER in 2013, where he headed the Performance Silicones unit within the WACKER SILICONES division. Since 2018, he has been Head of Corporate R&D and thus also responsible for innovation management within the Group.

More information:
Wacker chemicals polymers
Source:

Wacker Chemie AG

Archroma at Techtextil 2024 Photo: Archroma
12.04.2024

Archroma at Techtextil 2024

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

APPRETAN® FFX1540 is a new APEO free and formaldehyde free self-crosslinking polymer, medium soft with very low tackiness, and strongly hydrophobic, developed for the chemical bonding of nonwovens and for the coating of technical textiles, where low water absorption and high-water tightness are required, combined with high durability in severe environment.

For workwear and uniforms that protect people under adverse conditions, Archroma solutions include HELIZARIN® ULTRA-FAST, for printing with pigment dispersions and metallic pigments, and the new ALBAFIX® ECO Plus wet fastness improver. Archroma’s PFC-free PHOBOTEX® R-ACE durable water repellent delivers excellent water repellence while preserving fabric quality and ensuring sustainability. Archroma has also expanded the revolutionary AVITERA® SE GENERATION NEXT range of resource-saving dyes with new colors.

Further solutions for active wear and workwear include the newly launched bio-based PHOBOTEX® NTR-50 durable water repellent product, which is PFAS free, formaldehyde free and crosslinker free, as well NYLOFIXAN® HFS, a new fixing agent for polyamide and blends that is fully compliant with the latest restrictions on bisphenol compounds.

Archroma is also launching ARKOPHOB® NTR-40 at Techtextil 2024. The company’s first crosslinker with an improved sustainability profile, its monomers are partially derived from renewably sourced, plant-based raw materials. Another new innovation is biocide-free OX20, an odor-neutralizing technology launched by Archroma in partnership with SANITIZED AG.

For home textiles, mills and brands can select ARKOFIX® NZW formaldehyde-free* resin for high whiteness and extraordinary product stability, with no yellowing during storage at elevated temperatures, even over a prolonged period of time. For a super-soft handle, the SILIGEN® EH1 is a vegan silicone macro-emulsion softener with 35% plant-based active content.

More information:
Archroma Techtextil
Source:

Archroma

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

13.03.2024

IDEA®25: Call for abstracts

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

INDA, the Association of the Nonwoven Fabrics Industry, announced a call for abstracts for IDEA®, April 29-May 1, 2025, Miami Beach Convention Center, Miami Beach, Florida. IDEA attracts thousands of nonwoven professionals from all functional areas spanning the entire supply chain.

The theme for IDEA25 is “Nonwovens for a Healthier Planet” highlighting nonwoven advancements in sustainability.

Product developers, designers, engineers, technical scouts, and marketing professionals accountable for their product’s environmental impact will attend IDEA. Presentations will focus on responsible sourcing, innovations in sustainability, and end-of-life solutions for nonwovens and its related industries.

A few examples of topics for consideration are:

RESPONSIBLE SOURCING

  • Natural Fibers (Cotton, Hemp, Bamboo, Banana, Wood Pulp, Regenerated Cellulose, Wool, Fur, Chitin, Feathers)
  • Polymers (Biopolymers, Regenerated and Recycled polymers, Unconventional and Alternatives to Traditional Polymers)
  • Sustainable Chemistries (finishes, lubricants, adhesives, and additives)

INNOVATIONS IN SUSTAINABILITY

  • Process Improvements with Sustainability Impact (reduced waste, reduced energy, reduced water consumption)
  • Product Design Improvements with Sustainability Impact (lightweighting, designs for end-of-life, “good enough” design)

END-OF-LIFE SOLUTIONS

  • End-of-Life or Next-Life Considerations (compostability, biodegradability, recycling, advanced recycling and circularity)
  • Presenting is an opportunity for technical professionals to showcase pioneering research, innovative solutions, and expert insights with technology scouts.

Abstracts must be submitted via the INDA website by June 7, 2024.

Source:

INDA - Association of the Nonwoven Fabrics Industry

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.