Textination Newsline

from to
Reset
Stains on the white cotton fabric treated with zinc oxide. Photo: Mikael Nyberg / University of Turku
11.12.2024

Self-cleaning cotton or a colour-changing print

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

This is possible because the fabric has been treated with mineral called zinc oxide.
 
The mineral forms a self-cleaning layer and stains on the fabric disappear when they are exposed to the daylight, in other words ultraviolet light. If stains disappear by themselves, it reduces the need of washing and garment burdens nature less.

Here you can see how the stains gradually disappear on the white cotton fabric that has been treated with zinc oxide.

In the other textile project, researchers have managed to develop non-toxic textile print which changes its colour when it is subjected to sunlight. Mineral hackmanite, which reacts to ultraviolet radiation, is used here. The mineral does not originate from mines but is created in a laboratory in Turku.

For first time ever, hackmanite is now used in textile prints. The mineral works as an ultraviolet censor and changes its colour when you have been too long time in the sun and must protect yourself. It can reduce the risk for the damage of the sun, says Alicja Lawrynowicz.

Material out to the market
Prototypes which now have been retrieved are not yet available in larger scale. So, what is going to happen with all discoveries?
The idea is that they are not going to stay in the laboratory. We hope that in the future our innovations will be used in industry, says Lawrynowicz.

The research is multidisciplinary, which means that there has been cooperation between different research groups. Research goes on also in other Nordic countries.  

Lupine can become textiles
In Denmark one research group has invested in ecofriendly colouring and created dyes out of big amounts of waste from local restaurants, among others avocado and onion peels. Avocado peels give textiles a beautiful yellow colour and onion creates brown nuances. In future these colours could replace traditional, toxic dyes.

At the same time researchers in Aalto University have produced textiles out of lupine, which is an invasive species in Finland.

Until now we have been removing lupines out of ditches and seeing it as a problem, but here researchers have created fibers and been able to weave a cloth out of it, says research coordinator Helen Salminen from the field of material science at the University of Turku.

Within the framework of the project researchers in Sweden have in turn worked on developing alternatives to plastic fibers (elastane) which are often used in jeans fabric for making fabric more elastic.

Cotton which contains a few percent of plastic fibers is difficult to recycle. This makes it difficult to use the fabric as a raw material for further processes. For that reason, it is important to find new ways to weave fabric so that fabric can be recycled and can be elastic without plastic fibers, says Alicja Lawrynowicz.

Source:

Aalto University, YLE Svenska about the NordForsk-funded project 'Beyond e-Textiles' and 'Interlaced' exhibition at the University of Turku

ISPO Awards (c) Messe München
03.12.2024

ISPO 2024: Awarded Innovations & Tomorrow’s Newcomers

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

The ISPO Award seal of quality is given to sports products with a particularly high level of innovation, thus providing a curated overview of the most important trends in the industry. For the brands, innovations are enormously important and indispensable, whether in the textile sector, where much has changed in terms of materials, or in the integration of AI into all sub-sectors of the sporting goods industry. An expert jury of business professionals and regularly changing, sports-loving retail consumers from the ISPO Collaborators Club will review the submitted product innovations in advance and award prizes to the ones that meet the relevant criteria.

The submitted products make it possible to identify and observe trends. In 2024, the spectrum of trends continues to include sustainability in relation to textile innovations, the circular economy and recycling, as well as retail consumers’ desire for multipurpose use of diverse products. The integration of technology and the ever-growing role of AI numbers among the most exciting observations.

SUSTAINABILITY AS THE STANDARD
New EU legislation has led to an acceleration in the development of sustainable, functional materials. At this year’s ISPO Award jury meetings, numerous exciting material innovations were observed, especially in the textile sector. Progress in chemical treatments, such as PFC-free DWRs and textiles, is also remarkable. “Sustainability is increasingly becoming the norm, which means that consumers are coming to expect it as standard”, says juror and textile expert Dr Regina Henkel. “Progress is visible, for example, in the use of mono-materials or bio-based fabrics such as wool-Tencel blends”, which are used, for example, in this year’s ISPO Award winner Icebreaker with the Merino Blend 800 RealFleece Classic Pile LS Zip.

The ISPO Award entries also make it obvious that the performance of sustainable products made from recycled fibres has improved markedly so that the functionality of these products is now fully on a par with non-recycled items. Nevertheless, recycling will not be the solution to all future challenges, which is why manufacturers are increasingly incorporating into their collections natural fibres and biodegradable sports textiles, either in pure form or as a blend.

MULTI-USE REMAINS A TOP TREND
The trend towards multifunctional products reflects consumers’ desire for practical solutions. Particularly in Asia, multifunctional hardware products are perceived positively, while in Europe the focus is on textiles for multifunctional use. “High-quality, high-performance materials and designs are being adapted as everyday fashion, thus appealing to a broader target group”, explains trade journalist Dr Martina Wengenmeir, who is also one of the ISPO Award’s jurors. The “urban outdoor” trend is continuing and multipurpose products are also coming into focus in the area of commitment. One example of this is the Outdoor Backpack 45L from Peak Design, which combines fashionable and multifunctional design with full performance.

ISPO Award juror Dr Wengenmeir has identified another trend: “There is a growing focus on technical sports products designed specifically for women. These include football shoes with a design that is genuinely their own. This development goes beyond simple adjustments and includes well-thought-out designs in terms of fit and functionality.” These also include the BettHer - Bra Antishock+: the bra relies on a patented thermoplastic gel technology that provides excellent shock absorption and protection during intense activities.

INTEGRATION OF TECHNOLOGY
A trend from Asia that is also arriving in Europe is the integration of technology into clothing, for example through sensors and warmth apps. The personalisation of garments using technologies such as AI and sensor technology for temperature regulation is regarded as a potential growth area, despite concerns about sustainability.

Technology is also playing an increasingly important role for brick-and-mortar retailers, for example, when it comes to analysing the right product for the customer. Treadmills for running analysis are well known, but this year’s ISPO Award winner, the Skimulator, is a patented world first for a perfect fit of ski boots. This state-of-the-art simulator precisely simulates slope gradients, thus enabling the perfect fit of the ski boot.

ISPO BRANDNEW AWARD
ISPO Munich also provides a stage for the most innovative and creative newcomers in the sports and outdoor industry. Previous ISPO Brandnew winners include pioneering brands from all over the world that have redefined the boundaries of their respective fields with innovative materials, cutting-edge technology and sustainable action. Four start-ups each from the categories “Outdoor & Adventure & Snowsports”, “Performance, Body & Mind (physical product)”, “Sustainability” and “Sports Technology & Platforms” will pitch their ideas live on the main stage. A sneak peek at the innovations on show includes: BreezeLabs, which monitors breathing patterns during exercise; no normal coffee, coffee in a tube; and the AeroGraph Puffer Jacket, a weather-insulating jacket. The winner will be announced in the grand finale on the second day of the fair (4 December 2024).

Source:

Messe München

Graphik University of Copenhagen
22.11.2024

New nanofiber patch for treatment of psoriasis

Researchers at the University of Copenhagen have developed a patch for easier and more effective treatment of psoriasis. The method may also be used in treatment of other inflammatory skin diseases.

4-5 per cent of the Danish population has psoriasis, which is one of the most common skin conditions in the world. The inflammatory disease is characterised by a red rash with white scales, which may vary in form, size and severity.

Today, there are several treatment options for psoriasis patients. Creams and ointments are among the most common. The problem is that the cream must be applied several times a day and leaves the skin feeling greasy, and therefore, some patients often fail to use it consistently, which is vital for treatment success.

Now researchers at the University of Copenhagen have produced a prototype for a patch that may help solve this problem for patients with smaller demarcated areas of plaque psoriasis.

Researchers at the University of Copenhagen have developed a patch for easier and more effective treatment of psoriasis. The method may also be used in treatment of other inflammatory skin diseases.

4-5 per cent of the Danish population has psoriasis, which is one of the most common skin conditions in the world. The inflammatory disease is characterised by a red rash with white scales, which may vary in form, size and severity.

Today, there are several treatment options for psoriasis patients. Creams and ointments are among the most common. The problem is that the cream must be applied several times a day and leaves the skin feeling greasy, and therefore, some patients often fail to use it consistently, which is vital for treatment success.

Now researchers at the University of Copenhagen have produced a prototype for a patch that may help solve this problem for patients with smaller demarcated areas of plaque psoriasis.

“We have developed a dry patch, which contains active ingredients for treatment of psoriasis, and which reduces the frequency of use to once a day. It has the potential to make treatment more comfortable for plaque psoriasis patients,” says Associate Professor Andrea Heinz from the Department of Pharmacy, who is the corresponding author on a series of articles exploring the patch’s ability to treat plaque psoriasis.

One patch serving several functions
The patch is designed to contain two active ingredients at once and release them onto the skin at different rates.

“It is really clever, because treatment of psoriasis often requires more than one product. The two ingredients are released in a controlled manner and at different rates, as they serve different functions: Salicylic acid is released immediately to remove the dead cells that have accumulated on the skin, while hydrocortisone decreases inflammation of the skin – a process that takes more time,” says first author of the studies Anna-Lena Gürtler and adds:

“We have tested the prototype on pig skin and human skin cells and compared the results to the creams and ointments available at pharmacies, and our studies show that the patch is just as effective as standard treatments.”

Potential to treat other conditions
The researchers used electrospinning to produce the patch – a method where high voltage is applied to a polymer solution to produce synthetic nanofibers. The fibres are then used to make a fibre mat that may be attached to the skin like a plaster.

The researchers are still working on the patch. More research, product development and clinical trials are needed before the method is ready for use. According to Andrea Heinz, though, it has great potential that extends beyond psoriasis treatment:

“A patch containing active ingredients may be an alternative to creams and ointments in the treatment of other inflammatory skin diseases, for instance atopic eczema. It may also be useful in connection with wound healing.”

More information:
psoriasis patch Elektrospinning
Source:

William Brøns Petersen, University of Copernhagen

PhD scholar Nayanatara Ruppegoda Gamage (left) and Dr Chamila Gunasekara with concrete samples made using textiles. Credit: RMIT University
19.11.2024

Carpet fibres stop concrete cracking

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Publishing their latest results in the Construction and Building Materials journal, the team has shown that waste carpet material can be used to improve concrete.

With state-of-the-art textile research facilities at RMIT, the team of civil engineers and textile researchers has also been able to use other discarded textiles including clothing fabrics to make concrete stronger.

“Cracking in early-age concrete slabs is a long-standing challenge in construction projects that can cause premature corrosion, not only making a building look bad but also risking its structural integrity and safety,” said Gunasekara, an ARC DECRA fellow from the School of Engineering.

“Scrap carpet fibres can be used to increase concrete’s strength by 40% in tension and prevent early cracking, by reducing shrinkage substantially.”

Laboratory concrete samples have been created using the various textile materials and shown to meet Australian Standards for engineering performance and environmental requirements.

Addressing a big waste challenge
The disposal of carpets and other textiles including discarded fabrics poses an enormous environmental challenge, Gunasekara said.

“Australia is the second largest consumer of textiles per person in the world, after the US. The average Australian purchases 27kg of new clothing and textiles every year, and discards 23kg into landfill,” he said.

“Burning carpet waste releases various toxic gases, creating environmental concerns.”

Dr Shadi Houshyar, a textile and material scientist at RMIT, said firefighting clothes waste also posed a challenge, as the same qualities that made these materials ideal for firefighting also made them difficult to recycle.

“Up to 70% of textile waste would be suitable for conversion into usable fibres, presenting an opportunity in the materials supply chain,” said Houshyar, from the School of Engineering.  

Working with industry and government to support the recycling of waste
Field trials conducted with support from industry and local government partners will help capture the unexpected conditions encountered in real-world construction projects.

The ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste Resources to Engineered Materials and Solutions for a Circular Economy (TREMS) and an early-career research grant will fund the field trials as well as computational modelling. TREMS is led by Professor Sujeeva Setunge from RMIT.

The team is collaborating with Professor Andrzej Cwirzen Luleå University of Technology in Sweden on computational modelling.

Source:

Will Wright, RMIT University

Waterfiltration Photo Manuel Darío Fuentes Hernández , Pixabay
10.11.2024

New filtration material could remove long-lasting chemicals from water

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

Membranes based on natural silk and cellulose can remove many contaminants, including “forever chemicals” and heavy metals.

Water contamination by the chemicals used in today’s technology is a rapidly growing problem globally. A recent study by the U.S. Centers for Disease Control found that 98 percent of people tested had detectable levels of PFAS, a family of particularly long-lasting compounds also known as “forever chemicals,” in their bloodstream.

A new filtration material developed by researchers at MIT might provide a nature-based solution to this stubborn contamination issue. The material, based on natural silk and cellulose, can remove a wide variety of these persistent chemicals as well as heavy metals. And, its antimicrobial properties can help keep the filters from fouling.

The findings are described in the journal ACS Nano, in a paper by MIT postdoc Yilin Zhang, professor of civil and environmental engineering Benedetto Marelli, and four others from MIT.

PFAS chemicals are present in a wide range of products, including cosmetics, food packaging, water-resistant clothing, firefighting foams, and antistick coating for cookware. A recent study identified 57,000 sites contaminated by these chemicals in the U.S. alone. The U.S. Environmental Protection Agency has estimated that PFAS remediation will cost $1.5 billion per year, in order to meet new regulations that call for limiting the compound to less than 7 parts per trillion in drinking water.

Contamination by PFAS and similar compounds “is actually a very big deal, and current solutions may only partially resolve this problem very efficiently or economically,” Zhang says. “That’s why we came up with this protein and cellulose-based, fully natural solution,” he says.

“We came to the project by chance,” Marelli notes. The initial technology that made the filtration material possible was developed by his group for a completely unrelated purpose — as a way to make a labelling system to counter the spread of counterfeit seeds, which are often of inferior quality. His team devised a way of processing silk proteins into uniform nanoscale crystals, or “nanofibrils,” through an environmentally benign, water-based drop-casting method at room temperature.

Zhang suggested that their new nanofibrillar material might be effective at filtering contaminants, but initial attempts with the silk nanofibrils alone didn’t work. The team decided to try adding another material: cellulose, which is abundantly available and can be obtained from agricultural wood pulp waste. The researchers used a self-assembly method in which the silk fibroin protein is suspended in water and then templated into nanofibrils by inserting “seeds” of cellulose nanocrystals. This causes the previously disordered silk molecules to line up together along the seeds, forming the basis of a hybrid material with distinct new properties.

By integrating cellulose into the silk-based fibrils that could be formed into a thin membrane, and then tuning the electrical charge of the cellulose, the researchers produced a material that was highly effective at removing contaminants in lab tests.

The electrical charge of the cellulose, they found, also gave it strong antimicrobial properties. This is a significant advantage, since one of the primary causes of failure in filtration membranes is fouling by bacteria and fungi. The antimicrobial properties of this material should greatly reduce that fouling issue, the researchers say.

“These materials can really compete with the current standard materials in water filtration when it comes to extracting metal ions and these emerging contaminants, and they can also outperform some of them currently,” Marelli says. In lab tests, the materials were able to extract orders of magnitude more of the contaminants from water than the currently used standard materials, activated carbon or granular activated carbon.

While the new work serves as a proof of principle, Marelli says, the team plans to continue working on improving the material, especially in terms of durability and availability of source materials. While the silk proteins used can be available as a byproduct of the silk textile industry, if this material were to be scaled up to address the global needs for water filtration, the supply might be insufficient. Also, alternative protein materials may turn out to perform the same function at lower cost.

Initially, the material would likely be used as a point-of-use filter, something that could be attached to a kitchen faucet, Zhang says. Eventually, it could be scaled up to provide filtration for municipal water supplies, but only after testing demonstrates that this would not pose any risk of introducing any contamination into the water supply. But one big advantage of the material, he says, is that both the silk and the cellulose constituents are considered food-grade substances, so any contamination is unlikely.

“Most of the normal materials available today are focusing on one class of contaminants or solving single problems,” Zhang says. “I think we are among the first to address all of these simultaneously.”

“What I love about this approach is that it is using only naturally grown materials like silk and cellulose to fight pollution,” says Hannes Schniepp, professor of applied science at the College of William and Mary, who was not associated with this work. “In competing approaches, synthetic materials are used — which usually require only more chemistry to fight some of the adverse outcomes that chemistry has produced. [This work] breaks this cycle! ... If this can be mass-produced in an economically viable way, this could really have a major impact.”

The research team included MIT postdocs Hui Sun and Meng Li, graduate student Maxwell Kalinowski, and recent graduate Yunteng Cao PhD ’22, now a postdoc at Yale University. The work was supported by the U.S. Office of Naval Research, the U.S. National Science Foundation, and the Singapore-MIT Alliance for Research and Technology.

Prototype of the conductive fabric Photo: Chalmers University of Technology, Hanna Magnusson
04.11.2024

The silk thread that can turn clothes into charging stations

Imagine a sweater that powers electronics to monitor your health or charge your mobile phone while running. This development faces challenges because of the lack of materials that both conduct electricity stably and are well suited for textiles. Now a research group, led by Chalmers University of Technology in Sweden, presents an ordinary silk thread, coated with a conductive plastic material, that shows promising properties for turning textiles into electricity generators.

Thermoelectric textiles convert temperature differences, for example between our bodies and the surrounding air, into an electrical potential. This technology can be of great benefit in our everyday lives and in society. Connected to a sensor, the textiles can power these devices without the need for batteries. These sensors can be used to monitor our movements or measure our heartbeat.

Imagine a sweater that powers electronics to monitor your health or charge your mobile phone while running. This development faces challenges because of the lack of materials that both conduct electricity stably and are well suited for textiles. Now a research group, led by Chalmers University of Technology in Sweden, presents an ordinary silk thread, coated with a conductive plastic material, that shows promising properties for turning textiles into electricity generators.

Thermoelectric textiles convert temperature differences, for example between our bodies and the surrounding air, into an electrical potential. This technology can be of great benefit in our everyday lives and in society. Connected to a sensor, the textiles can power these devices without the need for batteries. These sensors can be used to monitor our movements or measure our heartbeat.

Since the textiles must be worn close to the body, the materials used in them must meet high demands on safety and flexibility. The silk thread that the researchers tested has a coating made of a conducting polymer. It is a plastic material with a chemical structure that makes the material electrically conductive and well adapted to textiles.

“The polymers that we use are bendable, lightweight and are easy to use in both liquid and solid form. They are also non-toxic," says Mariavittoria Craighero, who is a doctoral student at the Department of Chemistry and Chemical Engineering at Chalmers University of Technology, and first author of a recently published study.

Enhanced stability and conductivity
The method used to make the electrically conductive thread is the same as used in previous studies within the same research project.  Previously, the thread contained metals to maintain its stability in contact with air. Since then, advances have been made to manufacture the thread with only organic (carbon-based) polymers. In the current study, the researchers have developed a new type of thread with enhanced electrical conductivity and stability.

“We found the missing piece of the puzzle to make an optimal thread – a type of polymer that had recently been discovered. It has outstanding performance stability in contact with air, while at the same time having a very good ability to conduct electricity. By using polymers, we don't need any rare earth metals, which are common in electronics," says Mariavittoria Craighero.

To show how the new thread can be used in practice, the researchers manufactured two thermoelectric generators – a button sewn with the thread, and a piece of textile with sewn-in threads. When they placed the thermoelectric textiles between a hot and a cold surface, they could observe how the voltage increased on the measuring instrument. The effect depended on the temperature difference and the amount of conductive material in the textile.  As an example, the larger piece of fabric showed about 6 millivolts at a temperature difference of 30 degrees Celsius. In combination with a voltage converter, it could theoretically be used to charge portable electronics via a USB connector.  The researchers have also been able to show that the thread’s performance is maintained for at least a year. It is also machine washable.

"After seven washes, the thread retained two-thirds of its conducting properties. This is a very good result, although it needs to be improved significantly before it becomes commercially interesting," says Mariavittoria Craighero.

Can meet functions that these textiles require
The thermoelectric fabric and button cannot be produced efficiently outside the lab environment today. The material must be made and sewn in by hand, which is time-consuming. Just sewing it into the demonstrated fabric required four days of needlework. But the researchers see that the new thread has great potential and that it would be possible to develop an automated process and scale up.
 
“We have now shown that it is possible to produce conductive organic materials that can meet the functions and properties that these textiles require. This is an important step forward. There are fantastic opportunities in thermoelectric textiles and this research can be of great benefit to society," says Christian Müller, Professor at the Department of Chemistry and Chemical Engineering at Chalmers University of Technology and research leader of the study.
 
More about the study
The scientific Article Poly(benzodifurandione) Coated Silk Yarn for Thermoelectric Textiles is published in Advanced Science. Authors are Mariavittoria Craighero, Qifan Li, Zijin Zeng, Chunghyeon Choi, Youngseok Kim, Hyungsub Yoon, Tiefeng Liu, Przemysław Sowiński, Shuichi Haraguchi,  Byungil Hwang, Besira Mihiretia, Simone Fabiano and Christian Müller. The researchers are active at Chalmers University of Technology, Linköping University and Chung-Ang University in Seoul, South Korea. The research has been funded by the EU's Horizon 2020 research and innovation programme, through the Marie Skłodowska-Curie project HORATES, the Knut and Alice Wallenberg Foundation, the European Research Council (ERC), the Swedish Research Council and Linköping University.

Source:

Chalmers University of Technology

TARPAUFIFE / Aimplas
29.10.2024

TARPAULIFE: Polyolefin-coated fabrics as an alternative to PVC

Making bags for transporting fresh water by sea: Tarpaulins are large sheets of strong, flexible, water-resistant material used for protection from extreme conditions. The most common material used to make them is PVC-coated polyester, which is characterized by its low price and good resistance. However, recycling these products represents a major challenge because there are no large-scale commercial solutions for tarpaulin recycling. Companies have been trying for decades to replace PVC-coated fabrics with a polymer that is more recyclable. Although some alternatives are available, they are generally too costly to compete with PVC-coated fabrics and do not fully address stringent safety and recyclability requirements.
 

Making bags for transporting fresh water by sea: Tarpaulins are large sheets of strong, flexible, water-resistant material used for protection from extreme conditions. The most common material used to make them is PVC-coated polyester, which is characterized by its low price and good resistance. However, recycling these products represents a major challenge because there are no large-scale commercial solutions for tarpaulin recycling. Companies have been trying for decades to replace PVC-coated fabrics with a polymer that is more recyclable. Although some alternatives are available, they are generally too costly to compete with PVC-coated fabrics and do not fully address stringent safety and recyclability requirements.
 
The European TARPAULIFE Project aims to demonstrate the possibility of manufacturing large-area polyolefin coated fabrics such as polyethylene and polypropylene that can compete in terms of cost with PVC-coated fabrics while maintaining their properties of strength, flexibility, impermeability and lower environmental impact. This new material will be used to manufacture bags for transporting fresh water by sea, although this innovative, more sustainable and recyclable fabric can also be applied to other products, such as tarpaulins commonly used in lorries and coverings.

Rina Consulting is coordinating this project co-financed by the European LIFE Programme with the participation of the companies Ziplast, Nowa and Giovanardi, and AIMPLAS.

The main result of the project will be a production facility of three-metre-wide polyolefin-coated fabrics with a production capacity of 250,000 m2/year one year after termination of the project, which started in May 2024 and will last for two years. The main application selected is water bags, which represent an innovative way of transporting large amounts of fresh water by sea, as opposed to the usual forms of transport in tankers.

Solving water supply problems in a sustainable way
This technology was developed mainly to transport water from high-production areas that are relatively close to areas with supply problems due to episodes of drought, seasonal increases in demand due to tourism and even to respond to emergency situations. This initiative has already resulted in the REFRESH and XXL-REFRESH Projects financed by the European Commission, in which AIMPLAS, RINA and Ziplast participated, and which successfully tested a floating water bag with a modular design and a zip connection. The aim of the TARPAULIFE Project is to go one step further with the coating material of these polyester bags and replace PVC with polyolefins so they are more sustainable and easier to recycle.
 
As demonstrators of the project, two 2,500 m³ water bags will therefore be made with the new material for testing in two locations in Europe. Demonstration of the water bag will provide a backup freshwater reservoir in the North Sea off the coast of Iceland and in the Mediterranean.

Thanks to this new production plant for polyolefin-coated fabrics, which will be located at the Ziplast facility in Milan, it is anticipated that more than 100 water bags will be produced three years after project end and more than two million cubic metres of water will be stored at three fresh water storage sites. The proposed solution will help avoid incineration of more than 2,000 tonnes of PVC and prevent more than 13 tonnes of CO2 from being released into the environment.
 
General goals

  • PRODUCTION
    the set-up of a production facility of a monomaterial POLYOLEFIN-based coated structural fabrics, width 3 metres, with a production capacity of 250.000 square meters per year already 1 year after the project end.
  • PROTOTYPING
    the prototyping of two 2.5 million litres waterbags made with the new POLYOLEFIN-based coated fabrics and the quantification of the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics.
  • DEMONSTRATION
    the demonstration of the waterbag to be used as backup freshwater reservoir in two locations in Europe, offshore Iceland and in the Mediterranean.
  • EXPLOITATION and REPLICATION
    Exploitation and replication of project results in other sectors, namely for the production of eco-friendly truck tarps and glacier ice covers, and demonstration of sustainability with the quantification of the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics for all the intended applications.
  • DISSEMINATION & COMMUNICATION
    An effective dissemination and communication of the project results, targeting stakeholders worldwide.    

Specific goals

  • Processing plant with a new coating machine capable of coating up to a fabric width of 3,000 mm.
  • Procurement of equipment: a weaving machine for production of high-strength textiles with a width of 3,000 mm from polyolefin fibres.
  • Integration of components and testing: checking and monitoring that the different system components are fully integrated and meet expectations in terms of performance is fundamental.
  • Production runs, fixing errors and validation.
  • Prototype design.
  • Procurement of raw materials and ancillary components.
  • Production of zip and tarpaulin patterns.
  • Waterbag demo under dry conditions.
  • Waterbag demo at sea (Northern Europe).
  • Waterbag demo in the Mediterranean.
  • Economic and environmental sustainability.
  • Management of project innovation by using a careful exploitation and IPR management strategy, and ensuring the economic viability of all key project results.
  • Studying replication of the developed solutions for different markets and applications. Initial exploitation of the TARPAULIFE results will be in Europe.
  • Preparation of communication material.
  • Dissemination across different channels.
  • Compliance with EU indications in terms of alternative products to PVC and additive-free products.

The project also includes replication of the results in other sectors, namely, the production of eco-friendly truck tarps and glacier tarpaulins, and a demonstration of the sustainability of the new polyolefin fabric coating solution by quantifying the environmental and LCA-LCC benefits compared to the use of PVC-coated fabrics for all intended applications.

The TARPAULIFE Project is co-financed by the European Union through the LIFE Programme with file number 101147948 – LIFE23-ENV-IT-TARPAULIFE.   

Source:

TARPAUFIFE / Aimplas

Image AI generated, Pixabay
22.10.2024

NABU Study: Textile recycling has huge potential

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 
A variety of approaches are needed to reduce the significant environmental impacts of textile production. The priorities are to extend the useful life of textiles and to change the way we consume them. However, the recycling of used textiles that can no longer be reused must also be expanded in terms of both quantity and quality. The Oeko-Institut has therefore been commissioned by NABU to analyse the obstacles to and potential for textile recycling in Germany and In addition to clothing, textiles include home textiles such as bed linen and curtains, as well as technical textiles used, for example, in car manufacturing or in medicine.

High-quality textile recycling alone is not financially viable; rather, a legal framework is needed to promote it in the future. ‘We don't need more cleaning rags,’ says Anna Hanisch, NABU expert on circular economy, ‘Our study shows that there is great potential for higher-quality recycling so that old textiles can be turned into new textiles again. To achieve this, fibre-to-fibre recycling must be expanded. The prerequisite for this is automatic sorting by fibre composition. This is because non-reusable used textiles must be sorted before recycling. This is currently done by hand. A technical solution is what makes recycling economically viable in the first place.’
 
The mechanical recycling that has been used most of the time so far shortens the fibres, so that only a few recycled fibres are suitable for use in new textiles. For this reason, depolymerisation processes are being developed. These require more energy and chemicals, but enable higher-quality recycled fibres for new textiles. According to NABU, extended producer responsibility is necessary to finance and establish these processes. This would have to supplement the EU's mandatory separate collection of used textiles, which will come into force in 2025.

In order to reduce the environmental impact associated with textile production, various approaches are needed: the priority should be to use textiles for longer. However, recycling used textiles that can no longer be used is also part of the solution and must be expanded in terms of both quantity and quality.

Technologically, all approaches have their merits for certain mass flows in order to increase the recycling and use of recycled materials from used textiles in new products. The technologies complement each other. After sorting for reuse, recycling processes should be prioritised as follows:

  1. First mechanical recycling, as it requires the least energy.
  2. Then comes solvent-based processing and depolymerisation, which require a similar amount of effort.
  3. Finally, there is feedstock recycling, which consumes the most resources.

Hanisch: ‘A circular economy starts with the design. For example, in order for textiles to be recycled, they should contain as few different materials as possible. To achieve this, we need ambitious ecodesign requirements for textiles. The focus here must be on durability and recyclability. Above all, however, incentives are needed to reuse recycled raw materials from old textiles. So far, this has hardly happened voluntarily.’   

Water hyacinth Photo: Pixabay, Hồng Vũ
15.10.2024

DITF: Water hyacinth plant pots

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Together with Fiber Engineering GmbH, the DITF presents a process for the production of biodegradable plant pots. The products are cost effective and competitive. At the same time, the production process combats the spread of the invasive water hyacinth, whose biomass serves as the raw material for the plant pots.

Combating an invasive species and reaping economic benefits at the same time? What sounds like a contradiction in terms has been successfully achieved by DITF scientists in a joint project with several companies.

Water hyacinth is a rapidly spreading plant that has been recognized as a threat to existing ecosystems in many countries around the world. In particular, Lake Victoria in Africa is suffering from the widespread spread of water hyacinth. Fish deaths due to oxygen depletion, the production of climate-damaging methane gas during decomposition, and the obstruction of shipping and energy production are among the most prominent problems. They offer a grim preview of what is on the horizon in many other countries. As an invasive species, water hyacinth is spreading into many ecosystems around the world as a result of human activities, threatening the quality of human life.

Several approaches have been taken to control the spread of water hyacinth. The main focus is on removing the carpet of plants from the water and then recycling the resulting biomass. This is also the starting point for the research project co-led by the DITF, which aims to produce a new, cost-effective composite material from the fibrous plant material. The result is a prototype plant pot that is competitive and meets all the technical requirements of the project objectives.

At the beginning of the project, the project partners defined the material requirements for the plant pot. These include good dimensional stability, which must also be ensured when the pot is filled with wet soil. The use of physiologically harmless materials for contact with food plants is also an important requirement, as is a cost-effective and therefore competitive production method. However, the main focus is on complete biodegradability and thus the unrestricted compostability of the plant pot.

The biomaterial for the production of the plant pots comes from Louisiana and is directly marketed by In-Between International under the product name CYNTHIA®. This raw material has been extensively tested and modified at the DITF with regard to its composition and suitability for technical processing. It consists mainly of cellulose and must first be screened and treated with a hydrophobic agent for further processing. Hydrophobing is necessary to give the plant pots a certain resistance to moisture.

The prepared raw material now needs to be combined with a binder. The binder binds the plant fibers and ensures the dimensional stability of the plant pot. Laboratory tests with various binders have identified those that guarantee good processability and dimensional stability of the fiber composite. A thermoplastic was selected that was easy to process in a hot press and that fully met the requirements for biodegradability.

Further laboratory tests determined the ideal ratio of binder to fiber raw material. Tests in an industrial composting plant showed that the material was fully biodegradable and that the plant pots would decompose within a reasonable period of time - a stability of 4-6 weeks was the project goal.

The researchers produced test samples for all these preliminary tests in the form of fiber composite panels on a hot press. The next step was to produce the first prototypes of plant pots from the pre-treated fiber material with the appropriate binder. This part was carried out by the project partner, Fiber Engineering GmbH from Karlsruhe. This company has extensive expertise in the field of fiber injection molding (FIM), which makes it possible to produce 3-dimensional molded parts from fibers in simple and fast process steps. Fiber Engineering GmbH has optimized its existing process for processing the water hyacinth fiber material. It produced a series of plant pots and thus realized the last step of the project objective.

A cost calculation, taking into account all the materials and processes used, confirmed that the plant pots could be produced extremely cheaply at a production price of less than five cents per pot, making them marketable. In daily use, garden centers will appreciate the haptic advantages - strength and moisture resistance despite the fact that the material is completely biodegradable. The fact that the material used is helping to solve a global environmental problem should be another plus when it comes to marketing the product.

Recycling can avoid large quantities of greenhouse gas emissions. Image: © Fraunhofer UMSICHT
08.10.2024

Closing new loops with recycling

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 
The recycling of raw materials is an effective lever for climate protection and ensures that Germany and Europe remain future-proof as places to live and do business. The study ‘resources SAVED by recycling’ proves that: Interzero was able to avoid a total of 1.2 million tonnes of greenhouse gas emissions in 2023 by recycling around 2.5 million tonnes of recyclable materials. At the same time, Interzero and its customers saved over 11.1 million tonnes of primary resources. Fraunhofer UMSICHT has been monitoring the environmental impact of recycling for Interzero for more than 15 years. The research institute's annual life cycle assessment proves the sustainable impact of recycling. ‘On the one hand, our studies provide a strategic basis for decision-making for sustainable action, and on the other hand, we also offer expertise in the process of transformation to a circular economy,’ explains Dr. Markus Hiebel, Head of Sustainability and Participation at Fraunhofer UMSICHT.
 
Textile recycling not yet well established
A complete transformation to a circular economy must include all material groups. Unlike packaging recycling, for example, textile recycling is still in its infancy: around 92 million tonnes of textiles are thrown away every year worldwide. So far, however, only one per cent of the material stream goes into fibre-to-fibre recycling and thus back into the production cycle.

Time is of the essence, because new EU regulations such as the separate collection requirement from 2025 or the planned extended producer responsibility (EPR) for textiles, as well as the German government's National Circular Economy Strategy (NKWS), are increasing the pressure to act.

‘When it comes to textiles as valuable materials, it is clear what enormous ecological potential lies in recycling – and why it is imperative to promote the circular transformation of the economy at all levels’, says Dr Axel Schweitzer, Chairman and Shareholder of Interzero. ‘This applies in particular to recyclable materials that are not yet consistently recycled. We want to work with the industry to close the textile loop and use our experience as an established system service provider to develop a holistic concept for take-back, sorting and recycling,’ emphasises Dr. Axel Schweitzer.

Plastics are an important component of textiles. Due to their property profile, plastics in particular are very important for the German economy and are being examined comprehensively in the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE, which is coordinated by Fraunhofer UMSICHT. Whether bioplastics, additives used for this purpose, compounding, or mechanical and chemical recycling, the Fraunhofer CCPE combines the expertise of six Fraunhofer institutes and industrial partners for the transition from a linear to a circular plastics economy. The entire life cycle of plastic products is considered.

Source:

Fraunhofer UMSICHT / Interzero

The Materials Market Report 2024 (c) Textile Exchange
30.09.2024

Materials Market Report 2024: Fossil-based synthetics dominate

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

It helps inform the textile industry’s efforts to reduce emissions associated with raw material production in line with a 1.5-degree temperature rise pathway. The report highlights the urgency to accelerate the transition to fibres from preferred sources, intensify efforts to significantly reduce reliance on virgin fossil-based materials, and invest in strategies that separate value creation from the need for extracting new materials.

It’s important to note that the compilation of global market data for fibres and raw materials is challenging and the quality of available data is often limited. The collection of primary data from suppliers is beyond the scope of this report so Textile Exchange relies on secondary data from industry associations, international organizations, governmental organizations, standard setters, and research institutes.

While Textile Exchange has collected, analysed, and compiled this information in all good conscience and has cross-checked it wherever possible, the report is intended for general guidance and information purposes only. Data gaps and inconsistencies are common in global market data, so modelling has often had to be applied.

Global fibre production reached an all-time high of 124 million tonnes in 2023, according to the latest Materials Market Report– which looks at total volumes used for apparel, home textiles, footwear, or any other application.

The data shows that the market share of virgin fossil-based synthetics continued to increase in 2023, with a decline in that of cotton and recycled fibres. Other key takeaways from the report’s data include:

  • Record fibre production: Despite industry efforts, global fibre production has more than doubled since 2000. The last year’s 124 million tonnes represents a 7% increase from 116 million tonnes in 2022, and is expected to rise to 160 million tonnes in 2030 if current trends continue.
  • Synthetics continue to dominate: The production of virgin fossil-based synthetic fibres increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Polyester remained the most produced fibre globally, accounting for 57% of total fibre production.
  • Recycled synthetics face challenges: Although recycled polyester fibre production slightly increased in 2023, the overall market share of recycled polyester decreased from 13.6% to 12.5%. For polyamide (nylon), the second most used synthetic fibre, recycled fibres constituted only 2% of the total market share. These trends are attributed to the lower prices and continued production of virgin synthetics, as well as current limitations in recycling technologies. Less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.

    The combined share of all recycled fibres slightly decreased in 2023, from around 7.9% to 7.7%, mainly due to an increase in the production of fossil-based polyester, which had lower prices than recycled polyester. Fossil based synthetics production increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Meanwhile, less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.
  • Cotton production saw a slight decline: Total global cotton volumes fell slightly from 25.1 million tonnes in 2022 to 24.4 million tonnes in 2023. However, the share of cotton produced under sustainability programs remained stable, accounting for 29% of all cotton produced.
  • Certified wool climbs: Data showed positive trends for wool produced under standards such as the Responsible Wool Standard (RWS), ZQ, SustainaWOOL (GREEN and GOLD), Sustainable Cape Wool Standard (SCWS) and Climate Beneficial programs. This increased from 4.2% in 2022 to 4.8% in 2023. Recycled wool continued to account for around 6% of the global wool market.
  • Certified mohair and cashmere reached almost half of market share: Certified fibres such as mohair and cashmere saw notable growth, both with market shares of 47%.
  • Manmade cellulosic fibres production increased: Overall MMCF production increased from 7.4 million tonnes in 2022 to 7.9 million tonnes in 2023, representing 6% of the global fibre market.

The report highlights a continued reliance on new virgin fossil-based synthetic materials, threatening to undermine the industry’s commitments to its climate goals. It also shows the current limitations of textile-to-textile recycling and an urgent need for innovative solutions, with most recycled polyester still coming from PET bottles.

Amid these concerns, one positive trend that stands out is the increased industry demand for responsible animal fibres through programs like the Responsible Mohair Standard (RMS) and Responsible Alpaca Standard (RAS), both contributing to better animal welfare and environmental management. This indicates the potential of farm-level standards of this kind to increase market recognition of more sustainable practices on the ground.

“We hope this data serves as a clear call to action for the industry, highlighting both the successes and the critical areas where we must intensify our focus to meet climate targets,” said Claire Bergkamp, CEO of Textile Exchange.

“Unlocking textile-to-textile recycling pathways will be essential to reducing reliance on virgin synthetics. Equally important is continuing to support those on the ground who are driving the transition from conventional systems to preferred materials. It is more urgent than ever to support those who have already invested in preferred systems, while also enabling the transition away from conventional at scale.”

Download of the Materials Market Report 2024.

More information:
fibre production Market report
Source:

Textile Exchange

Project Remake Photo Anna Kjellsson
23.09.2024

Textile skills for unemployed individuals to enter a new industry

From 2025, municipalities will be required to collect and manage large volumes of textiles, following the EU's new waste directive. The project "Remake Textile" is preparing for this by providing skill development to long-term unemployed individuals. At the Swedish School of Textiles, participants learn about textiles and ways to breathe new life into old fabrics.

From 2025, municipalities will be required to collect and manage large volumes of textiles, following the EU's new waste directive. The project "Remake Textile" is preparing for this by providing skill development to long-term unemployed individuals. At the Swedish School of Textiles, participants learn about textiles and ways to breathe new life into old fabrics.

Three groups, each consisting of participants who have been out of the job market for an extended period, will take part in the project over nine months. The project began with a focus on health and working life before shifting its focus to textiles. The first group has just completed their time at the Swedish School of Textiles and is now moving on to internships in the second-hand industry.
“They have lea
rned how a fibre becomes yarn and then fabric. We have worked with printing and dyeing and how to create a product from the material. We have also worked on repairs – mending and fixing garments and textiles,” explains Tuser Biswas, postdoctoral researcher in textile technology who leads the Swedish School of Textiles' part of the project.

In addition to the Swedish School of Textiles at the University of Borås, other project partners include the Gothenburg Region, the organisations Doing Good and Coompanion, and it is financed by the European Social Fund.

“In this project, there was a demand for knowledge in an area that doesn't yet exist on the market – something that will be important in the future. With the waste directive, solutions are needed to handle textile waste, and the hope is that participants in this project will have valuable skills and be able to start working in this industry at short notice,” Tuser Biswas explains.

Education as Part of the Solution
“In this project, we are trying to address the upcoming waste challenge with education. However, this education is not as intensive as our regular courses and programmes. We have tried to be flexible and adapt to the participants’ prior knowledge and to what we can offer in two weeks,” says Tuser Biswas.

Positive Participants
Nino, one of the participants, previously had experience in creating and redesigning garments.
“I have done a lot on my own before too. I have always been punk in that way – if there are no resources, I still go ahead. These weeks at the Swedish School of Textiles have been fun; it has been very positive to try everything out and luxurious to come here, meet all the great teachers, and be in the facilities.”

Looking forward to the internship at a second-hand shop, Nino feels prepared:
“We will get to choose from textile waste that cannot be sold. Instead, we will create something new out of it!”

About the project Remake Textile
The objective of the project is to develop innovative solutions for managing the increasing amount of textile waste that municipalities will be responsible for from 2025 onwards. At the same time, it focuses on research training and skills development about textile recycling for unemployed people with good academic backgrounds.

Start date: 2024-03-01
End date: 2026-02-28

Through collaboration with various partners, the project aims to increase the workforce for textile sorting facilities in municipalities and recycling industries, while supporting cooperative and non-profit organizations in circular textile activities.

The outcome of the project is expected to promote a sustainable circular business model through textile sorting and recycling activities, which can serve as a model for the whole industry. The aim is to create a solution that both promotes sustainability in the textile industry and increases opportunities for those previously unemployed and economically vulnerable. At the same time, the municipalities will be well-informed and given the opportunity to use our developed training modules and personnel during or after the project period.

Source:

University of Borås, Anna Kjellsson

This image from the CoCuRA software shows how it identifes conventional cotton, organic cotton and other agricultural fields. Source GOTS
17.09.2024

Detecting organically grown cotton with AI support via satellite

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

Global Standard is a trailblazer, solution provider and thought leader in the voluntary sustainability standards space, and the Satellite Cotton Monitoring Project continues this tradition of innovation and creative thinking.

How it Works
Co-financed by Global Standard, the non-profit behind GOTS, and the European Space Agency’s (ESA) Business Applications and Space Solutions (BASS) programme, the project leverages the Cotton Cultivation Remote Assessment (CoCuRA) software developed by Marple.

Field teams visited over 6,000 fields in India, across the states of Gujarat, Haryana, Madhya Pradesh and Maharashtra, collecting data on crops, soil types and cultivation status. This data was then used by Marple to refine the CoCuRA algorithm for cotton specifics in India. Once the algorithm was trained, it was applied to the entire agricultural area of India, covering a staggering 2.7 million square kilometres. Within seconds, CoCuRA detected all organic and conventional cotton fields with remarkable accuracy. A project of this magnitude is only possible with CoCuRA with no other comparable project or data in existence.

Enhancing Organic Cotton Availability
The technology's ability to pinpoint cotton fields where farmers use near-organic or uncertified organic methods can ensure a steady increase in certified organic cotton by facilitating their certification process.

Jeffrey Thimm, organic production specialist at Global Standard, said, "This technology identifies farmers who use sustainable methods that meet organic standards but lack certification. By integrating these farms into conversion projects, it boosts organic cotton supply, promotes sustainable farming practices and enables farmers to access premiums on their supplies."

Securing Organic Fibre Integrity
Building on GOTS's robust integrity measures, the CoCuRA software integrates AI technology with satellite data to verify cultivation practices meticulously. The data collected also contributes to Global Standards’ Global Fibre Registry, consolidating comprehensive data on raw material production before entering the GOTS value chain, further adding to fraud detection and prevention.

Sustainability in Textiles
Global Standard is recognised for its comprehensive approach to sustainability. From promoting human rights along the value chain to banning harmful chemicals in certified textiles, GOTS sets a benchmark for integrity and sustainability. In addition, GOTS certification is a powerful tool that helps companies comply with legal requirements globally.

"For over 20 years, we have been pioneering solutions to help the industry on its journey towards sustainability,” said Claudia Kersten, managing director of Global Standard. “This project is a game changer, combining satellite technology with AI to meet the growing demand for genuine organic cotton. In addition, this eye in the sky will prevent fraud by allowing us to crosscheck locations and field sizes in a very cost-efficient way. It's a win-win-win situation: farmers have an incentive to grow organic and improve their lives, the industry can secure its supply and meet its sustainability goals, and consumers have a greater choice of organic textiles."

Future Prospects and Global Impact
Following the successful pilot in India, the project aims to expand globally.

Daniel Lanz, managing partner at Marple, said, "India faces unique challenges in the satellite-based detection of agricultural fields. Firstly, the country is extremely large and spans several climate zones. Secondly, field sizes are very small, and thirdly, field boundaries are often indistinguishable, with one field merging into the next. Despite these challenges, CoCuRA has achieved astonishing accuracy in detecting cotton fields and assessing their cultivation methods. This breakthrough provides a pioneering overview of cotton production in India that would be impossible to achieve on the ground. CoCuRA will help protect the integrity of organic farmers and may facilitate more smallholders transitioning to organic farming by simplifying the certification process."

Guillaume Tuan Prigent, a business developer and partnership officer in ESA’s Applications Projects and Studies Division said, “The potential impact of the solution lies in its ability to be scaled and this is exactly what we are working on. We are looking to deliver a solution that could have a global impact for the benefit of all. “

Global Standard is eager to see this technology extend to other regions and additional fibres, which could revolutionise how crops are monitored.

wind energy Photo: Carlos / Saigon - Vietnam, Pixabay
13.09.2024

Negative mood in the composites market

  • Critical assessment of the current business situation
  • Future expectations deteriorate
  • Investment climate remains subdued
  • Expectations for application industries vary
  • Growth drivers with little movement
  • Composites index points downwards

For the 23rd time, Composites Germany (www.composites-germany.de) has collected current key figures on the market for fiber-reinforced plastics. All member companies of the supporting associations of Composites Germany: AVK and Composites United as well as the associated partner VDMA were surveyed.

In order to ensure that the different surveys can be compared without any problems, no fundamental changes were made to the survey this half-year. Once again, mainly qualitative data was collected in relation to current and future market developments.

  • Critical assessment of the current business situation
  • Future expectations deteriorate
  • Investment climate remains subdued
  • Expectations for application industries vary
  • Growth drivers with little movement
  • Composites index points downwards

For the 23rd time, Composites Germany (www.composites-germany.de) has collected current key figures on the market for fiber-reinforced plastics. All member companies of the supporting associations of Composites Germany: AVK and Composites United as well as the associated partner VDMA were surveyed.

In order to ensure that the different surveys can be compared without any problems, no fundamental changes were made to the survey this half-year. Once again, mainly qualitative data was collected in relation to current and future market developments.

Critical assessment of the current business situation
After the assessment of the current business situation was positive at a relatively stable level before the coronavirus crisis, the perception of the survey participants has now deteriorated significantly.       
 
With the exception of a few positive trends, the corresponding indicator has been pointing significantly downwards since 2022. There is still no sign of a trend reversal in the current survey. (see Fig. 1). The assessment of the general business situation is declining in all regions mentioned.

The reasons for the negative sentiment are manifold and were already evident in the previous surveys. High energy, raw material and logistics costs remain a major burden, especially for German industry, but also for many other countries in Europe. This is compounded by a weakening global economy and weak sales for many products in Asia. Massive competition to European products is growing there, particularly in terms of raw materials, which is also partly due to overcapacity, which in turn is putting enormous pressure on prices for suppliers here. Political uncertainties, protectionist tendencies and armed conflicts, such as in Ukraine and recently increasingly in the Middle East, are further worsening the economic climate.

At present, politicians do not seem to be succeeding in creating an environment conducive to business. The composites market has already seen sharp declines in the last two years. The industry continues to send pessimistic signals for the current year. The industry was and is an important economic sector for Germany in particular. It is threatened with further decline if the appropriate regulatory framework is not created to enable competitive production. Germany is currently facing structural changes that are necessary, particularly in terms of economic policy and ecology. These necessary adjustments will take many years and require high levels of investment. It is urgently advisable to finally find a balance between the necessary burden on industry/companies on the one hand and corresponding relief on the other. If the decline of German and European industry continues, at some point it will become questionable who should finance the restructuring. Only a healthy economy, which includes a manufacturing industry, will be able to invest and finance the necessary measures.

This will not be possible for the state itself. Even an expansion of employment in the public sector, as has been pushed in recent months to compensate for job losses in industry, only superficially solves this problem. Healthy state financing is based on a healthy economy. Something urgently needs to be done about this - at the moment, we are digging at our own foundations.
It is not only the assessment of the general business situation that remains pessimistic. The situation of their own companies also continues to be viewed critically. The picture is particularly negative for Germany. Almost 70% of respondents are critical of the current business situation in Germany. The view of global business and Europe is somewhat more positive.
Here, “only” 46% and 54% of respondents respectively assess the situation rather negatively.

Future expectations are becoming gloomier
While the last survey showed rather positive assessments of future expectations, this picture is currently becoming much gloomier. When asked about their assessment of future business development in general, the figures are consistently negative. At present, the respondents do not seem to believe that the situation will improve.  

Respondents were also rather pessimistic about their own company's future expectations, although their expectations regarding their own market position worldwide were positive (see Fig. 3).
It is striking that the view of the German region in relation to Europe and the global economy has been more critical since 2022. 25% of respondents expect the general market situation in Germany to develop negatively.

Only 18% expect the current situation to improve. The figures for Europe and the rest of the world are significantly better.
Only 3% expect the global situation to deteriorate further. 19% expect the situation to improve.

Investment climate remains subdued
The current cautious assessment of the economic situation continues to have an impact on the investment climate.

While 22% of participants in the last survey still expected an increase in personnel capacity (survey 1/2023 = 40%), this figure currently stands at just 13%. In contrast, 33% even expect a decrease in the area of personnel.

The proportion of respondents planning to invest in machinery is also declining. While 56% were still assuming corresponding investments in the last survey, this figure has now fallen to 44%.

Different expectations of application industries
The composites market is characterized by a high degree of heterogeneity in terms of both materials and applications. In the survey, participants were asked to give their assessment of the market development of different core areas.

The expectations are extremely varied. The two most important application areas are the mobility and construction/infrastructure sectors. Both are currently undergoing major upheavals or are affected by declines, which is also clearly reflected in the survey. Growth is expected above all in the wind energy and aviation sectors.

There are generally few shifts here compared to the last survey.

Growth drivers with little movement
In terms of materials, the trend in the assessment of growth drivers is continuing. Whereas for a long time GRP was named as the material from which the main growth impetus for the composites sector is to be expected, the main impetus is now once again expected to come from CFRP or across all materials. The trend from the last survey is continuing here.

There is a slight regional shift. The main impetus for growth is expected to come from Asia and North America. However, the EU (except Germany) is also mentioned. Germany is seen less strongly as a growth driver and continues to lose ground.

Composites Index points downwards
The numerous negative influences of recent times continue to be reflected in the overall Composites Index. This is falling in all areas.
 
In the last two years, the European composites market has lost around 15% of its production volume. Even if not all areas are affected by declines to the same extent, this should be an alarm signal. Until the coronavirus pandemic, there was a continuous increase in production volume for many years. Since the end of the coronavirus crisis and with the increase in macroeconomic uncertainties, Europe and Germany in particular appear to be becoming less attractive as a business location. With production volumes increasing worldwide, Europe's market share is now steadily declining. There are many reasons for this and there are no simple solutions. However, if the industrial location is to remain secure, something has to change quickly. Once companies have moved away, it is difficult to bring them back.

It remains to be seen whether it will be possible to counteract this negative trend. Targeted intervention, including by political decision-makers, would be desirable here. However, this cannot succeed without industry/business. Only together will it be possible to maintain and strengthen Germany as a business/industry location. For composites as a material group in general, there are still very good opportunities to expand the market position in both new and existing markets due to the special portfolio of properties. However, the dependency on overall economic developments remains.

It is now important to develop new market areas through innovation, to consistently exploit opportunities and to work together to further implement composites in existing markets. This can often be achieved better together than alone. With its excellent network, Composi-tes Germany offers a wide range of opportunities.  

The next composites market survey will be published in February 2025.

Source:

Composites Germany

TheDigitalArtist, Pixabay
09.09.2024

“Used textiles recycling at risk of collapse”

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The price of original goods traded on the market has now reached an all-time low, causing existential hardship for many market participants.

The sale of original and sorted goods has become almost impossible. The loss of established market players has destroyed supply chains that have been tried and tested for years, and stocks of original and sorted goods have reached unprecedented record levels. Some market participants are forced to replace the usual sales business with bartering.

According to industry information, downstream players in the recycling chain, such as shredding and spinning mills, are also under pressure and have made massive staff cuts. The production of cleaning cloths has also reached an all-time low. Due to the relocation of production abroad and reduced domestic production, demand for cleaning cloths has fallen and prices have slipped to a very low level.

Consumer behavior and international markets exacerbate the crisis
Due to the generally high cost burden on the population, the consumption of textiles has collapsed. The negative trend of consuming low-quality fast fashion is now being reinforced by ultra-fast fashion of even poorer quality. This has disastrous effects on value creation within the recycling chain for used textiles.

“During the sorting process, increasingly large quantities of relatively new textiles are being found that are already so defective that they are no longer suitable for further use and therefore have to be fed into the recycling process,” explains Voigt. However, there is no money to be made here either, as the same cost structures apply to this part of the original goods as to wearable goods and the recycling process is also very cost-intensive.

Industry calls for the introduction of an EPR system
Until now, the recycling of the proportion of sorted goods has been subsidised by the proceeds from wearable goods, but this system has not worked for some time. The industry is desperately waiting for the introduction of a national EPR system for textiles in order to stabilise costs.

The EU Commission's recently published draft of the revised EU Waste Framework Directive provides for the introduction of a system of extended producer responsibility for textiles. The existing collection and recycling structures in Germany, which enable the separate collection of used textiles close to the public, are to play a central role in this.

The draft of the National Circular Economy Strategy (NKWS) of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) also emphasises the importance of the national recycling industry for used textiles. Without it, the establishment of a closed-loop system for textiles would not be feasible.

Crisis not limited to Germany
The crisis has also made ripples internationally. Countries such as the Netherlands, traditionally the largest buyer of used textiles from Germany, have already addressed the crisis in the national media. Almost 250 companies there are involved in the collection, sorting and international marketing of used textiles.

Around 60 per cent of the original goods are recycled as sustainable clothing after sorting, meaning that the industry is reliant on stable markets in which recycling proceeds can be generated. But this is precisely the problem. ‘Due to the effects of the Russian war of aggression in Ukraine, the Eastern European market can only be served in fragments,’ explains Voigt.

In addition, despite its potential, the African market is currently facing enormous challenges because there is practically no money left in the system, he adds, explaining the concerns he receives from many interviewees in the industry: ‘The enormous drop in the value of many currencies in various African countries    means that it is becoming increasingly difficult for African customers to buy urgently needed second-hand clothing for hard currency,’ Voigt continues.

For example, the currency in the extremely important African market of Ghana has lost roughly 20 per cent against the euro over the last six months of 2024. In addition, the transfer of foreign currency now takes up to two months, meaning that it now takes up to six months to return the proceeds of realisation.

In addition, the African market is increasingly dominated by Chinese influence. ‘The actually better quality of high-quality used European second-hand clothing can hardly compete with new Asian goods,’ reports Voigt. Ultra fast fashion from China is flooding the market with extremely low prices, making it increasingly difficult to market sorted, second-hand clothing.

In addition to economic problems, there are also logistical challenges. ‘Our customers are reporting increasing difficulties in obtaining the necessary visas for a business visit to Europe within an acceptable waiting period,’ explains Voigt. The waiting time for an appointment at the consulate can currently be up to two months.

Call for short-term measures
In order to prevent the system from collapsing in the short term, Voigt believes that the usual remuneration structures for local authorities and providers of parking spaces for collection containers need to be reconsidered. ‘Recycling revenues have not been realised for some time now, so they can no longer be paid out or must be adjusted to the current situation,’ says Voigt.

The industry expects the current crisis to last even longer. ‘Not everyone will survive,’ predicts Voigt. Many collection areas are already being offered on the open market and various collection capacities are being cancelled without replacement. The future of the used textile recycling industry remains uncertain and there is no end to the crisis in sight.

More information:
textile waste textile recycling
Source:

bvse-Bundesverband Sekundärrohstoffe und Entsorgung e.V.

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Oyster mushroom Image: Andre Mouton, Pixabay
02.09.2024

Fungal Mycelium as the Basis for Sustainable Products

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

To most of us, fungi look like a curved cap and a stem. However, the largest part of the organism consists of a network of cell filaments called mycelium, which mainly spreads below ground and can reach significant proportions. This finely branched network has been underutilized until now. However, for researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, mycelium represents a pioneering raw material with the potential to replace petroleum-based products with natural, organic mycelium composites. Organic residues from regional agricultural and forestry activities are used as the substrate for the fungal cultures. In various projects, the researchers are using mycelium-based materials to produce insulation, packaging, and animal-free alternatives to leather products.

Mycelium-based materials from regional agricultural residues
“Faced with climate change and dwindling fossil raw materials, there is an urgent need for biodegradable materials that can be produced with lower energy consumption,” says Dr. Hannes Hinneburg, a biotechnologist at Fraunhofer IAP. Together with his team, he is using mycelium — for instance, from edible mushrooms or bracket fungi such as the oyster mushroom or tinder fungus — to transform locally available plant residues into sustainable materials. “The mycelium has properties that can be used to produce environmentally friendly, energy-efficient materials, since the growth of the fungi takes place under ambient conditions and CO2 remains stored in the residues. When cellulose and other organic residues decompose, a compact, three-dimensional network forms, enabling a self-sustaining structure to develop,” explains Hinneburg. This produces a material that is a complex compound with an organic substrate such as cereal residues, wood chips, hemp, reeds, rape or other agricultural residues. These substances are a source of nutrients for the fungus and are permeated entirely by a fine network of mycelia during the metabolic process. This produces a fully organic composite that can be made into the required shape and stabilized through thermal treatment. “First, you mix water together with agricultural residues such as straw, wood chips and sawdust to form a mass. Once the level of humidity and particle size have been determined, and the subsequent heat treatment to kill off competing germs has been completed, the substrate is ready. It provides food for the fungi and is mixed with the mycelium. Following a growth phase of around two to three weeks in the incubator, the mixture will produce, depending on the formulation and process used, a substance similar to leather or a composite that can be processed further,” says Hinneburg, summarizing the production process. No light is required for this process — a bonus as far as energy efficiency is concerned.

Versatile applications: strength and elasticity can be specifically configured
The fungal materials can be cultivated with a wide range of properties. Depending on the application, they can be hard-wearing, stretchable, tear-resistant, impermeable, elastic, soft and fluffy, or open-pored. The result is determined by the combination of the type of fungus and agricultural residues, plus variable parameters such as temperature and humidity. The duration of mycelial growth also influences the end product. The versatility of the material means it can take on a huge variety of forms, from thick blocks to wafer-thin layers, and be used in a multitude of scenarios. This makes it possible to use fungi-based materials for textile upholstery, packaging, furniture, bags or insulation boards for interiors. When used as a construction material, the fungus primarily functions as a biological adhesive since a wide range of organic particles are joined together via the mycelium.

“The many positive properties of the material, heat-insulating, electrically insulating, moisture-regulating and fire-resistant, enable an important step toward circular and climate-positive construction,” says Hinneburg, one of whose current projects involves developing a novel polystyrene alternative for thermal insulation. In another project, he is working alongside the Institute for Food and Environmental Research and Agro Saarmund e.G. to produce environmentally friendly, mycelium-based packaging trays from residues and raw materials sourced from local agricultural and forestry activities. In work he has done with designers, he has also developed the base material for animal-free alternatives to leather products such as bags and wallets. As the mycelium-based materials look similar to their leather counterparts, they can be used to complement leather items in certain areas.

Developing industrial processes
In Europe, only a few companies are currently developing mycelium-based materials for commercial use. The challenges in this area include access to biogenic residues, the ability to ensure consistent product quality and the means to scale up activities efficiently.

To address these challenges, the researchers are using a newly developed roll-to-roll method, for which they have already created a prototype. This method offers significant advantages over standard manufacturing processes involving boxes and shelving systems: By using a standardized, continuous production method under controlled process conditions (such as temperature and humidity), the researchers can ensure that the mycelium-based products have consistent material properties. What’s more, resources can be used more efficiently, and production can be scaled to an industrial level. “This is crucial in order to meet growing industry demand for sustainable materials and to become less dependent on petroleum in the long term. Production can also be improved further by using innovative technologies such as artificial intelligence to optimize the combination of residues and types of fungi,” says Hinneburg.

Source:

Fraunhofer Institute for Applied Polymer Research IAP

Breakthrough in smart fabric for sensing and energy harvesting (c) University of Waterloo
26.08.2024

Breakthrough in smart fabric for sensing and energy harvesting

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature. Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities. The fabric has the potential for energy harvesting, health monitoring and movement tracking applications.

The new fabric can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress and more can be integrated into the material.

Imagine a coat that captures solar energy to keep you cozy on a chilly winter walk, or a shirt that can monitor your heart rate and temperature. Picture clothing athletes can wear to track their performance without the need for bulky battery packs.

University of Waterloo researchers have developed a smart fabric with these remarkable capabilities. The fabric has the potential for energy harvesting, health monitoring and movement tracking applications.

The new fabric can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress and more can be integrated into the material.

It can detect temperature changes and a range of other sensors to monitor pressure, chemical composition and more. One promising application is smart face masks that can track breath temperature and rate and detect chemicals in breath to help identify viruses, lung cancer and other conditions.

“We have developed a fabric material with multifunctional sensing capabilities and self-powering potential,” said Yuning Li, a professor in the Department of Chemical Engineering. “This innovation brings us closer to practical applications for smart fabrics.”

Unlike current wearable devices that often depend on external power sources or frequent recharging, this breakthrough research has created a novel fabric which is more stable, durable, and cost-effective than other fabrics on the market.

This research, conducted in collaboration with Professor Chaoxia Wang and PhD student Jun Peng from the College of Textile Science and Engineering at Jiangnan University, showcases the potential of integrating advanced materials such as MXene and conductive polymers with cutting-edge textile technologies to advance smart fabrics for wearable technology.

Li, director of Waterloo’s Printable Electronic Materials Lab, highlighted the significance of this advancement, which is the latest in the university’s suite of technologies disrupting health boundaries.

“AI technology is evolving rapidly, offering sophisticated signal analysis for health monitoring, food and pharmaceutical storage, environmental monitoring, and more. However, this progress relies on extensive data collection, which conventional sensors, often bulky, heavy, and costly, cannot meet,” Li said. “Printed sensors, including those embedded in smart fabrics, are ideal for continuous data collection and monitoring. This new smart fabric is a step forward in making these applications practical.”

The next phase of research will focus on further enhancing the fabric’s performance and integrating it with electronic components in collaboration with electrical and computer engineers. Future developments may include a smartphone app to track and transmit data from the fabric to healthcare professionals, enabling real-time, non-invasive health monitoring and everyday use.

The study is published in the Journal of Materials Science & Technology.

Source:

Waterloo University

Cladding parts: Hemp replacing glass fibres (c) Fraunhofer IWU
23.08.2024

Cladding parts: Hemp replacing glass fibres

Sheet moulding compounds (SMCs) are long-fibre-reinforced semi-finished products that can be used to produce complex moulded parts with a high surface quality using the extrusion process. The Fraunhofer IWU Zittau and the Zittau/Görlitz University of Applied Sciences are researching biological alternatives for glass fibres in composite materials. The aim is to develop economical manufacturing processes so that the switch to less environmentally harmful biogenic residues for fibre reinforcement can be achieved soon.

SMC components can be used in a wide range of applications. They are used as interior panelling in trains and railways, exterior panelling for trucks and agricultural machinery or to protect electrical distribution boxes and switchgear.

Sheet moulding compounds (SMCs) are long-fibre-reinforced semi-finished products that can be used to produce complex moulded parts with a high surface quality using the extrusion process. The Fraunhofer IWU Zittau and the Zittau/Görlitz University of Applied Sciences are researching biological alternatives for glass fibres in composite materials. The aim is to develop economical manufacturing processes so that the switch to less environmentally harmful biogenic residues for fibre reinforcement can be achieved soon.

SMC components can be used in a wide range of applications. They are used as interior panelling in trains and railways, exterior panelling for trucks and agricultural machinery or to protect electrical distribution boxes and switchgear.

Dr Rafael Cordeiro is a research associate at the Fraunhofer Plastics Centre Oberlausitz and in the LaNDER³ project at Zittau/Görlitz University of Applied Sciences. He is working in particular on train interior linings in which the glass fibre is replaced by natural fibres in combination with resin. The natural fibre used is hemp - more precisely, the coarser fibres that are a by-product of textile production using hemp. The proportion of natural fibres in the newly developed SMC is around 15 percent by weight; the planned use of bio-based resin as the matrix, i.e. the component in which the fibres are embedded, will increase the ‘natural’ proportion to up to 38 percent in future. Added to this are 55 percent minerals such as calcium carbonate (known as limestone or chalk) or aluminium hydroxide hydrate, which occurs naturally as bauxite. The remaining 7 per cent are predominantly petrochemical additives for which there is currently no bio-based substitute. The following are important facts about natural fibre SMCs.

Challenges for production
One challenge for production is that natural fibres in particular bind moisture and may require prior drying in countries with high humidity, otherwise blistering may occur. The formation of bubbles also depends on the impregnation.

Dr Cordeiro: ‘The natural fibre SMC has been developed in such a way that only very small additional plant investments and minimal process parameter changes are required for the production of larger quantities.’

Energy consumption during production
There are no significant differences between natural fibre and glass fibre SMCs in terms of the processes and the energy required for the production of semi-finished products and components by impact extrusion. Semi-finished products are produced at room temperature, which is why the energy requirement of the system is relatively low. The forming of components takes place in a hot pressing process in hydraulic presses, at temperatures between 110 °C and 150 °C. This temperature window is lower than that of thermoplastic components and does not require any cooling or heating cycles for the moulds, with correspondingly positive effects on energy requirements.

Impact on people and the environment
As with all plastic products, there is also the possibility of microplastic formation through abrasion. However, the natural fibre SMCs developed at the Fraunhofer IWU in Zittau are intended for the applications mentioned above, where there is no intensive abrasion. The substitution of glass fibres with hemp fibres leads to a significant reduction in skin and respiratory tract irritation among employees in the area of material and product manufacturing as well as when handling damaged parts or during disposal. In addition, the production of hemp fibres results in significantly lower CO2 emissions than glass fibres, which considerably reduces the environmental impact.

Durability
The typical service life of natural fibre SMCs is up to 30 years, depending on whether the material is used for indoor or outdoor applications. The weather resistance, for example, can be increased by specifically adjusting the matrix resin.

Biodegradability and recyclability
Similar to conventional SMCs, natural fibre SMCs cannot be recycled either. Although the latter are not biodegradable as a whole, promising attempts are being made to separate the natural fibre from the matrix and the filler so that the natural fibre portion can be composted and the filler reused. After separation, the fibres are so small that they can no longer be used in SMC applications. There is a need for further research into the technological reuse of the short fibres obtained.

Dr Rafael Cordeiro: ‘The sustainability balance of natural fibre SMCs is not yet perfect. But it is already much better than that of glass fibre-reinforced composite materials. The material costs are also right. This means that the alternatives we have developed to classic glass fibre SMCs are definitely marketable. The production of more sustainable SMC components is possible.’

Source:

The information on natural fibre SMCs is based on an interview conducted by Tina-Seline Göttinger with Dr Rafael Cordeiro as part of a bachelor thesis
Fraunhofer IWU

One in four buys mainly online - sustainability remains important Photo: Pabirtra Kaity auf Pixabay
20.08.2024

One in four buys mainly online - sustainability remains important

  • 82 per cent of shoppers are against the destroying of returns
  • 67 per cent of under-30s accept higher prices for climate-neutral shipping

The digital shopping basket remains popular in Germany: around three in ten purchases are made online, ex-actly as many as in 2020. 27 per cent of respondents buy at least half of their goods and services online. Sustainability plays an important role here: around three quarters (77 per cent) of shoppers prefer suppliers that offer moderate and sustainable packaging and buy from them online. 43 per cent make sure when shopping that they only choose products that they are unlikely to have to return. And 82 per cent support the idea that returns should not be cancelled. These are the results of the representative ‘Postbank Digital Study 2024’.

  • 82 per cent of shoppers are against the destroying of returns
  • 67 per cent of under-30s accept higher prices for climate-neutral shipping

The digital shopping basket remains popular in Germany: around three in ten purchases are made online, ex-actly as many as in 2020. 27 per cent of respondents buy at least half of their goods and services online. Sustainability plays an important role here: around three quarters (77 per cent) of shoppers prefer suppliers that offer moderate and sustainable packaging and buy from them online. 43 per cent make sure when shopping that they only choose products that they are unlikely to have to return. And 82 per cent support the idea that returns should not be cancelled. These are the results of the representative ‘Postbank Digital Study 2024’.

According to the study, younger people are significantly more open to e-commerce than their elders: Digital natives (under 40 years of age) order 40 per cent of their goods online - 13 percentage points more than digital immigrants (over 40 years of age). The reasons for online shopping also vary greatly between young and old. While the convenient access to home for online shoppers remains the main reason for online shopping in all age groups, the proportion of young people at 52 per cent is significantly lower than the average (62 per cent).

For younger online shoppers, immediate availability (38 per cent) and the option to shop on the go via app (30 per cent) are particularly important. In comparison, only 22 per cent of older users have used apps for shopping to date. Favourable prices are estimated by 56 percent of older online shoppers, while this is important for only 46 percent of younger shoppers. There is a further difference in terms of flexible opening hours: 53 per cent of those aged 40 and over value the ability to shop at any time, compared to 40 per cent of online shoppers under 40.

‘We are facing similar challenges in the digitalisa-tion of our banking services,’ says Thomas Brosch, Head of Digital Sales at Postbank. ‘The needs of the generations differ. We have to constantly optimise our services and the user-friendliness of our offerings - in online banking, on smartphones and in physical branches. In this way, we can make good offers to young and old customers alike.’

Online shopping yes, but please without regrets
18 to 39-year-olds are much more willing to dig deeper into their pockets for sustainability than those aged 40 and over. For example, younger online shoppers pay more attention to CO2 offsetting and are more willing than average to make a voluntary compensation payment: 26 per cent prefer to order from shops where a donation can be made to compensate for the CO2 produced. In contrast, only 11 per cent of older people do so. Two out of three younger Germans also accept higher product prices for sustainable shipping, while not even one in two (46 per cent) of those aged 40 and over are inclined to do so.

70 per cent of digital natives already have experience with in-app purchases
The study also reveals another trend: around four out of ten Germans have already made in-app purchases. And 70 per cent of digital natives already have experience of buying additional content or functions in mobile applications. Those aged 40 and over are much more reluctant: only 29 per cent have already made in-app purchases at least once, and 43 per cent have no plans to do so. Digital natives are not only interested in a good price-performance ratio for in-app purchases, but also in adequate protection against unwanted spending. A quarter of this age group would like this, compared to just 18 per cent of older people.

Younger shoppers are more likely to use banking services when shopping online
When it comes to paying, six out of ten digital natives have already accepted instalment payments or credit offers when shopping online. In addition to favourable conditions (36%) and a reputable payment service provider (35%), it is particularly important to young shoppers that banking services are easy to use (35%). Across all age groups, 89 per cent of Germans have already used such banking services.

Background information on the Postbank Digital Study 2024
For the ‘Postbank Digital Study 2024 - The Digital Germans’, 3,171 residents were surveyed in April of this year. For the tenth year in a row, Postbank is using the study to investigate which developments are emerging in various areas of life with regard to digitalisation in general and financial topics in particular. In order to depict a population-representative structure, the sample was weighted according to federal state (proportionalisation), age and gender. The 2021 census of the Federal Statistical Office was used as the reference file. The results are rounded to whole numbers. Deviations in the totals can be explained by rounding differences.

Source:

Postbank