Textination Newsline

Reset
7 results
AI AI generated women, Pixabay
09.07.2024

How the Fashion Industry Is Using AI

Nearly every industry is poised to undergo an unprecedented transformation with the introduction of artificial intelligence (AI). AI, in simple terms, refers to technology, often in the form of computer programs, designed to replicate the human brain’s ability to perform tasks and continuously improve.

Generative AI, powered by deep learning algorithms, is making a significant impact on fashion brands. This advanced technology has the capacity to comprehend patterns within data and generate entirely new examples of text, images and even video (Bain, 2023).

Because of its ability to create new content, the fashion industry is integrating its technology into nearly all of its processes in some way, from design and product descriptions to product recommendations and 3D design (Mcdowell, 2023a).

Table 1 provides a few real-world examples of how AI is already being used in the industry.

Nearly every industry is poised to undergo an unprecedented transformation with the introduction of artificial intelligence (AI). AI, in simple terms, refers to technology, often in the form of computer programs, designed to replicate the human brain’s ability to perform tasks and continuously improve.

Generative AI, powered by deep learning algorithms, is making a significant impact on fashion brands. This advanced technology has the capacity to comprehend patterns within data and generate entirely new examples of text, images and even video (Bain, 2023).

Because of its ability to create new content, the fashion industry is integrating its technology into nearly all of its processes in some way, from design and product descriptions to product recommendations and 3D design (Mcdowell, 2023a).

Table 1 provides a few real-world examples of how AI is already being used in the industry.

Category How it works Example
Fashion Design
  • Transforms textual descriptions or uploaded images into illustrations
  • Adjusts these designs before production
  • Cala’s tool with DALL-E technology
  • Tommy Hilfiger’s AI-Assisted Design Collaboration with IBM and the Fashion Institute of Technology
  • Project Muze by Google and Zalando
Visual Content and Marketing Imagery
  • Generates advertising and marketing content using given parameters or inputs
  • Text, images and videos are common outputs
  • Stitch Fix’s AI visuals
  • Casablancas Spring/Summer 2023 campaign
  • Revolve’s AI-driven ad campaign
Copywriting
  • Generates copy based on keywords and instructions provided by the user
  • Streamlines the process of creating product descriptions, marketing emails and other written content
  • Adore Me AI optimization
  • Product descriptions for Search Engine Optimization (SEO)
Shopping Assistants
  • Utilizes natural language processing to interact with customers as chatbots
  • Offers product recommendations and provides information
  • Kering’s experimental KNXT platform
  • Luxury personal shopper powered by ChatGPT

 

AI in design
Generative AI has the power to revolutionize fashion design. Designers can harness AI image generators like DALL-E, Midjourney or Stable Diffusion to bring their creative visions to life.

Cala, a supply chain startup, was the first group to harness AI in the design creation process for fashion brands. In January 2023 it introduced a tool that allows users to describe their design ideas in text or upload images which AI will then transform into illustrations or realistic images. Users can then fine tune these designs before turning them into physical products. This tool marks a pioneering use of the DALL-E API in the fashion industry, enabling the creation of clothing, accessories, shoes and lifestyle products based on descriptions or images (OpenAI, 2022).

Apparel brands are also leveraging this technology. Tommy Hilfiger collaborated with IBM and the Fashion Institute of Technology on a project named Reimagine Retail. This initiative aimed to give retailers a competitive advantage in the speed of forecasting emerging design trends by analyzing a vast array of data from images and fabrics to colors (Saunders, 2019).

While generative AI empowers designers to explore new concepts and ideas rapidly by generating various design variations, there are limitations to the technology. Manual editing and adjustments are often necessary as AI cannot turn all concepts into finished products. Concerns regarding intellectual property may also arise as some AI-generated designs could be based on copyrighted work. Legal issues in this area are still evolving, prompting brands to involve their legal teams and establish guidelines (Bain, 2023).

AI in Copywriting: Efficiency and personalization
Generative AI tools are serving as valuable assistants to marketing teams, streamlining the writing process for product descriptions and marketing emails. Copywriters input keywords and instructions and AI generates copy that can be edited as needed, enabling brands to produce written content more efficiently.

The lingerie brand Adore Me has been using AI tools to optimize product descriptions for Search Engine Optimization (SEO) to make them more likely to appear at the top of search engine results (Mcdowell, 2023a). Adore Me and other brands using AI this way report dozens of hours in time savings.

Using AI’s potential to personalize content at a one-to-one level requires businesses to have structured first-party data and robust data privacy measures (Bain, 2023). For now, human oversight is still required, and web teams will likely need to make adjustments to established workflows in order to incorporate AI.

AI-enhanced visual content for fashion marketing
Generative AI is also being applied to create visual marketing content.
Stitch Fix uses AI to curate personalized clothing recommendations for customers and is exploring how it could use DALL-E 2 to visualize garments tailored to individual preferences for color, fabric and style (Davenport & Mittal, 2022).

French fashion house Casablanca Paris is also implementing AI. It collaborated with the British photographer and AI artist Luke Nugent for its Spring / Summer 2023 campaign. The AI-generated images blended dreamlike backdrops with cutting edge technology.

Fashion brands can benefit from reduced production times, cost savings and increased creative freedom by using AI-driven innovations to develop visual assets for marketing and ad campaigns. However, ensuring that AI-generated images accurately represent products can be tricky as the output may differ from the original product photos (Bain, 2023; Mcdowell, 2023a).

AI Chatbots: Transforming the shopping experience
Many retailers are also using generative AI as online shopping assistants, commonly known as chatbots. These chatbots use natural language processing to understand and respond to customer questions or even make personalized product recommendations (Zeng et al., 2023). For instance, within Kering’s experimental KNXT platform, a luxury personal shopper powered by ChatGPT provides tailored recommendations and insights to users based on specific contexts (Mcdowell, 2023b).

Despite these advantages, chatbot technology still has room for improvement. It may struggle to suggest the right products due to inventory constraints or provide somewhat generic styling suggestions. However these chatbots are a work in progress, and companies are confident that their AI tools’ language capabilities will continue to improve as they gather more data and user feedback.

As the fashion industry evolves, generative AI-driven chatbots have the potential to revolutionize the way customers interact with brands, offering increasingly personalized and efficient services.

A new industry standard
Businesses in the fashion, textile and apparel space can no longer be ambivalent or willfully ignorant about AI. They must do the research and reflection needed to develop a clear organizational stance on AI or risk getting left behind.

Organizational strategies for AI need to go beyond looking at the future trajectory of AI. Executives must set up clear objectives around how to integrate the technology into their workflows.

The customer base of each brand will be central to a successful AI strategy. This means understanding both their attitudes towards AI as well as their preferences and expectations.

Source:

Wilson College of Textiles, Yoo-Won Olivia Min and B. Ellie Jin

Photo: Walmart Inc.
15.01.2024

What is a Virtual Fitting Room? Advantages and Early Adopters

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

AI further operates VFR by using algorithms and machine learning to design a full-body 3D model of a shopper standing in front of the camera. A combination of AR and AI technology allows VFR to place items on real-time images as a live video so that customers can check the size, style and fit of the products they’re considering purchasing.

Shoppers can try on clothes and shoes at home without visiting a physical store. In order to do this, customers need to first make sure they have the right settings on their phone. Then, they download a brands’ mobile applications with the Virtual Fitting Room function or visit apparel brands’ websites that support this VFR function and upload a photo of their body shape. Some brands allow a customer to create an avatar using their body shape to test out the fashion items virtually, instead of uploading a photo of themselves.

How does using a Virtual Fitting Room benefit fashion retailers?

  • Provides a convenient shopping experience
    Research conducted by the National Retail Federation in 2020 stated that 97% of consumers have ended a shopping trip or stopped searching for the item they had in mind because the process was inconvenient.
    Shoppers surveyed not only said that in-person shopping was inconvenient but that online shopping felt even more inconvenient to them.
    VFR eliminates all of these processes. Shoppers can walk over to the VFR and see what the clothes look like quickly without needing to change them.
     
  • Overcomes the limitations of online shopping
    As of 2017, 62% of shoppers preferred to shop at physical apparel stores because they could see, touch, feel and experience products. This was a major problem that online shopping could not overcome.
    VFR solves this problem effectively. According to a Retail Perceptions Report, about 40% of buyers said they would be willing to pay more if they could experience the product through AR technology. By incorporating new technologies, VFR makes shopping fun and offers a personalized shopping experience to customers, which can attract more people to online channels.
     
  • Reduces the return rate
    High return rates are a big administrative headache for fashion brands. Moreover, it threatens to cut into the profits of fashion brands if they offer free returns. 30% of the return rate in e-commerce fashion shopping is due to purchases of small-sized products, and another 22% happens due to purchases of too large-sized products.
    However, VFR alleviates this problem. Whether in store or online, people can check the fit and size of items without having to wear them themselves.

Which brands are already using Virtual Fitting Room (VFR) technology?
Gucci

Gucci is the first luxury brand which adopted VFR. They partnered with Snapchat to launch an augmented reality shoe try-on campaign. It created a virtual lens that superimposed and overlaid a digital version of the shoe on the shopper’s foot when the foot was photographed using a cell phone camera.

Along with the Shop Now button, which guides shoppers to its online store, Gucci achieved 18.9 million Snapchat users and reported positive return on ad spend, which is a marketing metric that measures the amount of revenue earned on all dollars spent on advertising from this campaign.

Otero Menswear
Otero Menswear is a brand focused on apparel for men shorter than 5’10” (1,78 m). Otero added VFR software to its online store to provide perfect fitting sizes to its customers. First, it asks customers four quick questions about their height, leg length, waist size and body type. Then, it offers a virtual avatar corresponding with the answers. Shoppers then use this avatar to see how different sizes of Otero clothing would look on them.
 
Walmart
In May 2021, Walmart announced that they plan to acquire Zeekit, a virtual fitting room platform, to provide enhanced and social shopping experiences for customers during the pandemic.

When customers upload pictures of themselves and enter their body dimensions, Zeekit builds a virtual body and then customers can dress it accordingly. Customers will simply post their photos or choose virtual models on the platform that represent the best fitting of their height, body and skin tone. Shoppers can even share their virtual clothes with others to get various opinions. Walmart brings a comprehensive and social experience to digital shopping for customers through this acquisition of VFR.

According to research by Valuates Reports, it is expected that sales of the global virtual fitting room market will grow to $6.5 million by 2025. By adopting VFR, consumers will be able to experience convenience in an advanced shopping environment. At the same time, fashion retailers will be able to increase online sales and reduce return rates by offering customers personalized online shopping experiences using VFR technology.

Source:

Heekyeong Jo and B. Ellie Jin
This article was originally published by members of the Wilson College of Textiles’ Fashion Textile and Business Excellence Cooperative.

Better Manufacturing Method for Wound Closures (c) Wilson College of Textiles
03.01.2024

Better Manufacturing Method for Wound Closures

If you’ve ever gotten stitches or had surgery, you may have had a suture. They’re the threads used to close wounds or join tissues together for other purposes.

But did you know that there are different types of sutures which can have an effect on your experience at the doctor or surgeon’s office?

Barbed sutures, for example, can reduce the amount of time you spend on the operating table and lower the likelihood of surgical complications. That type of suture has its roots in the Triangle and is being advanced by students and faculty at the Wilson College of Textiles.

Dr. Gregory Ruff, a nationally-renowned plastic surgeon, first invented the innovative closure in 1991, just down the road in Chapel Hill, North Carolina.

“I was thinking about the fact that we sew wounds together with a loop and a knot and if you tie it too tight, it can constrict the circulation and kill the tissue in that loop,” Dr. Ruff remembers.

If you’ve ever gotten stitches or had surgery, you may have had a suture. They’re the threads used to close wounds or join tissues together for other purposes.

But did you know that there are different types of sutures which can have an effect on your experience at the doctor or surgeon’s office?

Barbed sutures, for example, can reduce the amount of time you spend on the operating table and lower the likelihood of surgical complications. That type of suture has its roots in the Triangle and is being advanced by students and faculty at the Wilson College of Textiles.

Dr. Gregory Ruff, a nationally-renowned plastic surgeon, first invented the innovative closure in 1991, just down the road in Chapel Hill, North Carolina.

“I was thinking about the fact that we sew wounds together with a loop and a knot and if you tie it too tight, it can constrict the circulation and kill the tissue in that loop,” Dr. Ruff remembers.

“I was thinking about animals, and a porcupine’s quill came to mind. And the aha moment was, ‘What if we put a quill on one side of the wound and another one on the other side of the wound, so there’s no loop: the barbs go in but they don’t come out?’”

As the name suggests, barbed sutures have small projections shooting out of them that can latch onto tissues: think about barbed wire or a fishing hook. Those “quills,” or barbs, allow the suture to self-anchor. Since no knot is needed to secure the suture, the closure is faster, and the lack of knots and constricting loops promotes healing. This also allows surgeons to schedule more surgeries.

Soon after his aha moment, Dr. Ruff started his own company, Quill Medical, to fabricate these barbed sutures. While he had the medical expertise and a solid business partner, Dr. Ruff was looking for someone who could advise him in terms of the material makeup of the suture. The Wilson College’s Biomedical Textile Research Group, under the direction of Professor Martin King, quickly proved to be the perfect partner.

Using the Wilson College’s labs, King’s graduate students conducted a number of tests on Ruff’s sutures across different types of tissues (such as skin, muscle, etc.). One of those students, Nilesh Ingle, found that the barbed sutures worked best when the angles of the barbs were tailored specifically to the type of tissue being sutured.

Years later, one of King’s current graduate students is building on that research insight.
 
Understanding challenges and innovating solutions
Nearly three decades after the barbed suture’s invention, the majority of surgeons still use conventional sutures despite the advantages documented by researchers and surgeons. Why?

Karuna Nambi Gowri, a fiber and polymer science doctoral student in King’s research group, says it comes down to two reasons. The first of these is resistance to change. Most practicing surgeons learned how to use a suture before barbed sutures became more broadly available.

The second obstacle to the use of barbed sutures is procuring them. Barbed sutures tend to be both expensive and low in supply. That’s because the current process for making them (mechanical and blade-based) is inefficient in terms of both time and resources.

That’s where Nambi Gowri’s research with the Wilson College’s Biomedical Textiles Research Group comes in. She’s developing a faster and cheaper method for making the same quality of barbed suture.

“If I fabricate using a laser, the fabrication time is pretty short compared to a mechanical barbing technique,” Nambi Gowri says.

Moving from a mechanical method to a laser method has another advantage.

“The manipulation of the barbed suture itself is easier using a laser,” she says.

In other words, using the lasers will allow Nambi Gowri to apply the custom barb geometries, or angles, suggested by prior researchers on a commercial scale. These custom geometries will allow the barbed suture to be optimized for the type of tissue it will be connecting.

In addition to the new process, Nambi Gowri is also developing a new suture.

“I’m the first one to actually study Catgut barbed sutures,” she explains.

Catgut was actually one of the earliest materials used to make sutures. The filament is made from tissue taken from an animal’s stomach – especially cattle stomachs – hence the name. While the industry had moved away from this material in favor of synthetic polymers, Nambi Gowri sees the potential for Catgut in barbed sutures because of their quick degradation rate.

“These are useful external wound closures,” she says. “Because our body contains so much collagen and Catgut is made up of 90% collagen, it’s a more suitable polymer that can be used in human tissue.”

Hands-on experience informs research
In the meantime, Nambi Gowri has gained hands-on experience to inform her research by fabricating all of the barbed sutures used in Dr. Ruff’s micro facelift surgeries.

The surgery itself is made possible because of the shape and the material composition of the sutures: poly 4-hydroxybutyrate (P4HB). This polymer is already present naturally within our bodies, so sutures made from P4HB are naturally and safely absorbed by the body over time. That means patients don’t have to schedule an appointment after surgery for the sutures to be removed.
 
P4HB also provides the perfect combination of strength and elasticity to hold up the facial tissue until the wound has healed. The barbs, on the other hand, allow for the suture to be placed and stay secure within the skin without the need for large incisions.

“That skin tightens up right away,” Dr. Ruff says of the procedure, which draws patients from across the country. “So I don’t have to remove hair, and I don’t have to put a scar at the hairline.”

“These sutures are not available commercially anywhere in the world. So, to be able to mechanically barb different size sutures in a reliable and consistent manner for use in clinical practice, requires skill, experience and knowledge of quality control,” Professor King says of Nambi Gowri’s work.

This has given Karuna a hands-on understanding of the sutures she’s hoping to improve upon.

She says her fiber and polymer science knowledge has played a key role in helping her approach all sides of her research.

“All the analytical characterization techniques that are used for characterization of sutures – like identifying mechanical properties and measuring tensile strength – is actually from my knowledge of textiles,” she says. “I’m applying my polymer chemistry knowledge  to make sure that the laser doesn’t cause the sutures to degrade, melt or experience thermal damage.”

What’s next?
As she works to patent her designs, Nambi Gowri feels confident that her dissertation will set her up for success in the research and development (R&D) field after graduation.

In the meantime, she’s already finding out about the ways her research can have a broader impact.

“Dr. Dan Duffy, DVM, a surgeon at the NC State College of Veterinary Medicine is also interested in using barbed sutures to repair torn and failed tendons on his animals, but he finds the cost of buying commercial barbed sutures prohibitively expensive. So we need to collaborate,” King says. “Karuna to the rescue!”

Source:

North Carolina State University, Sarah Stone

Researchers made shape-changing fibers by encapsulating a balloon-like tube in a braided textile sheath. (c) : Muh Amdadul Hoque. Researchers made shape-changing fibers by encapsulating a balloon-like tube in a braided textile sheath.
27.09.2023

Artificial Muscle Fibers Could Serve as Cell Scaffolds

In two new studies, North Carolina State University researchers designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, the researchers focused on the materials’ influence on the artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.

In the second, proof-of-concept study, the researchers tested their fibers as scaffolds for live cells. Their findings suggest the fibers – known as “fiber robots” – could potentially be used to develop 3D models of living, moving systems in the human body.

In two new studies, North Carolina State University researchers designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, the researchers focused on the materials’ influence on the artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.

In the second, proof-of-concept study, the researchers tested their fibers as scaffolds for live cells. Their findings suggest the fibers – known as “fiber robots” – could potentially be used to develop 3D models of living, moving systems in the human body.

“We found that our fiber robot is a very suitable scaffold for the cells, and we can alter the frequency and contraction ratio to create a more suitable environment for cells,” said Muh Amdadul Hoque, graduate student in textile engineering, chemistry and science at NC State. “These were proof-of concept studies; ultimately, our goal is to see if we can study these fibers as a scaffold for stem cells, or use them to develop artificial organs in future studies.”
 
Researchers made the shape-changing fibers by encapsulating a balloon-like tube, made of a material similar to rubber, in a braided textile sheath. Inflating the interior balloon with an air pump makes the braided sheath expand, causing it to shorten.

The researchers measured the force and contraction rates of fibers made from different materials in order to understand the relationship between material and performance. They found that stronger, larger diameter yarns generated a stronger contraction force. In addition, they found that the material used to make the balloon impacted the magnitude of the contraction and generated force.
 
“We found that we could tailor the material properties to the required performance of the device,” said Xiaomeng Fang, assistant professor of textile engineering, chemistry and science at NC State. “We also found that we can make this device small enough so we can potentially use it in fabric formation and other textile applications, including in wearables and assistive devices.”
 
In a follow-up study, researchers evaluated whether they could use the shape-changing fibers as a scaffold for fibroblasts, a cell type found in connective tissues that help support other tissues or organs.

“The idea with stretching is to mimic the dynamic nature of how your body moves,” said Jessica Gluck, assistant professor of textile engineering, chemistry and science at NC State, and a study co-author.

They studied the cells’ response to the motion of the shape-changing fibers, and to different materials used in the fibers’ construction. They found the cells were able to cover and even penetrate the fiber robot’s braiding sheath. However, they saw decreases in the cells’ metabolic activity when the fiber robot’s contraction extended beyond a certain level, compared to a device made of the same material that they kept stationary.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
 
“Typically, if you want to add stretch or strain on cells, you would put them onto a plastic dish, and stretch them in one or two directions,” Gluck said. “In this study, we were able to show that in this 3D dynamic culture, the cells can survive for up to 72 hours.

“This is particularly useful for stem cells,” Gluck added. “What we could do in the future is look at what could happen at the cellular level with mechanical stress on the cells. You could look at muscle cells and see how they’re developing, or see how the mechanical action would help differentiate the cells.”

The study, “Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” was published in Actuators on March 18. Emily Petersen was a co-author. The study was funded by start-up funding awarded to Fang from the Department of Textile Engineering, Chemistry and Science at NC State.

The study, “Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System” was published online in Biomimetics on April 21. In addition to Gluck, Hoque and Fang, co-authors included Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen and Shane Harrington. The study was funded by the NC State Wilson College of Textiles, the Department of Textile Engineering, Chemistry and Science and the Wilson College of Textiles Research Opportunity Seed Fund Program.

Source:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

(c) NC State
07.08.2023

Wearable Connector Technology - Benefits to Military, Medicine and beyond

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

“The goals set for this research are quite novel to any other literature that exists on wearable connectors” says Shourya Dhatri Lingampally, Wilson College of Textiles graduate student and research assistant involved in the project alongside Wilson College Associate Professor Minyoung Suh.

Ongoing since the fall of 2021, Suh and Lingampally’s work focuses on textile-integrated wearable connectors, a unique, high-tech sort of “bridge” between flexible textiles and external electronic devices. At its essence, the project aims to improve these connectors’ Technology Readiness Level — a key rating used by NASA and the Department of Defense used to assess a particular technology’s maturity.

To do this, Lingampally and her colleagues’ research examines problems that have, in the past, affected the performance of wearable devices.

Sure, these advances may benefit fashion, leading to eccentric shirts, jackets, or accessories — “to light up or change its color based on the wearer’s biometric data,” Lingampally offers — the research has roots in a much deeper mission.

Potential benefits to military, medicine and beyond
The project is funded through more than $200,000 in grant money from Advanced Functional Fabrics of America (AFFOA), a United States Manufacturing Innovation Institute (MII) located in Cambridge, Massachusetts. The mission of AFFOA is to support domestic manufacturing capability to support new technical textile products, such as textile-based wearable technologies.

A key purpose of the research centers around improving the functionality of wearable monitoring devices with which soldiers are sometimes outfitted to monitor the health and safety of their troops remotely.

Similar devices allow doctors and other medical personnel to remotely monitor the health of patients even while away from the bedside.

Though such technology has existed for years, it’s too often required running wires and an overall logistically-unfriendly design. That could soon change.

“We have consolidated the electronic components into a small snap or buckle, making the circuits less obtrusive to the wearer,” Lingampally says, explaining the team’s innovations, which include 3D printing the connector prototypes using stereolithography technology.

“We are trying to optimize the design parameters in order to enhance the electrical and mechanical performance of these connectors,” she adds.

To accomplish their goals, the group collaborated with NC State Department of Electrical and Computer Engineering Assistant Research Professor James Dieffenderfer. The team routed a variety of electrical connections and interconnects like conductive thread, epoxy and solder through textile materials equipped with rigid electronic devices.

They also tested the components for compatibility with standard digital device connections like USB 2.0 and I2C.

Ultimately, Lingampally hopes their work will make wearable technology not only easier and more comfortable to use, but available at a lower price, too.

“I would like to see them scaled, to be mass manufactured, so they can be cost efficient for any industry to use,” she explains.

In a bigger-picture sense, though, her team’s work is reinforcing the far-reaching boundaries of what smart textile research can accomplish; a purpose that stretches far beyond fashion or comfort.

Pushing the boundaries of textiles research
Suh and Lingampally’s work is just the latest breakthrough research originating from the Wilson College of Textiles that’s aimed at solving critical problems in the textile industry and beyond.

“The constant advancements in technology and materials present immense potential for the textile industry to drive positive change across a range of fields from fashion to healthcare and beyond,” Lingampally, a graduate student in the M.S. Textiles program, says, noting the encouragement she feels in her program to pursue innovation and creativity in selecting and advancing her research.

Additionally, in the fiber and polymer science doctoral program, which Suh does research with, candidates focus their research on a seemingly endless array of STEM topics, ranging from forensics to medical textiles, nanotechnology and, indeed, smart wearable technology (just to name a few).

In this case, Suh says, the research lent itself to “unexpected challenges” that required intriguing adaptations “at every corner.” But, ultimately, it led to breakthroughs not previously seen in the wearable technology industry, attracting interest from other researchers outside the university, and private companies, too.

“This project was quite exploratory by nature as there hasn’t been any prior research aiming to the same objectives,” Suh says.

Meanwhile, the team has completed durability and reliability testing on its textile-integrated wearable connectors. Eventually, the group would like to increase the sample size for testing to strengthen and validate the findings. The team also hopes to evaluate new, innovative interconnective techniques, as well as other 3D printing techniques and materials as they work to further advance wearable technologies.

Source:

North Carolina State University, Sean Cudahy

A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

North Carolina State University
17.01.2023

Embroidery as Low-Cost Solution for Making Wearable Electronics

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

In the study published in Nano Energy, researchers tested multiple designs for power-generating yarns. To make them durable enough to withstand the tension and bending of the embroidery stitching process, they ultimately used five commercially available copper wires, which had a thin polyurethane coating, together. Then, they stitched them onto cotton fabric with another material called PTFE.

“This is a low-cost method for making wearable electronics using commercially available products,” Yin said. “The electrical properties of our prototypes were comparable to other designs that relied on the same power generation mechanism.”

The researchers relied on a method of generating electricity called the “triboelectric effect,” which involves harnessing electrons exchanged by two different materials, like static electricity. They found the PTFE fabric had the best performance in terms of voltage and current when in contact with the polyurethane-coated copper wires, as compared to other types of fabric that they tested, including cotton and silk. They also tested coating the embroidery samples in plasma to increase the effect.

“In our design, you have two layers – one is your conductive, polyurethane-coated copper wires, and the other is PTFE, and they have a gap between them,” Yin said. “When the two non-conductive materials come into contact with each other, one material will lose some electrons, and some will get some electrons. When you link them together, there will be a current.”
Researchers tested their yarns as motion sensors by embroidering them with the PTFE fabric on denim. They placed the embroidery patches on the palm, under the arm, at the elbow and at the knee to track electrical signals generated as a person moves. They also attached fabric with their embroidery on the insole of a shoe to test its use as a pedometer, finding their electrical signals varied depending on whether the person was walking, running or jumping.

Lastly, they tested their yarns in a textile-based numeric keypad on the arm, which they made by embroidering numbers on a piece of cotton fabric, and attaching them to a piece of PTFE fabric. Depending on the number that the person pushed on the keypad, they saw different electrical signals generated for each number.

“You can embroider our yarns onto clothes, and when you move, it generates an electrical signal, and those signals can be used as a sensor,” Yin said. “When we put the embroidery in a shoe, if you are running, it generates a higher voltage than if you were just walking. When we stitched numbers onto fabric, and press them, it generates a different voltage for each number. It could be used as an interface.”

Since textile products will inevitably be washed, they tested the durability of their embroidery design in a series of washing and rubbing tests. After hand washing and rinsing the embroidery with detergent, and drying it in an oven, they found no difference or a slight increase in voltage. For the prototype coated in plasma, they found weakened but still superior performance compared with the original sample. After an abrasion test, they found that there was no significant change in electrical output performance of their designs after 10,000 rubbing cycles.

In future work, they plan to integrate their sensors with other devices to add more functions.
“The next step is to integrate these sensors into a wearable system,” Yin said.

The study, “Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction,” was published online in Nano Energy. Co-authors included Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao and Bao Yang. Funding was provided by North Carolina State University through the NC State Faculty Research & Professional Development Fund and the NC State Summer REU program.

 

Source:

North Carolina State University, Rong Yin, Laura Oleniacz