Textination Newsline

from to
Reset
Photo: pixabay
19.10.2021

Micromechanical Simulation of the Resilience of Nonwovens

Nonwovens are an important component of different products of several uses, e.g. transport of humidity in sanitary products, insulation materials or filters. Nonwovens are usually produced on large engineering facilities. For this, experimental studies of design with regard to the optimization of these nonwoven-structures prove to be very difficult.

Influence Design Parameters
There are so many parameters of design, as for example fibers, surface weight or type of nonwoven bonding and finishing that are affecting the properties of nonwovens. For the change of one single parameter, e.g. the material of fiber, it is necessary to adapt the whole process of fabrication from the spinning of the fibers via their stacking to the nonwoven hardening.

Nonwovens are an important component of different products of several uses, e.g. transport of humidity in sanitary products, insulation materials or filters. Nonwovens are usually produced on large engineering facilities. For this, experimental studies of design with regard to the optimization of these nonwoven-structures prove to be very difficult.

Influence Design Parameters
There are so many parameters of design, as for example fibers, surface weight or type of nonwoven bonding and finishing that are affecting the properties of nonwovens. For the change of one single parameter, e.g. the material of fiber, it is necessary to adapt the whole process of fabrication from the spinning of the fibers via their stacking to the nonwoven hardening.

Following the production of such a prototype a time consuming and cost-intensive characterization of the properties of nonwovens carried out experimentally has to be done.  Therefore, for this reason detailed studies considering several parameters of design are uneconomic.

Thus, micromechanical models of simulation are developed at Fraunhofer ITWM in cooperation with Procter & Gamble Service GmbH (P & G). By means of these models it is possible to forecast numerically the effective properties of nonwovens for diverse parameters of design. To virtually modify and optimize individual parameters in this connection it is only necessary to adapt the corresponding inputs of the model.

Fast Predictions Possible
In this case, the focus of the numerical predictions is primarily lying on the time-dependent behavior of the nonwovens.  The dynamic properties can be determined by means of numerical simulation of cyclic measurements. In doing so, a good correspondence of simulation and measurements is obtained.

Compared to experiments the required time of simulation for the behavior in case of low frequencies does not change. Therefore, we can obtain rapid forecasts for the long-term behavior (month till years) and the corresponding resilience of nonwovens using numerical models. A lot of alternatives can be simulated and studied within a few hours.

The fact that not only effective (macroscopic) properties of nonwovens can be computed, but also local physical values such as distribution of tension in binding agents and fibres is a further advantage of this micromechanical  approach. So, the simulation contributes to a better understanding of the properties of nonwovens.

Future designs deal with an extension of the models with regard to simulation of the productionv processes. By this, a fully digitalized layout design of nonwovens, from the manufacturing process till the optimization of functionality is possible.

Source:

Fraunhofer Institute for Industrial Mathematics ITWM

Foto: Pixabay
12.10.2021

Making companies crisis-proof: Resilience as an extended security concept

Companies today face a variety of increasingly complex risks. Not least the pandemic has shown how crises can pose an existential threat to companies. The FReE tool of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, allows companies to measure their resilience and subsequently be prepared for upcoming crisis scenarios.
 

Companies today face a variety of increasingly complex risks. Not least the pandemic has shown how crises can pose an existential threat to companies. The FReE tool of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, allows companies to measure their resilience and subsequently be prepared for upcoming crisis scenarios.
 
Our world is highly complex and prone to disruption: Natural disasters, cyberattacks, power outages, terrorist attacks, pandemics and other crisis scenarios can threaten companies existentially. The corona pandemic has shown us how vulnerable the German economy really is: According to the Federal Statistical Office, in 2020 the economy fell into a deep recession after ten years of growth; especially in the second quarter of 2020, economic output saw a historic slump. There will be other crises after this pandemic. The classic methods of risk analysis and risk management, which only take into account expected risks, do not adequately protect companies against major losses.

“Companies often only consider the most likely scenarios rather than focusing on possible crisis events,“ says Daniel Hiller, Head of business unit Security and Resilience at Fraunhofer EMI in Freiburg. Teams at Fraunhofer are establishing resilience as a new security concept to help prepare organizations and companies for crises. The results of their research work include the online tool Fraunhofer Resilience Evaluator FReE and the KMU-Lagebild software, both designed to enable companies to measure and evaluate their resilience and to carry out a resilience analysis before, during and after a disruptive event.
 
The five-stage concept “Prepare, Prevent, Protect, Respond and Recover”
The online tool FReE allows companies to plan resilience strategically, to implement the abstract concept in their company and to put it into practice on management level. FReE is based on the five-stage concept “Prepare, Prevent, Protect, Respond and Recover.”  

The software comes with a list of 68 questions related to the five resilience stages. The answers provide the company with some initial information needed to assess resilience. The five stages are ordered chronologically, starting with a what-if scenario. During this Prepare stage companies prepare for disruptive situations, which helps avert damage using preventive measures during the Prevent stage.

“An aluminum processing plant, for example, might want to protect its premises with security fences and cameras, because thieves usually break in at night to steal aluminum,“ says Hiller, illustrating the first two stages using a classic example. The Protect stage, as the name suggests, aims to protect; this might include safeguarding important infrastructures or buildings with additional concrete layers or walls. If it was not possible to stave off the disaster, the Respond stage comes into play. It is now important to quickly identify the cause and extent of the damage and to preserve critical supply functions. After the incident, companies should systematically draw lessons from the crisis in order to be better able to avert future risks and to boost their resilience in a cyclical iterative process – researchers call this stage Learn and Adapt.
 
The FReE tool takes the user through the list of questions, which are ordered chronologically into the sections before, during and after a disruption and cover all company divisions. These including personnel, finance, infrastructure and technology. The tool allows you to filter by division during the evaluation process. “For example, a controller can set the filter such that only results related to finance are shown,” says Hiller. Possible questions include: “Is there a disaster manager in the event of a disruption?“, “What are their qualifications and powers?” or “What are the financial reserves for emergencies?” The evaluation is shown in the radar chart, with the worst result being at zero percent in the graticule.

FReE is available in three versions: The free web-based quick version includes 15 questions. The full version, which includes the complete list of 68 questions, is available on a project basis. The accompanying consulting project is based on the paid version. As part of the consulting project, Hiller and his team work together with the companies to develop appropriate measures to boost resilience and eliminate weak spots. Furthermore, additional questions can be added to the FReE tool to adapt it to the needs of specific industries. Many SMEs are already using the quick version and are planning to update it to the full version.

KMU-Lagebild project
While FReE enables companies to assess their resilience on their own, the KMU-Lagebild project supports them in carrying out a comprehensive resilience assessment. The researchers model all procedures and processes on the computer using the available data. By inputting hypothetical disruption scenarios, you can see how the system reacts to them and which countermeasures have to be taken. “By asking yourself not only what the most likely disruptions are, but also what potential incidents there are, you broaden your view of the risks. What’s more, resilient companies exhibit a high level of adaptability and flexibility,” says Hiller in summary.

More information:
SMEs resilience corona crisis
Source:

Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI [Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI]

(c) Messe Frankfurt Exhibition GmbH or Messe Frankfurt GmbH
05.10.2021

Heimtextil 2022: International Reunion eagerly awaited

Meeting business partners, discovering new products and gaining inspiration – all will be possible again when Heimtextil 2022 opens its doors in Frankfurt am Main from 11 to 14 January. With registrations from around 1,600 exhibitors from 50 countries, the Trade Fair for Home and Contract Textiles anticipates a highly promising return to the international stage. The Heimtextil Team has begun the decisive preparatory phase for this international meeting place for the sector with great commitment and enthusiasm.

Meeting business partners, discovering new products and gaining inspiration – all will be possible again when Heimtextil 2022 opens its doors in Frankfurt am Main from 11 to 14 January. With registrations from around 1,600 exhibitors from 50 countries, the Trade Fair for Home and Contract Textiles anticipates a highly promising return to the international stage. The Heimtextil Team has begun the decisive preparatory phase for this international meeting place for the sector with great commitment and enthusiasm.

“With four months still to go, there has been a tremendous response to Heimtextil 2022, especially from the international side. The yearning for personal encounters and the chance to examine the latest products in reality is greater than ever before. We are looking forward very much to welcoming the sector back to our fair and exhibition centre and have complete confidence that Heimtextil 2022 will be a safe and successful event for all concerned”, says Olaf Schmidt, Vice President Textiles & Textile Technologies, Messe Frankfurt.

Trendsetting themes and a multifaceted product spectrum
In addition to the extensive spectrum of products to be seen, Heimtextil 2022 will offer inspiration and an attractive range of information services and events to help visitors discover the latest market developments in the sector. In particular, the presentation of the Heimtextil Trends provides in-depth insights into tomorrow’s furnishing themes. Also at Heimtextil, Interior.Architecture.Hospitality will spotlight offers for (interior) architects and hospitality experts. Moreover, particular emphasis will be given to the on-trend subject of healthy sleep, including numerous advisory services and products for the specialist bed trade. In this connection, the Heimtextil Sleep & More Conference will be a meeting place for representatives of the specialist bed trade with a high-grade programme of lectures, discussions and product presentations to choose from. Another important focal point at Heimtextil 2022 will be far‑reaching aspects for greater sustainability. Naturally, detailed information will also be available about this topic. Other highlights include presentations by Trevira and DecoTeam.

Digital services to supplement the trade fair
The range of products and information at Heimtextil 2022 will be rounded off by a blend of digital services. For example, the complete spectrum of Heimtextil Trends will be available for the first time in digital form – richly illustrated and visualised with the latest colours, designer features and short films. The Future Materials Library is also online with a first-class selection of sustainable material innovations. Also in planning are videos on demand about many of the items on the programme and tours of the fair via audio guides.

Another digital service provided by Messe Frankfurt is the order and data-management portal Nextrade, which offers a digital 24/7 business relationship between dealers and suppliers. The first digital B2B marketplace for the home and living, Nextrade brings together the demand and supply sides of the whole sector online and thus generates substantial value added for both sides.

(c) Checkpoint Systems
28.09.2021

Checkpoint Systems: Retail Technology Solutions – Success needs a Team

Checkpoint Systems, a division of CCL Industries, is a global leader in retail solutions. The portfolio ranges from electronic article surveillance as well as theft and loss prevention to RFID hardware and software and labeling solutions. The aim is to provide retailers with accurate, real-time inventory, speed up the replenishment cycle, prevent out-of-stocks and reduce theft to improve product availability and the customer shopping experience.

Checkpoint Systems, a division of CCL Industries, is a global leader in retail solutions. The portfolio ranges from electronic article surveillance as well as theft and loss prevention to RFID hardware and software and labeling solutions. The aim is to provide retailers with accurate, real-time inventory, speed up the replenishment cycle, prevent out-of-stocks and reduce theft to improve product availability and the customer shopping experience.

Textination spoke with Miguel Garcia Manso, Business Unit Director Germany at Checkpoint Systems, where the 44-year-old industrial engineering graduate has been working since 2018. With many years of international retail experience, he knows the needs of the retail industry very well. Before that, Miguel Garcia Manso lived in Madrid for almost 15 years, where he worked for the Spanish food retailer DIA. There he also accompanied the introduction and roll-out of article surveillance projects.

 

If you had to present Checkpoint Systems and its portfolio to someone who is not a retail professional – what would you say?

We are the retail partner and our job is to help retailers make shopping as pleasant as possible for their customers. Put simply, our solutions ensure that the right product is in the right place at the right time when the end consumer wants to buy it, instead of standing in front of an empty shelf in the worst-case scenario. Our portfolio ranges from individual anti-theft products to solutions that cover the entire supply chain and provide the greatest possible transparency of inventory.

 

It's been a long journey from the 1960s, when a small team in the U.S. developed a method to prevent the theft of books from public libraries, to becoming the international leader in 21st century article surveillance, operating in 35 countries. What legacy is still important to you today, and how would you describe the spirit at Checkpoint Systems?
 
Both questions have the same answer: On the one hand, innovative strength and, on the other, consistent exchange with the retail industry. Both have been in the focus at Checkpoint Systems from the very beginning. We develop our products and systems in close exchange with the industry, actively seek dialogue, listen to what is needed in everyday life, etc. This is very important to us and is also regularly used as a selling point for Checkpoint Systems. We definitely want to continue this.

 

You offer hardware and software technologies for retail, which is a very complex market. How do the requirements of retailers from the fashion, outdoor and textile industries differ from those of other industries?

The reasons why retail companies contact us are similar across all industries. They all want to delight their customers, retain them in the long term, and generate more sales. The ways to achieve this may differ: From omni-channel strategies for the fashion sector, to article surveillance solutions for high-priced electrical or cosmetic products, and to RFID-based fresh food solutions for food retailers to reduce food waste.
The requirements of the industries differ, especially when it comes to labels. Depending on the size and price of the product as well as the desired technology, we recommend different labels – or develop them in close coordination with the customer. For the Polish fashion company LPP, for example, we have just developed a special dual RF and RFID tag that blends harmoniously into the store design.

 

Magic word RFID – the contactless and automated reading and storing of data based on electromagnetic waves is the centerpiece of your technologies. You even encourage your customers to develop their own RFID strategy. What do you mean by this and are you sure that all retail companies will be able to do this on their own?

We develop the strategy together with our customers, usually as part of a pilot project. Until a few years ago, the introduction of RFID technology was actually more complex and usually involved a project lasting several years. Today, however, we can quickly calculate for each retailer in the context of a small pilot project, how much more profitable they can be with RFID and what their return on investment is. We usually start with a store scan, followed by pilot testing in selected stores, including individual training and on-site support. And by the time it is implemented in all stores, the customers themselves are RFID experts and have an understanding of what they can do with the real-time data. 

 

What does the keyword "customized" mean for Checkpoint Systems? To what extent can you map the individual needs of each customer? Or can you make every retail company – whether chain or boutique – "happy"?

We give high priority to personalized solutions. This concerns, on the one hand, the product itself and, on the other, the size of the company. As you already indicate, large retail chains obviously have different needs than small boutiques. For O₂, Telefónica Germany’s core brand, for example, we have just specially adapted our AutoPeg tags for theft protection. Instead of the standard yellow, the tags for O₂ are white with blue lettering to match the store design.
This also shows the development in the area of article surveillance in general: When article surveillance was still in its infancy, antennas and labels were mainly functional. Nowadays, they blend harmoniously into the overall look of the store design. Retailers no longer have to choose between design and functionality.

 

How is innovation management practiced in your company and which developments that Checkpoint has worked on recently are you particularly proud of?

In recent months, we have worked intensively – together with the German Employers' Liability Insurance Association (Berufsgenossenschaft Handel und Warenlogistik) – on the testing and certification of our article surveillance systems and now we can proudly say: We are the first manufacturer in Germany whose EAS systems have been tested by the CSA Group, an internationally recognized and accredited provider of testing and certification services. The CSA Group has confirmed that our radio frequency-based EAS systems comply with all standards and guidelines applicable in Germany with regard to exposure to electromagnetic fields. No safety distances need to be maintained.
The background is as follows: Retailers in Germany are obliged to prepare a risk assessment if they use an EAS system. The CE declaration of conformity, which they receive from the manufacturer when purchasing an EAS system, is not sufficient for this purpose. By testing our systems, we have created the best conditions for our customers to make such an assessment. We have also provided the relevant documents to the Employer's Liability Insurance Association.

We are also proud of the fact that we have managed to increase the clearance widths of our NEO antennas for article surveillance from two meters to 2.70 meters. This gives retailers significantly more freedom in store design. In general, store design is also a good keyword at this point: With our free-standing antennas, the design of the NS40 or even the possibility of incorporating antennas into checkout systems, we have contributed a great deal to making article surveillance aesthetically pleasing and harmoniously integrated into the whole.

 

The Covid-19 period was a disaster, especially for the stationary retail. In recent months, companies have increasingly moved in the direction of e-commerce – whether via individual store solutions or marketplaces – in order to compensate for at least part of the decline in sales. What is your advice to retailers: Can only omni-channel businesses be successful today and in the future?

Yes, that is definitely our advice to retailers. Omni-channel solutions are not going to disappear, but will continue to become more common and will be indispensable in the near future. Retailers are well advised to adapt to this new situation – also regardless of Corona – and to invest in the expansion of functioning omni-channel solutions. Customers expect the product they want, to be available when they enter a store. And if not, that they can easily have it delivered to the same store or shipped to their home. This only works with very high inventory transparency, for example through our RFID solutions.

 

Keyword: economic efficiency. Creating the much-vaunted personalized perfect shopping experience for the customer costs money, doesn't it? Stock availability, reducing inventories through clearance sales, shelf management, logistics and returns processing – to what extent can you support retailers in increasing their profitability?

NOT creating the perfect shopping experience costs a lot more – dissatisfied customers who haven't found what they want won't come back. To keep up with customer demand, many retailers therefore stock far too much products. In our experience, this amounts to an average of 42,000 items. That costs. These retailers pay high costs for warehouse space, need a lot of time for inventory processes, and end up having to reduce products significantly in order to reduce inventories.
The key to greater profitability lies in inventory accuracy. With the help of RFID technology, we can increase this to up to 99 percent. This allows us to avoid under- or overstocking, reduce the amount of storage space required, and optimize processes, including inventory. RFID can read hundreds of tags simultaneously and is more accurate and faster than manual counting. Experience shows that retailers can increase their sales by an average of three percent with our RFID technology.

 

Even if the situation in retail has eased to some extent as a result of the vaccinations, the shopping situation in on-site stores – viewed optimistically – also requires special precautions, at least for the next few months. With "safer shopping," you offer a package of various components for this purpose. What does it cover?
 
SmartOccupancy is our simple solution for controlling the number of people in salesrooms in real time. The system counts the number of people entering and leaving using Visiplus 3D, an overhead people counting sensor. When the maximum capacity is almost reached, SmartOccupancy sends an alert to the staff. This allows the staff to respond to current occupancy counts in real time, contributing to a safer environment for employees and customers. Those responsible can use SmartOccupancy to implement official instructions on the maximum number of people safely and reliably; manual counting is no longer necessary. A visual capacity indicator clearly shows customers at the door whether they are allowed to enter the store or not.
The second solution is primarily of interest to the textile and clothing industry as well as the footwear market: Inventory Quarantine is a software solution for secure, automated returns (SaaS-based). It allows retailers to park returned goods in an automated quarantine queue for a few hours. After the pre-defined time has passed, Inventory Quarantine notifies employees via push message that the piece of clothing or shoe can be cleared back to the floor or re-tagged as available in the online store. This means that items are only released when they are deemed safe for resale – while ensuring that items are put back on sale promptly. The solution helps retailers keep track of returned goods and minimize the time when products are not available on sale.

 

"Ethical consumption has finally become an attitude and has arrived in the middle of society," trend researcher Peter Wippermann commented on the results of the Otto Group's latest trend study "Living More Consciously". What does sustainability mean to Checkpoint Systems as a company, how do you reflect this finding in your product portfolio and how do you support your customers in achieving sustainability goals?

Sustainability is definitely an important topic for us at Checkpoint Systems. We regularly review our products and processes to see how we can work even more resource-efficiently, reduce production waste and lower our CO2 emissions. This also includes, how we can further reduce the power consumption of our antennas. We only develop and sell RF antennas. This technology is not only safer in terms of exposure to electromagnetic fields, but also more environmentally friendly: RF antennas require 40 to 70 percent less energy than other technologies.

Source:

The Interview was conducted by Ines Chucholowius, Managing Partner, Textination GmbH.

Photo: pixabay
21.09.2021

Virtual Quality Inspection Optimizes Production of Filter Nonwovens

Nonwoven production received more attention than ever before from the general public in Corona times, because the technical textile is crucial for infection protection. The ultra-fine nonwoven products are manufactured in so-called meltblown processes. A cross-departmental team at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern is optimizing the entire production chain in the »ProQuIV« project. Simulations help to guarantee the product quality of the filter material despite fluctuations in production.

Nonwoven production received more attention than ever before from the general public in Corona times, because the technical textile is crucial for infection protection. The ultra-fine nonwoven products are manufactured in so-called meltblown processes. A cross-departmental team at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern is optimizing the entire production chain in the »ProQuIV« project. Simulations help to guarantee the product quality of the filter material despite fluctuations in production.

The abbreviation »ProQuIV« stands for »Production and Quality Optimization of Nonwoven Infection Protection Clothing«. This is because bottlenecks in the production of these materials were particularly evident at the beginning of the Covid 19 crisis. For the meltblown nonwovens, this optimization of the product quality is also particularly difficult because the textiles react very sensitively to fluctuations in the manufacturing processes and material impurities.

Digital Twin Keeps an Eye on the Big Picture
»Meltblown« is the name of the industrial manufacturing process whose ultra-fine fiber nonwovens are responsible for providing the crucial filtering function in face masks. In this process, the molten polymer is forced through nozzles into a forward-flowing, high-speed stream. It is stretched and cooled in a highly turbulent air flow.

»The overall process of filter media production – from the polymer melt to the filter medium – presents a major challenge in simulation,« explains Dr. Konrad Steiner, head of the »Flow and Materials Simulation« department. »In the project, we kept the big picture in mind and developed a completely integrated evaluation chain as a digital twin. In doing so, we take several key components into account at once: We simulate the typical production processes of nonwovens, the formation of the fiber structures and then the material properties – here, in particular, the filter efficiency. This allows us to quantitatively evaluate the influences of the manufacturing process on the product properties.« In each of these individual areas, Fraunhofer ITWM and its experts are among the leading research groups internationally.

Homogeneity of the Material – Fewer Clouds in the Simulation Sky
In the meltblown process, a key factor is the behavior of the filaments in the turbulent, hot and fast air flow. The properties of the filaments are strongly influenced by this air flow. The quality of the filaments – and thus the quality of the nonwovens – is influenced by many factors. Dr. Dietmar Hietel, head of the »Transport Processes« department, knows what this means more precisely in practice. His team has been working at Fraunhofer ITWM for years on the simulation of various processes involving filaments, threads, and fibers. »The focus of the project is the so-called cloudiness, i.e. the non-uniformity of the fiber distributions in the nonwoven,« explains Hietel. »We are investigating the question: How homogeneous is the fabric? Because the quality of the products can be greatly improved if we increase the uniformity. Our simulations help figure out how to do that.«

Objective Evaluation of the Homogeneity of Nonwovens
The researchers also use appropriate image analysis techniques to quantify this cloudiness. The power spectrum plays a special role here. »The cloudiness index (CLI) describes homogeneity complementary to local basis weight and its variance,« describes Dr. Katja Schladitz. She brings her expertise in image processing to the project. »Our CLI ensures a robust assessment of the homogeneity and can thus be used for different material classes and imaging techniques to be used as an objective measure.« The frequencies that go into the CLI calculation can be chosen so that the CLI is meaningful for the particular application area.

Filtration: How Efficient Are the Filters?
For the upscaling to industrial processes such as mask production, the ITWM expertise in filters is also included in the project. The »Filtration and Separation« team led by Dr. Ralf Kirsch has been working for years on the mathematical modeling and simulation of various separation processes.

»What's special about this project is that we calculated the efficiency of the filters for fluctuations of varying degrees in the fiber volume fraction,« emphasizes Kirsch. »This allows us to specify up to what level of cloudiness the required filter efficiency can be achieved at all.« As a current example of this, the figure depicts in the graphic the efficiency of a filter material for N95 masks as a function of the inhomogeneity of the nonwoven.

ITMW Methods Support Across the Entire Process Chain
In »ProQuIV«, digital twins and calculations from Fraunhofer ITWM support a holistic view and better understanding of the processes. The production of technical textiles thus not only becomes more efficient, but the nonwovens can be developed virtually without having to realize this in advance in a test facility. In this way, production capacities can be increased while maintaining or even increase the quality. Together with long-term partners from industry, the research can be put into practice quickly and efficiently.

Simulations save textile companies experiments, allow new insights, enable systematic parameter variations and solve upscaling problems that can otherwise lead to bad investments during the transition from laboratory plant to industrial plant. However, virtual implementation of nonwoven production also opens up new opportunities for optimization at other levels. For example, acoustic insulating nonwovens or even hygiene nonwovens can also be optimized in terms of their product quality precisely with regard to the material properties to be achieved – while taking into account the process fluctuations that occur.

The project is part of the Fraunhofer-Gesellschaft's »Fraunhofer versus Corona« program and was completed in April 2021. The results will flow into several follow-up projects with the nonwovens industry.

Textile Prototyping Lab The modules from the prototyping kit can be used to create a variety of e-textiles © Textile Prototyping Lab
14.09.2021

Art meets Science: Prototyping Lab for textile electronics

Anyone who thinks of research laboratories only in terms of protective suits and clean rooms is not quite right: Since April, patterns, seams and mannequins have not been uncommon in the new Textile Prototyping Lab (TPL) at Fraunhofer IZM in Berlin. With the TPL, there is now a place where creative high-tech textiles are produced and which already distinguishes itself from the style of usual research laboratories by its design. As a collaborative project with the Weißensee Kunsthochschule Berlin, textile-integrated electronics are created here for a wide range of applications from architecture to medicine.

Anyone who thinks of research laboratories only in terms of protective suits and clean rooms is not quite right: Since April, patterns, seams and mannequins have not been uncommon in the new Textile Prototyping Lab (TPL) at Fraunhofer IZM in Berlin. With the TPL, there is now a place where creative high-tech textiles are produced and which already distinguishes itself from the style of usual research laboratories by its design. As a collaborative project with the Weißensee Kunsthochschule Berlin, textile-integrated electronics are created here for a wide range of applications from architecture to medicine.

Since its opening, the lab has been available to designers and product developers to prototype individual visions in the field of e-textiles. The possibilities are virtually unlimited: From interfaces between textiles and electronics to the testing of process chains, parts of the laboratory or even the entire laboratory can be used freely. In addition to the pure development and construction work, the premises can be converted in a few moves and repurposed for workshops or exhibitions.

Malte von Krshiwoblozki, who is providing scientific support for the project at Fraunhofer IZM, cited other advantages: “Not only the modular workstations and the meeting area are attractive for joint project work, especially the machinery offers a wide range for interested parties. The ‘sewing and embroidery’ work area, for example, is equipped with several sewing machines as well as a computer-controlled embroidery machine. It thus becomes central to the TPL, as textile finishing with small-format machines is the focus of this lab's work.” Another work area covers “Cutting & Separating” with a laser cutter and a cutting plotter. In addition, there are several presses and laminators, a soldering station and a 3D printer.

In the TPL, beginners can also try their hand at e-textiles and expand their knowledge: The prototyping kit developed at Fraunhofer IZM, which includes a series of electronic modules, LEDs and sensors that can be embroidered by hand as well as by machine, is particularly helpful in this regard.

“For particularly durable electronic textiles, the textile bonder developed and built by Fraunhofer IZM researchers can also be used in cooperative projects of the Textile Prototyping Lab. The versatile modules of the prototyping kit are deliberately designed so that integration into the textile can take place not only with classic textile technology such as embroidery during the prototyping phase, but also for subsequent, more industrial implementations using the textile bonder. In keeping with the motto ‘sharing is caring’ and the principle of interdisciplinarity, we at Fraunhofer IZM are available to provide advice and support during the realization of the textile projects, so that the artists' ideas can be enriched using such new technology,” said Malte von Krshiwoblozki.

Even before the opening of the laboratory, the collaboration between the Weißensee Kunsthochschule Berlin and Fraunhofer IZM had already produced developments that combine art and research in revolutionary ways. For example, a light rail for lamps that is made of a soft and conductive textile belt was created in cooperation with the designer Stefan Diez. For the Hans Riegel Foundation's Touch Tomorrow educational project, an interactive jacket was developed that can control the color of integrated LEDs via arm movements. The team of the Textile Prototyping Lab is looking forward to upcoming, exciting and agile projects and is open for ideas from start-ups, SMEs as well as industry partners.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

(c) Messe Frankfurt GmbH / SPOTT for Heimtextil
07.09.2021

Next Horizons: Heimtextil presents Trends 2022/23

With “Next Horizons”, Heimtextil is presenting its design forecast for the new season 2022/23 – analysed by international trend researchers and packed with valuable inspiration and inspiring content. The new trend themes take sustainability and resource conservation in the heart of their approach. The international trade fair for home and contract textiles takes place from 11 to 14 January 2022 in Frankfurt am Main.

With “Next Horizons”, Heimtextil is presenting its design forecast for the new season 2022/23 – analysed by international trend researchers and packed with valuable inspiration and inspiring content. The new trend themes take sustainability and resource conservation in the heart of their approach. The international trade fair for home and contract textiles takes place from 11 to 14 January 2022 in Frankfurt am Main.

Three international design agencies form the Heimtextil Trend Council. Together, they develop a well-founded global vision of the coming interior trends. Alongside the Heimtextil Trend Council, Heimtextil management has established a trend forecast for the coming season and presented it live via an online conference on 1 September 2021 from Frankfurt am Main. Trend Council members Anja Bisgaard Gaede from SPOTT trends & business, Anne Marie Commandeur from Stiljinstituut Amsterdam and Kate Franklin and Caroline Till from London studio FranklinTill shared their insights into the future of the industry. Designers, interior architects and decorators get inspired by the design forecast for the new season.

Next Horizons: long-term and circular mindset
The Next Horizons are not a fixed goal or a finish line – they are mindsets. These are made up of long-term thinking, accepting that the best way to impact the world is simply not to. Paradoxically, we have begun our transition to sustainability by addressing the problems within our manufactured system instead of transforming our approach to not create waste or imbalance. Transforming our nexus begins with accepting our economies are embedded within nature. The composition of design should be accessed, made and recirculated in tune with a long-term and circular mindset and simply not create waste. The Heimtextil Trends 22/23 “Deep Nature”, “Hyper Nature”, “Beyond Identity” and “Empowered Identity” explore these new mindsets for “Next Horizons”.

Heimtextil Trends in a new digital format
With “Next Horizons”, Heimtextil is breaking new ground and, for the first time, making trend information fully available in a digital format. The brand-new online platform of Heimtextil introduces the trends richly illustrated via colours, short films, bespoke imagery, key designer features and a soundtrack. The new online platform and all trend activities are directed by SPOTT trends & business from Denmark.

The Future Materials Library is now digital
Curated by Futures Agency FranklinTill, The Future Materials Library was launched in 2020 and is now available online at www.heimtextil-trends.com/future. This collection of exciting interior material innovations from around the world celebrates radical designers, innovative manufacturers and environmentally conscious producers who are helping to turn the current, linear system of production and consumption into a circular model.

Heimtextil Trends 22/23 – overview
Deep Nature – Rebalance by relearning

“Deep Nature” explores our ecosystem’s strategies: it’s our legacy and future all at once. We need to relearn and give into untamed texture, slow process, natural structures and living colours. “Deep Nature” is a long-term transformation and relearning process which gives us the ability to rebalance the natural world for a regenerative future. The colour scale for “Deep Nature” has a harmonious and soft expression used for untamed patternmaking. Mouldy, herbal tones and delicate tones of blue and rouge create a calm, tonal, and earthy approach.

Hyper Nature – Reconnect with nature via technology
“Hyper Nature” is about reconnecting to nature through technology. The theme is a digital facilitator of nature’s blueprint, fusing technology and nature for a protopia state and creating a better tomorrow step by step. Responsive materials, technical fibres, fluid patterns and microscopic structure describes materials and textiles for “Hyper Nature”. Bioscience brings inspiration to colours of both bright and lucid and blurred nuances of green and grey. Reflections and artificial light create new perceptions of nature-based colours. Coral, salmon and light raspberry are highlights.

Beyond Identity – Values more than physical attributes
“Beyond Identity” addresses the future with hopeful messages and soft and powerful defiance toward existing norms, leaving identity in flux. For the world of home interiors and textiles “Beyond Identity” works with recycled synthetic fabric, vintage silk and satin, natural-coloured textiles and new cellulose-based textiles. They are formed via the uncontrolled colouration process of a pastel-coloured look resembling the constant flux of identity. The colours scale for “Beyond Identity” features a range of pastels, complemented with a familiar grey and pale khaki as muted transferral colours.

Empowered Identity – Empower artisanship to sustain culture
“Empower Identity” is about creating sustainable cultural connections, renewing artisan sources of inspiration in a collaborative way. Empowering Identity encourages forming new connections between heritage cultures and future generations. Recycled and heritage textiles combined with textile craft techniques as tufting, embroidered appliqué and Cross-stitch are in focus in “Empower Identity”. Primary colours resemble their colour pigment origins to support the heritage expression of the theme. Sparks of coral and a greyed lilac accompany these primary tones. Multi-coloured usage is key.

(c) Messe Frankfurt Exhibition GmbH / Jens Liebchen
31.08.2021

Textile Services Industry a key to providing sustainable solutions and eco-friendly best practice

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

The textile sector was identified as a priority sector in the European Green Deal and in the Circular Economy Action Plan. What are the implications for the European textile services industry?
Elena Lai:
We are in a truly historic and exciting time for the textile services industry. We are all well-aware that our industry is the key to providing sustainable solutions and ecofriendly best practice. We had a series of webinars at ETSA dedicated to sustainability and circular economy being key elements of the Green Deal and our larger companies such as industrial laundries, key textile manufacturers and innovative machinery companies, are all up to the task and providing effective solutions. Our national associations too, members of ETSA, are all working synergistically to exchange their best ways forward, in Europe and beyond as we have also partners from the US. These efforts within ETSA’s value chain make us really proud and eager to go the extra mile, guiding our members also towards those areas which seem to be the most challenging. For instance, the new EU Climate Law, which calls for 55% CO2 reductions by 2030: this means that European industries will all have to do better to make us reach these targets in less than nine years. We know ETSA could represent the right network to identify the best way forward on this issue and truly perform and deliver what the EU is advocating for.

How can the textile services industry contribute to achieving circular economy in the textile industry?
Elena Lai:
The business model of textile services is inherently circular. By having a business model which is focused on renting and reusing textiles we can see a litany of benefits that it can offer to the EU’s Circular Economy Action Plan. Firstly, in renting textiles. Through rented textile services, textile service companies can extend the lifecycle of products and thus reduce the amount of production that is necessary to occur in the first place, while also reducing the amount of wastewater and energy needed in the laundry process. Secondly, through re-use and repair textile products can remain in consumer hands for longer, which is paramount as our industry is one that battles against planned obsolescence. Both of these are important pillars to our industries that will help both consumers and the planet. Lastly, by continuing to expand recycling and upcycling we can minimise waste, ensuring that a product stays inside the European economy as long as possible. These are all important steps and help us do our part to help Europe reach its emissions and sustainability goals.

Textile recycling is a very important point. How do you think the textile recycling rate can be increased?
Elena Lai:
The Commission will mandate separate waste sorting of textiles by the year 2025, thus recycling, upcycling and end of life re-use must be improved. A ban on the burning of unused textiles will also soon take effect, this will incentivise further recycling and waste reduction. Fundamentally what we in textiles services need to do is to continue to reduce, re-use and recycle. We can increase the rate of recycling by making consumers aware of rented textiles and textile services so to increase the public demand for such services.

How can sustainability in textile services be further improved?
Elena Lai:
In order to boost sustainability in our industry we need to build on the existing culture of innovation and entrepreneurship where exciting, new, out-of-the-box ideas can be developed and refined. EU programs like Horizon Europe, which emphasise green and digital solutions to common problems are an excellent way to empower citizens, textile service firms and local communities to take the initiative and take matters into their own hands. The EU’s Due Diligence legislation is one example of somewhere we can see both consumers and firms come together and take proactive action to improve sustainability, not only in textiles and textile services, but in European industry more broadly. To put it clearly, we have to strengthen our technological innovation while also empowering consumers, authorities and textile service firms, we believe our work at the EU level helps to make this a reality.

How does ETSA promote new projects in the field of sustainability?
Elena Lai:
We at ETSA have been hard at work lobbying EU policymakers for responsible legislation, while also spreading awareness of the industry’s best practice to the public. Recently ETSA has also become an EU Commission Climate Pact Ambassador. This is an exciting opportunity which will allow ETSA to work closely with European Institutions to inform and inspire real climate action amongst our members, national associations and the industry as a whole. ETSA is a platform where stakeholders, citizens, industries and European Union representatives can come together and have a dialogue on the best ways to improve Europe’s sustainability. Furthermore, we have been hard at work disseminating information on the best practice that will help Europe get to 55% emissions reductions, as well information on chemicals, waste-water, microplastics and other salient environmental issues. Our work is far from being done but we look forward to continuing to strive and advance via our focused Working Group on Environment and our webinars to make the world green and sustainable again.

What role will circular economy/sustainability play at Texcare?
Elena Lai:
A central role, several European and World Leaders have underlined, is that Climate Change is the most important issue of our time and it is imperative we act now. Climate Change is also an issue with a global spill over and therefore we all have a clear incentive to find solutions and work in synergy with each other. We need future-oriented dialogue which understands the urgent need for sustainability across the entire textile value chain. ETSA in synergy with one of our members, DTV, is working hard to put together a panel at Texcare dedicated to the sustainability debate, with lots of members and participants to get engaged.

What does ETSA expect from this year's Texcare?
Elena Lai:
We at ETSA are excited to be at Texcare, we think it’s a great opportunity to not only network and converse with other relevant actors in the industry but also to share best practice, concerns and most of all opportunities. Due to the pandemic we had a difficult year 2021 and this event will really enhance a stronger engagement of key actors in this sector. The need for green, sustainable and digital solutions is nonetheless imperative. We are looking forward to hearing of ways that the industry across the world not only continues to adapt to the evolving COVID situation, but also how it is embracing the green and digital transition that has been emphasised as being the futuristic approach by our EU policymakers. We at ETSA wholeheartedly look forward to this event.

Texcare International will take place from November 27 December 1, 2021 in Frankfurt am Main.

Photo: pixabay
24.08.2021

Air, Water, Oil: What PLA bioplastic can filter well - and what not

Air filters have been discussed so often in recent days in the fight against the pandemic. With filter material made of nonwoven fabric, they block the way back into rooms for aerosols containing viruses. But how can these devices not only protect health, but also be operated with filter material that is as environmentally friendly as possible?

Air filters have been discussed so often in recent days in the fight against the pandemic. With filter material made of nonwoven fabric, they block the way back into rooms for aerosols containing viruses. But how can these devices not only protect health, but also be operated with filter material that is as environmentally friendly as possible?

Under clearly defined conditions, the bioplastic polylactide (PLA), also known as polylactic acid, is suited for this purpose. This can be deduced from results obtained by researchers from the Zuse community in the recently completed "BioFilter" research project. The key question for this and other potential applications of biofilters is: How do the special properties of PLA affect the filter performance and durability? After all, PLA can have practical disadvantages compared to its fossil-based competitors. Its material tends to be brittle and it doesn't particularly like high temperatures beyond 60 degrees Celsius. As a biogenic material, polylactic acid is also potentially more susceptible to abrasion and organic degradation processes. This can play an even greater role in the use of filters, e.g. in sewage treatment facilities, than in air filters. Industrial customers, however, naturally want a durable, reliable product.

From monofilament to nonwoven
Against this background, the researchers studied the PLA properties in order to test nonwovens for biofilters on this basis. The German Textile Research Center North-West (German Textile Research Center North-West - DTNW) and the Saxon Textile Research Institute (STFI), where the nonwovens were produced, were involved. Granules from various commercially available manufacturers were used. However, the research did not start with nonwovens, in which the fibers are deposited close together in different layers, but with so-called monofilaments, i.e. fibers made of PLA that are comparable to threads. DTNW and STFI initially carried out tests on these monofilaments, e.g. in a climate chamber for aging and durability.

As can be seen in the picture, the monofilaments became brittle after only two weeks at higher temperatures from 70 degrees Celsius, as the DTNW authors recently reported in the Journal Applied Polymer Materials. Under normalized conditions, however, the monofilaments showed no measurable reduction in stability even after almost three years, and the PLA nonwovens were in no way inferior to their fossil-based counterparts in terms of filter performance. "In my opinion, the focus for the use of PLA as a filter material will be on applications where relatively low temperatures are present, with which PLA copes very well," says DTNW scientist Christina Schippers.

Besides temperature and humidity consider other factors
For the researchers, however, the project, which was funded by the German Federal Ministry for Economic Affairs and Energy, was not just about the suitability of polylactide for air filters, but also for other applications, such as filtering water. In addition, the research revealed that when evaluating filter media made from bio-based and biodegradable nonwovens, it is important to consider other influencing factors, such as mechanical loads caused by air currents, in addition to temperature and humidity. "The innovative core of the project was to evaluate the possibilities and application limits of PLA nonwovens as filter media with sufficient mechanical properties and long-term stability," says project leader Dr. Larisa Tsarkova. Like her colleagues at STFI, DTNW is involved in the Zuse Community's Bioeconomy Cluster, in which researchers from nonprofit institutes cooperate under the guiding principle of "Researching with Nature." "For us, the bioeconomy is a top cross-industry topic that connects numerous institutes of the Zuse Community and is lived through collaborations such as with the 'Bio-Filter'," explains the future STFI managing director Dr. Heike Illing-Günther.

Cooperation in the Bioeconomy Cluster
With the results obtained from the "Bio-Filter" project, DTNW and STFI now want to continue working in order to be able to make derivations for clearly described areas of application for PLA nonwoven filters in the future. These possible fields of application extend far beyond room air filters and thus beyond the pandemic. For example, the water-repellent property of PLA is potentially interesting for filters in large-scale kitchens for water-oil filtration or also in the industry for engine oils.

The research is also so important, because PLA is already quite well established in individual consumer-related segments - keyword: carrier bags. Traditionally, lactic acid was used to preserve food, for example in sauerkraut. Today, PLA is obtained via a multi-stage synthesis from sugar, which ferments to lactic acid and polymerizes this to PLA, as Kunststoffe.de explains. PLA is one of the best-known bioplastics, but has not always been readily available due to strong demand in recent years. The Netherlands-based company Total Corbion has announced plans to start up a PLA plant with an annual capacity of 100,000 tons in Grandpuits, France, by 2024. It would be the largest plant of its kind in Europe, with Asia leading the way so far.

Source:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Photo: pixabay
17.08.2021

Innovative wound care: Customized wound dressings made from tropoelastin

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Particularly in the context of an aging society, special wound dressings are gaining in importance. The treatment of complex wound diseases such as venous ulcers, leg ulcers, or foot ulcers is challenging for medical staff, long-term and painful for those affected and cost-intensive for the healthcare system. Innovative protein-based materials are now being used for the treatment of such wounds. However, since they are made from animal tissues, they carry increased risks of infection or can result in undesirable immune reactions. In addition, there are increasing reservations in the population about medical products of animal origin.

In the joint research project, the project partners are currently developing customized, biomedically applicable materials based on human tropoelastin. This precursor protein is converted in the body to elastin, a vital and long-lived structural biopolymer that has exceptional mechanical properties and thus gives the skin and other organs the elasticity and resilience they need to function.

“Elastin is chemically and enzymatically extremely stable, biocompatible and does not produce immunological rejections when used as a biomaterial in humans. Therefore, we want to create new and innovative solutions for the treatment of complex wounds based on human tropoelastin,” says Dr. Christian Schmelzer, Head of the Department of Biological and Macromolecular Materials at Fraunhofer IMWS.

Individual wound treatment
As part of the research project led by Prof. Dr. Markus Pietzsch of Martin Luther University Halle-Wittenberg, the researchers succeeded in developing a biotechnological process for modifying tropoelastin. The modified tropoelastin is processed at Fraunhofer IMWS. Here, an electrospinning procedure is used to produce ultra-thin nanofibers with diameters of only a few hundred nanometers. The resulting nonwovens are further crosslinked to stabilize them for the respective application. The procedures developed have been optimized so that biomedical parameters such as pore size, stability and mechanical properties are variable and can thus be customized to meet the requirements of the respective wound treatment. The materials produced using the new procedures are being investigated by Skinomics GmbH in initial preclinical tests with regard to their skin compatibility and have already achieved promising results.

At the end of the project by the end of this year, applications for intellectual property rights are to be filed, building the basis for a subsequent product development phase for certified medical products.

Photo: pixabay
10.08.2021

Stand-up paddle board made from renewable lightweight mater

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling (SUP) is a sport that is close to nature, but the plastic boards are anything but environmentally friendly. As a rule, petroleum-based materials such as epoxy resin, polyester resin, polyurethane and expanded or extruded polystyrene are used in combination with fiberglass and carbon fiber fabrics to produce the sports equipment. In many parts of the world, these plastics are not recycled, let alone disposed of correctly. Large quantities of plastic end up in the sea and collect in huge ocean eddies. For Christoph Pöhler, a scientist at Fraunhofer WKI and an avid stand-up paddler, this prompted him to think about a sustainable alternative. In the ecoSUP project, he is driving the development of a stand-up paddle board that is made from 100 percent renewable raw materials and which is also particularly strong and durable. The project is funded by the German Federal Ministry of Education and Research (BMBF). The Fraunhofer Center for International Management and Knowledge Economy IMW is accompanying the research work, with TU Braunschweig acting as project partner.

Recovering balsa wood from rotor blades
“In standard boards, a polystyrene core, which we know as styrofoam, is reinforced with fiberglass and sealed with an epoxy resin. We, instead, use bio-based lightweight material,” says the civil engineer. Pöhler and his colleagues use recycled balsa wood for the core. This has a very low density, i.e. it is light yet mechanically stressable. Balsa wood grows mainly in Papua New Guinea and Ecuador, where it has been used in large quantities in wind turbines for many years – up to six cubic meters of the material can be found in a rotor blade. Many of the systems are currently being disconnected from the grid. In 2020 alone, 6000 were dismantled. A large proportion of this is burnt. It would make more sense to recover the material from the rotor blade and recycle it in accordance with the circular economy. “This was exactly our thinking. The valuable wood is too good to burn,” says Pöhler.

Since the entire sandwich material used in conventional boards is to be completely replaced, the shell of the ecological board is also made from one hundred percent bio-based polymer. It is reinforced with flax fibers grown in Europe, which are characterized by very good mechanical properties. To pull the shell over the balsa wood core, Pöhler and his team use the hand lay-up and vacuum infusion processes. Feasibility studies are still underway to determine the optimal method. The first demonstrator of the ecological board should be available by the end of 2022. “In the interests of environmental protection and resource conservation, we want to use natural fibers and bio-based polymers wherever it is technically possible. In many places, GFRP is used even though a bio-based counterpart could do the same,” Pöhler sums up.

Patented technology for the production of wood foam
But how is it possible to recover the balsa wood from the rotor blade — after all, it is firmly bonded to the glass-fiber reinforced plastic (GFRP) of the outer shell? First, the wood is separated from the composite material in an impact mill. The density differences can be used to split the mixed-material structures into their individual components using a wind sifter. The balsa wood fibers, which are available as chips and fragments, are then finely ground. “We need this very fine starting material to produce wood foam. Fraunhofer WKI has a patented technology for this,” explains the researcher. In this process, the wood particles are suspended to form a kind of cake batter and processed into a light yet firm wood foam that holds together thanks to the wood’s own binding forces. The addition of adhesive is not required. The density and strength of the foam can be adjusted. “This is important because the density should not be too high. Otherwise, the stand-up paddle board would be too heavy to transport.”

Initially, the researchers are focusing on stand-up paddle boards. However, the hybrid material is also suitable for all other boards, such as skateboards. The future range of applications is broad: For example, it could be used as a facade element in the thermal insulation of buildings. The technology can also be used in the construction of vehicles, ships and trains.

Photo: Pixabay
03.08.2021

Composites Germany presents results of the 17th Composites Market Survey

  • Highly positive rating of current business situation
  • Future expectations are optimistic
  • Varied expectations for application industries
  • Still the same growth drivers

This is the seventeenth time that Composites Germany has identified the latest KPIs for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK (Industrievereinigung Verstärkte Kunststoffe e.V.), Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

  • Highly positive rating of current business situation
  • Future expectations are optimistic
  • Varied expectations for application industries
  • Still the same growth drivers

This is the seventeenth time that Composites Germany has identified the latest KPIs for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK (Industrievereinigung Verstärkte Kunststoffe e.V.), Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future market developments.

Highly positive rating of current business situation
After ratings of the current business situation had been steadily declining for nearly two years in succession, last year’s survey already displayed a trend reversal towards a more positive outlook. This positive trend has now continued in the latest survey, with entirely positive ratings for all three regions (Germany, Europe and worldwide). For ex-ample, 80% described the current general business situation as either positive or indeed very positive.

Moreover, unlike in the last survey, this more optimistic assessment applies not only to the general business situation, but also to the respondents’ own businesses, as they gave even more positive ratings than last year.     

There are currently quite a few challenges in the industrial environment. In many cases, the Covid-19 pandemic, for example, has merely receded, but has not disappeared.      
Business models have been and are still requiring adjustments. In some cases, supply chains have been severely disrupted and there are still some serious bottlenecks. The blockage of the Suez Canal by the Ever Given has once again highlighted the vulnerability of international commerce.

Shortages of raw materials, sharp increases in the prices of many raw materials and, most recently, a shortage of chips are having a major impact on various application industries. Nevertheless, the overall picture in the composites in-dustry is extremely optimistic. Similarly positive ratings were last achieved in the autumn 2018 and spring 2019 surveys.

Future expectations are optimistic
The positive prevailing mood is further reinforced by positive expectations for the future. A consistently optimistic picture emerged when respondents were asked about their ex-pectations for future business developments. For example, more than 80% of respond-ents are expecting the business situation in Europe to improve over the next six months. The pattern is similar for the other regions.

Varied expectations for application industries
Expectations on selected application industries vary substantially. As in the previous survey, significant declines are expected, above all, in automotive, aviation and wind energy. However, we can see that the proportion of respondents giving more pessimistic assessments has once again declined significantly.
Whereas, in the last sur-vey, 46% were expecting to see the situation get worse in aviation, this value has now dropped to a “mere” 17%. In the automotive sector, it has dropped from 17% (second half of 2020) to only 14%.

Two areas of application, in particular – infrastructure/construction and sports/leisure – have long been seen by many respondents as major growth stimulants for the composites industry. Even in times of a more difficult industrial environment, these two areas are currently proving to be especially robust.

GRP is still a growth driver
As before, the current market survey shows Germany, Europe and Asia as the global regions expected to deliver the most important growth stimuli for the composites segment. Expectations for Asia, on the other hand, have declined somewhat in favour of Europe. Where materials are concerned, we are seeing a continuation of the ongoing paradigm shift.      

Respondents are still convinced that CRP (carbon fibre reinforced plastic) is losing ground as a growth driver. However, GRP (glass fibre reinforced plastic) is now ranking as the most important material for the third time in succession. A large number of respondents have also mentioned the area entitled “Across All Segments” this time.

Composites are still relatively young materials with a great deal of potential. It remains exciting to see to what extent composites will continue to emerge as alternative materials and whether they can benefit from the major forthcoming developments (e.g. alternative drives, a growing demand for sustainability, alternative power sources, 5G, etc.).
The next Composites Market Survey will be published in January 2022. 

(c) Fraunhofer ITWM
27.07.2021

Simulation Software TexMath - Simulating Technical Textiles realistically

From high-performance textiles to compression and sportswear: The modular software program »TexMath« of the Fraunhofer Institute for Industrial Mathematics ITWM enables both the simulation of mechanical material properties and the optimization of textile products.

Accelerated development and optimized design of technical textiles while reducing experiments? The demand for techniques that can realize this is especially high in areas such as the sports, medical, and clothing industries. The »Technical Textiles« team of the  »Flow and Material Simulation« department at Fraunhofer ITWM has taken up this challenge and is developing simulation methods that allow efficient prediction of textile behavior under stretching, shear, bending, torsion, or compression. It is also possible to simulate wrinkling under stretching as well as shrinkage of yarns or critical shear angles throughout the manufacturing process.

From high-performance textiles to compression and sportswear: The modular software program »TexMath« of the Fraunhofer Institute for Industrial Mathematics ITWM enables both the simulation of mechanical material properties and the optimization of textile products.

Accelerated development and optimized design of technical textiles while reducing experiments? The demand for techniques that can realize this is especially high in areas such as the sports, medical, and clothing industries. The »Technical Textiles« team of the  »Flow and Material Simulation« department at Fraunhofer ITWM has taken up this challenge and is developing simulation methods that allow efficient prediction of textile behavior under stretching, shear, bending, torsion, or compression. It is also possible to simulate wrinkling under stretching as well as shrinkage of yarns or critical shear angles throughout the manufacturing process.

The »TexMath« simulation software they developed ensures that process chains in production can be adapted to new materials in advance. Complicated patterns and layers can be mapped with the help of the software and a direct connection to the textile machine can be made. Desired woven, knitted and warp-knitted products are accurately simulated with the software and their material properties computed. In addition to evaluating a particular textile design using simulation, the tools also provide optimization of performance characteristics for different design variations. The goal of the software, according to team leader Dr. Julia Orlik, is to »realize the design according to product properties and target criteria.«

TexMath consists of several components: »MeshUp«, »FibreFEM« and »FIFST«. Each of the components included in TexMath has its specific field of application. In addition, the tools have interfaces to each other as well as connections to the software »GeoDict®« of the Fraunhofer spin-off Math2Market, which can be used, for example, to perform fluid mechanical simulations on the textiles.

One area of application for the TexMath software is the optimization of compression textiles for the medical sector or for sports. For optimal effectiveness, the fit of the material is particularly important. For example, the knitting process can be simulated with TexMath to create a bandage with predefined compression properties and thus design the optimal knitted fabric. This virtual bandage is then loaded in another simulation and put on a virtual arm or leg. Thanks to TexMath, the calculated pressure profile makes it possible to evaluate the compression properties of the bandage in advance and also to directly control the knitting machine according to the optimal design.

»TexMath can also be used to design spacer textiles, such as those used for the upper material of sports shoes and for the production of high-performance textiles, and to optimize them in advance in terms of structure and fluid mechanics,« say Dr. Julia Orlik and department head Dr. Konrad Steiner, naming further areas of application for the software.

The newly developed input interface is particularly user-friendly. The textile class (i.e. knitted, warp-knitted, woven and spacer fabrics) can be easily set. The new graphic interface allows simple and fast configuration.

MeshUp for Structure Generation of Woven Patterns and Stitches
Knitted and woven fabrics are produced with the aid of knitting or weaving machines. Each textile is based on a looping diagramm, which is read into the machine or is firmly pre-defined in the machine. MeshUp is the software module of TexMath, in which looping diagramm for various woven and knitted fabrics with different types of binding, the yarn path and all contact points between different yarns are created, graphically displayed and translated into the corresponding input formats for further simulations in TexMath with FISFT and FiberFEM. In addition, MeshUp also provides the geometry as volume data (voxel format) for calculation tools such as GeoDict and FeelMath.

FiberFEM to Calculate Effective Mechanical Properties of a Periodic Textile Structure
With FiberFEM, woven and braided textiles, spacer fabrics, scrims and trusses can be calculated and optimized regarding their effective mechanical material properties. A special feature of FiberFEM is that, in addition to tensile and shear properties, effective bending and torsional properties of textiles can also be determined based on their textile structure and yarn properties.

As input variables FiberFEM requires the microstructure description from MeshUp, the fiber cross-section geometry, as well as mechanical fiber properties such as tensile stiffness and friction. As output the effective mechanical textile quantities are calculated. Besides the calculation of the effective mechanical material properties for already existing woven or knitted textiles for technical and medical applications, the approach also offers the potential for the targeted design and optimization of new textiles with a given mechanical property profile.

For example, the relaxation behavior of a textile can be determined from the weave or knit pattern and the yarn relaxation times for viscoelastic yarns. Coefficients of friction between the yarns are also taken into account and are directly included in the simulation of the effective properties or identified from the experimental validation with the fabric.

FIFST to Calculate the Deformation and Load of Textiles
The tool FIFST is specialized for dynamic simulations of stretchable knitted fabrics and teir production. For example, the knitting process can be simulated, the pull-off from the knitting machine, the shrinkage to a relaxed textile and also the further deformation during tightening can be calculated. This means that the design of the knitted fabric can also be adapted to predefined tension profiles and individualized machine control is possible for the production of personalized textiles or product-specific designs.

The numerical implementation uses the finite element method with non-linear truss elements, which has been extended for contact problems by an additional internal variable - the sliding of threads at contact nodes. The friction law is implemented with the Euler-Eutelwein model, which was extended by an additional adhesion term. Adhesion thus allows different pre-strains in the respective meshes. The elastic energy is calculated directly from the yarn force-elongation curves.  

One of the most important unique selling points of FIFST is the special technology of assigning several elements to specific threads and their arrangement in the thread as well as the simultaneous contact sliding at millions of nodes. Thus FIFST enables multi-scale simulation of large knitted or woven shell components, taking into account the local textile structure.

Another functionality of the software is to virtually drag textiles over a surface triangulation given in STL format. In the video, woven mask (knitted is also possible) is extended in the plane at 6 points and pulled against the face surface. Its knots are projected onto the face and continue to slide on the surface until the mask is fully in place. If you know frictional properties of yarns on the face, you can investigate further folding formation and also influence it specifically. As a further potential for optimization, FIFST allows to minimize pore sizes of dressed textiles on particularly curved surface areas. This can be achieved by increasing the pre-tension in yarns or by modifying the lapping diagram or the binding cartridge.


For a Test demoversion, please contact

Fraunhofer Institute for Industrial Mathematics ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern

Phone: +49 631 31600-4342

texmath@itwm.fraunhofer.de    

Source:

Fraunhofer Institute for Industrial Mathematics ITWM

Photo: pixabay
20.07.2021

Closed-Loop Recycling Pilot Project for Single Use Face Masks

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is a pioneer in sustainable energy and raw materials management by supplying and transferring scientific results into companies, society and politics. Together with partners, the dedicated UMSICHT team researches and develops sustainable products, processes and services which inspire.

Fraunhofer Institute UMSICHT, SABIC and Procter & Gamble (P&G) are collaborating in an innovative circular economy pilot project which aimed to demonstrate the feasibility of closed-loop recycling of single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production,” says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s T&I specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job” explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil.

Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products” adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s linear economy and the more sustainable circular economy of the future.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain,” emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics.” says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging”.

The entire closed loop pilot project from facemask collection to production was developed and implemented within only seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

(c) Messe Frankfurt GmbH
13.07.2021

Messe Frankfurt aiming for €500 Million in Sales in 2022

Messe Frankfurt is ready to start up again. Speaking at the Corporate Press Conference earlier today, Wolfgang Marzin, President and Chief Executive Officer of Messe Frankfurt, said: “If the pandemic situation continues to improve, we have every confidence that we will be able to get fully started again in all areas in 2022. We are aiming for sales of over €500 million.”

Mayor Peter Feldmann, Chairman of the Messe Frankfurt Supervisory Board, also stressed: “Our trade fairs, congresses and other events are central elements in the global economy and part of the economic lifeblood of Frankfurt and the Rhine-Main region in particular. I firmly believe that, once the pandemic has passed, Messe Frankfurt will be one of the top players in the international trade fair sector.”

Messe Frankfurt is ready to start up again. Speaking at the Corporate Press Conference earlier today, Wolfgang Marzin, President and Chief Executive Officer of Messe Frankfurt, said: “If the pandemic situation continues to improve, we have every confidence that we will be able to get fully started again in all areas in 2022. We are aiming for sales of over €500 million.”

Mayor Peter Feldmann, Chairman of the Messe Frankfurt Supervisory Board, also stressed: “Our trade fairs, congresses and other events are central elements in the global economy and part of the economic lifeblood of Frankfurt and the Rhine-Main region in particular. I firmly believe that, once the pandemic has passed, Messe Frankfurt will be one of the top players in the international trade fair sector.”

Presuming that the pandemic situation and the restrictions imposed by local authorities permit this, events are also to be organised again at the Group’s Frankfurt base in the second half of this year. Since the pandemic broke out in March 2020, it has been scarcely possible to generate any sales at all in Germany. Outside Germany, Messe Frankfurt was only able to hold events to a limited extent, for example in China. The pandemic brought the Group’s decades of growth to an abrupt halt. Since then, Messe Frankfurt has focused on ensuring sufficient liquidity for the Group, with a flexible but strict budget. There are still no plans for redundancies.

Wolfgang Marzin: “In spite of the strict cutbacks, the backing of our shareholders – the City of Frankfurt and the State of Hesse – means that, even in times like these, we are in a position to seize opportunities and invest counter-cyclically. With outside capital and a shareholder loan, Messe Frankfurt’s financial position has been secured for the current financial year and well into 2022.”

After the final financial report for financial year 2020 was submitted, Group sales were approximately €257 million (2019: approx. €736 million). With a consolidated net loss of around €122 million for the year, the result was far removed from the consolidated net profits of previous years (2019: approx. €50 million). The current financial year will also see a decline in all the Group’s financial performance indicators.

In spite of very difficult conditions, a total of 153 events were held over the past financial year – these included 46 trade fairs and exhibitions (2019: 155) with more than 33,000 (2019: 99,246) exhibiting companies and 1.2 million visitors.

As Wolfgang Marzin summed up: “The need to hold all events entirely in digital form illustrated the importance of face-to-face interaction for success in business.” And Detlef Braun, Member of the Executive Board of Messe Frankfurt, added: “The digital working environment and long-distance interaction that have been our everyday reality for over a year have led to a certain digital fatigue among many people. In the overall context of our events, hybrid events will continue to play an important part and to add value for the sectors.” It is not possible at present to predict exactly how the demand for digital and hybrid formats will actually develop. Wolfgang Marzin: “Changes will be of an evolutionary but lasting nature, with great advances being made in integrating valuable digital elements. Aspects relating to sustainability, growing environmental awareness and experience in digital interaction will lead to changes in behaviour – which, incidentally, was already happening before the coronavirus broke out.”

Messe Frankfurt is planning events in digital, hybrid and in-person formats for the third and fourth quarters of the current financial year. The premiere of Frankfurt Fashion Week took place in digital form under the Frankfurt Fashion Week (FFW) Studio label. Detlef Braun: “Back in April, we opted – together with everyone else involved – to hold an exclusively digital event. With an expected international component of 80 percent, a physical event would not have been feasible given that the pandemic situation was still volatile.” Automechanika Frankfurt Digital Plus will be launched in September according to the Plug & Play principle. As Detlef Braun explains: “We developed a hybrid concept that contains a condensed physical exhibition while also allowing all participants to present themselves and network internationally by digital means.” In 2022, Automechanika will be reverting to its original cycle of being held in even-numbered years. For the first time ever, Hypermotion will be taking place parallel to Automechanika. When Nordstil opens its doors in Hamburg in July, it will be the first in-person Messe Frankfurt event to be held again in Germany.

The 70 or so guest events scheduled to take place in Frankfurt in the second half of the year – including trade fairs like Franchise Expo, White Label World Expo, the Frankfurt Book Fair and Food Ingredients & Health Ingredients Europe – will also be creating new momentum at the Group’s Frankfurt base. Uwe Behm, Member of the Executive Board of Messe Frankfurt, commented: “We are delighted that our contract with DECHEMA has been renewed.” This means that the Frankfurt exhibition grounds will be playing host to ACHEMA – the world forum and leading show for the process industries – until at least 2027. Uwe Behm: “ACHEMA is a prime example of the kind of premium international event and personal interaction that will remain important in the future as well as sending an important signal for our Frankfurt base.”

As Mayor Peter Feldmann concluded: “Even in challenging times, Messe Frankfurt continues to invest in its future and in expanding its portfolio, having added a total of 23 events worldwide since 2020. These include, for example, the Cross Border E-Commerce Fair in Shenzhen – the first event of its kind in China – which was added during the current financial year. As well as this, the Group will be stepping up its activities in the North Chinese city of Tianjin. Located in the centre of the Circum-Bohai-Sea Economic Zone, the city’s economic importance is on a par with that of the Greater Bay Area and Yangtze River Delta and it is set to be a new global trade fair hotspot.”

Photo: pixabay
06.07.2021

»Waste4Future«: Today's Waste becomes Tomorrow's Resource

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Plastics such as polyethylene (PE), polypropylene (PP) or polystyrene (PS), which are currently produced almost entirely from fossil raw materials, are fundamental to many everyday products and modern technologies. The carbon contained in plastics is an important resource for the chemical industry. If it is possible to better identify such carbon-containing components in waste, to recycle them more effectively, and to use them again to produce high-quality raw materials for industry, the carbon can be kept in the cycle. This not only reduces the need for fossil resources, but also pollution with CO2 emissions and plastic waste. At the same time, the security of supply for industry is improved because an additional source of carbon is tapped.

The "Waste4Future" lighthouse project therefore aims to create new opportunities for recycling plastics in order to make the carbon they contain available as a "green" resource for the chemical industry. "We are thus paving the way for a carbon circular economy in which valuable new base molecules are obtained from plastic waste and emissions are largely avoided: Today's waste becomes tomorrow's resource," says Dr.-Ing. Sylvia Schattauer, deputy director of the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, which is heading the project. "With the know-how of the participating institutes, we want to show how the comprehensive recycling of waste containing plastics without loss of carbon is possible and ultimately economical through interlocking, networked processes." The outcome of the project, which will run until the end of 2023, is expected to be innovative recycling technologies for complex waste that can be used to obtain high-quality recyclates.

Specifically, the development of a holistic, entropy-based assessment model is planned (entropy = measure of the disorder of a system), which will reorganize the recycling chain from process-guided to material-guided. A new type of sorting identifies which materials and in particular which plastic fractions are contained in the waste. Based on this analysis, the total stream is separated and a targeted decision is then made for the resulting sub-streams as to which recycling route is the most technically, ecologically and economically sensible for this specific waste quantity. What cannot be further utilized by means of mechanical recycling is available for chemical recycling, always with the aim of preserving the maximum possible amount of carbon compounds. Burning waste containing plastics at the end of the chain is thus eliminated.

The challenges for research and development are considerable. These include the complex evaluation of both input materials and recyclates according to ecological, economic and technical criteria. Mechanical recycling must be optimized, and processes and technologies must be established for the key points in the material utilization of plastic fractions. In addition, suitable sensor technology must be developed that can reliably identify materials in the sorting system. Machine learning methods will also be used, and the aim is to link them to a digital twin that represents the properties of the processed materials.

Another goal of the project is the automated optimization of the formulation development of recyclates from different material streams. Last but not least, an economic evaluation of the new recycling process chain will be carried out, for example with regard to the effects of rising prices for CO2 certificates or new regulatory requirements. The project consortium will also conduct comprehensive life cycle analysis (LCA) studies for the individual recycling technologies to identify potential environmental risks and opportunities.

For the development of the corresponding solutions, the participating institutes are in close exchange with companies from the chemical industry and plastics processing, waste management, recycling plant construction and recycling plant operation, in order to consider the needs of industry in a targeted manner and thus increase the chances of rapid application of the results achieved.

The following Institutes are involved in the Fraunhofer lighthouse project "Waste4Future":

  • Fraunhofer Institute for Microstructure of Materials and Systems IMWS (lead)
  • Fraunhofer Institute for Non-Destructive Testing IZFP
  • Fraunhofer Institute for Materials Recycling and Resource Strategy IWKS
  • Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB
  • Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Fraunhofer Institute for Process Engineering and Packaging IVV
Photo: Pixabay
29.06.2021

A sustainable Circular Economy: Polypropylene Recycling from Carpet Waste

A significant part of carpet waste consists of petroleum-based polypropylene. As a non-recyclable product, disposing of it has previously meant incineration or landfill. However, a new solvent is now making it possible to recover virgin-standard polypropylene from carpet waste — with no perceptible reduction in quality. Developed by the Fraunhofer Institute for Building Physics IBP and its partners, the process also involves costs that are quite competitive. The development has taken place as part of the ISOPREP EU project.

The EU alone produces around 1.6 million tons of carpet waste every year. The majority of this ends up being sent to landfill or incinerated, as carpet is a composite material that is not suitable for purely mechanical recycling methods. With carpet waste analysed in the project consisting of around a quarter polypropylene, a petroleum-based plastic, the result is a great deal of resources going to waste.

A significant part of carpet waste consists of petroleum-based polypropylene. As a non-recyclable product, disposing of it has previously meant incineration or landfill. However, a new solvent is now making it possible to recover virgin-standard polypropylene from carpet waste — with no perceptible reduction in quality. Developed by the Fraunhofer Institute for Building Physics IBP and its partners, the process also involves costs that are quite competitive. The development has taken place as part of the ISOPREP EU project.

The EU alone produces around 1.6 million tons of carpet waste every year. The majority of this ends up being sent to landfill or incinerated, as carpet is a composite material that is not suitable for purely mechanical recycling methods. With carpet waste analysed in the project consisting of around a quarter polypropylene, a petroleum-based plastic, the result is a great deal of resources going to waste.

Carpet recycling now possible thanks to a new process
A team of researchers, including from Fraunhofer IBP, has now developed a new recycling process as part of an EU project named ISOPREP (see logo). “For the first time, this is making it possible to recover polypropylene from carpet waste — and the outcome is virgin-quality,” says Maike Illner, a researcher at Fraunhofer IBP. Not only does this allow the recovered polypropylene to be used in lower-quality products (in a process known as downcycling), but it also means that the quality is similar to that of newly manufactured polypropylene, making the material suitable for high-quality products too.

The process is based on a special solvent in the form of an ionic liquid. With the right components, it is able to selectively extract polypropylene from carpet fibers. Before the team of experts applies the solvent, the carpet waste is cleaned — something which involves removing as much of the backing as possible — and broken down. Once the pretreatment is complete, the waste is fed into a reactor in which it undergoes treatment using the solvent. The polypropylene is selectively dissolved in the solvent, a method that provides an effective way of removing dyes and other additives. The process is already being used on an extensive laboratory scale involving several liters of the solvent — and now, the research consortium has set its sights on scaling the process up to a pilot plant with the ability to recycle a ton of carpet waste per day. The pilot plant is set to commence operation by the end of the project in March 2022.

Costs and environmental impact
A recycling process can only be deployed on a large scale if its costs are competitive. For this application, this means retaining as much of the expensive ionic liquid as possible in the cycle. “If loss rates can be kept to one percent or less, there is potential for the costs of the process to rival those of producing new polypropylene,” explains Illner. “We know this thanks to a preliminary economic analysis that we conducted at Fraunhofer IBP.” The analysis involved the Fraunhofer researchers investigating the quantities of material and energy that would be required for the process and what kind of product would be output, and then calculating the associated costs. The team also considered how the costs would develop over the long term.

Fraunhofer IBP is focusing on the ecological aspects of carpet recycling. It is able to draw conclusions from factors including a lifecycle assessment, which sheds light on the emissions that are produced during the recycling process, for example. If the consortium is able to achieve its aim of keeping solvent loss rates to one percent or less in this case too, primary energy requirements and greenhouse gas emissions will remain on a similar scale to those involved in producing new polypropylene.

Potential for transfer to other polypropylene waste streams
While carpet waste is the focus of this particular project, the process that has been developed has potential applications far beyond it. The experts involved believe that it could be transferred to a whole host of waste flows that contain polypropylene and are unsuitable for conventional recycling methods. “One example is polypropylene products that contain dyes and additives,” says Illner. “Until now, it has been difficult to extract them from plastic, which means that the recycled polypropylene has only been suitable for use in lower-quality products.” The new process separates the polypropylene not only from other materials, but also from dyes and other additives, allowing it to be used in high-quality applications.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 820787.

(c) CHT Group
22.06.2021

CHT: "We are hiring." Humans Resources Policy in Times of Pandemic and Skills Shortage

The CHT Group is a globally operating company group for specialty chemicals. It has been in business for more than 65 years in a wide variety of industrial sectors and markets. Innovative and high-quality specialty chemicals alongside convincing services are just as much part of the portfolio as chemical auxiliaries and additives.

Textination spoke with Kurt Speckle [Head of Technical Service Dyestuffs] and Ursula Häberli [Head of Human Resources] specifically for the Textile Solutions division about the challenges of a successful human resources policy in such special times as a pandemic and the shortage of skilled workers.

The CHT Group is a globally operating company group for specialty chemicals. It has been in business for more than 65 years in a wide variety of industrial sectors and markets. Innovative and high-quality specialty chemicals alongside convincing services are just as much part of the portfolio as chemical auxiliaries and additives.

Textination spoke with Kurt Speckle [Head of Technical Service Dyestuffs] and Ursula Häberli [Head of Human Resources] specifically for the Textile Solutions division about the challenges of a successful human resources policy in such special times as a pandemic and the shortage of skilled workers.

The Technical Service Dyestuff department, headed by Kurt Speckle, who has worked for CHT for 32 years, currently comprises 16 people. It consists of a technical staff, which supports customers worldwide in the form of technical advice, on-site trials, lectures and in the creation of presentations, as well as a laboratory team, which handles inquiries regarding color settings, problem solutions, fastness, etc. Depending on the customer inquiry, both departments work hand in hand together.

The know-how and the heart of the technical staff consists of six people, all 50+, whom Kurt Speckle - with a grin - also calls "textile dinosaurs". In addition, young technicians with operational experience are being trained in order to be introduced to larger tasks. The apprenticeship training for textile laboratory technicians at CHT SWITZERLAND AG has a supporting effect.

As a globally operating company group for specialty chemicals, the CHT Group has been active in numerous industrial sectors and markets of 20 countries for more than 65 years. CHT Switzerland AG turns 50 this year and is the world's competence center for dyes. How has it been possible to establish and maintain such a good market position in dyes?

Kurt Speckle: In addition to the quality level of our products and the wide range of more than 700 products covering the various quality requirements of today's customers, CHT Switzerland also offers an excellent technical service for the product application. This globally known additional service makes us interesting for customers and generates inquiries worldwide. Transferring customer-specific problem solutions from our laboratory to production is one of the keys to our success.

In the Textile Solutions division, you have a wide range of specialty chemicals and dyes for textile production in your portfolio. In your opinion, in which direction is the textile industry currently moving in terms of dye chemistry - what trends do you see? What does this mean for your product range?

Kurt Speckle: One of the challenges today is to find the right dye gamma for the desired application. In recent years, we have constantly adapted the range to the new needs and requirements. In addition to these technical specifications, the entire textile finishing industry is also constantly confronted with new ecological and toxicological legal requirements. Textiles and also technical textiles not only have to meet certain fastness requirements, but also have to comply with countless label requirements. REACH and many labels lead to constant adjustments in the dye finishing to ensure that the products are up-to-date with the latest technology.

How does optimal teamwork work in the dyestuff team, and how can you ensure that the knowledge and experience gained over many years is passed on?

Kurt Speckle: Exchange of experience works with people who have practical experience. Only this can be built upon and new information can be stored accordingly. We operate and communicate on a common drive. Lively verbal communication is also essential for this. Our own tests in the laboratory and also in the production at customers' sites form the actual wealth of experience of our employees.

We are observing various megatrends that have taken a new turn as a result of the pandemic and that also directly affect your customers in the textile industry: Neo-ecology, connectivity and digitalization, health - to name just a few. To what extent does this challenge you as a service provider for your customers and as an employer? Is there a changed requirements profile for your employees?

Kurt Speckle: Due to the omission of traveling and direct customer contact, the working picture has of course changed. Due to the experience potential, however, many problem inquiries can be processed and solved via a wide variety of communication options. However, this cannot be seen as a sustainable and permanently established system. Experience and further development can only take place through practical trials on the most varied machines under the most varied conditions and with our dyes.

In which areas of training - whether at university or in apprenticeships - do you see a need for improvement in the curricula? Do career starters have the necessary skills for your company, or do you need to provide additional training in fundamental required areas?

Ursula Häberli: We train our future pool of specialists internally. In addition, we have several apprentices every year as textile and chemical laboratory technicians, whom we offer a permanent position afterwards. The training at the vocational school and in the advanced courses is excellent. The apprentices are challenged in many different areas. Textile laboratory assistants complete exactly the same training as chemical laboratory assistants, but have additional 240 lessons of textile training and textile courses. Textile laboratory assistants now require very extensive, in-depth and broad specialist knowledge. The textile industry is developing rapidly and new, complex content is constantly being added to the already very broad basic knowledge. We also actively support further education, for example the BSc Design & Technology at the Swiss Textile College. This training is broadly based and provides employees with good specialist knowledge and various additional essential skills.

What do you think about the personnel situation at CHT in general? Can you fill all positions? Who are you currently looking for most urgently?

Ursula Häberli: Our long-standing market presence and the good reputation we have built up over 50 years with our "customer first" approach always help us to attract talent. We are currently looking for a person as a textile technician for the Dyestuffs BU. Here we are planning early for the succession of a textile dinosaur who may retire in 2022. And for the Garment Team we are also looking for a textile technician.

The garment sector is a textile specialty that has been increasingly relocated to eastern countries in the last 10 years. Therefore, the search will certainly be a challenge.

You have built a career portal for CHT at https://career-switzerland.cht.com. With this website, you directly address different target groups: Apprentices, students, young professionals and experienced professionals. What role do the "old stagers" play in the company group?

Ursula Häberli: The old stagers are sometimes called "dinosaurs" by us - textile workers like them, with an often lifelong career in the textile world, are rare, pessimistically speaking: dying out. But all joking aside, the old stagers are enormously important. It is up to them to actively pass on their knowledge to future generations. This is already working very well on a day-to-day basis. The dyestuff team - including the boss - deliberately sits together in one large room so that a lot can be overheard and discussed. The team recently launched the "Textile Lunches". These are short concise learning nuggets to share knowledge and experience.

Employer branding seems to have been the magic word for some time now. Create an attractive employer brand, focus on strengths such as open corporate culture, transparent communication, responsibility for one's own area and employee benefits - and all positions are filled very quickly. What does CHT think of employer branding, what experience have you had with it, and what special offers do you provide to prospective employees?

Ursula Häberli: With the career site https://career-switzerland.cht.com, we have deliberately chosen a modern, outward-looking tool to strengthen our employer brand. CHT ambassadors tell their stories and make job seekers want to join us and help shaping the future. Another big plus is that the workplace is located in a wonderful landscape with a high recreational value, close to Lake Constance and an impressive mountain landscape, where our employees like to spend their time.

For some time now, the CHT company group has been operating under a new claim: Chemistry with Character. This statement was created for marketing purposes, but it certainly also says something about the company. What does this claim mean in particular for your personnel policy? Who is already on your team? Who are you looking for? And how many rough edges are employees allowed to have?

Ursula Häberli: We are looking for doers with high team player qualities. That's what sets us apart and makes us prepared for the future. We offer an extremely exciting field of work that demands a high degree of personal responsibility, initiative and creativity. We are proud to be the competence center for dyes at the Montlingen site - one of the few companies in the geographic area of Eastern Switzerland / Vorarlberg / Southern Germany that still exists and will continue to exist for a long time.

 

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

Photo: Pixabay
15.06.2021

Cabinet passes Draft on German Supply Chain Act

Passed on March 3, 2021, it will become effective as of Jan. 1, 2023 - the Supply Chain Act for companies with more than 3,000 employees. The draft law on corporate due diligence in supply chains - The Supply Chain Act - decided by the German Cabinet is expected to be finalized by the German Bundestag before the summer break.

With the fire at a textile factory in Pakistan in 2013, which claimed more than 250 victims, the topic of supply chain management and sustainable procurement received a great deal of publicity and was placed on the political agenda at various levels: companies can relocate their production abroad - but not their responsibility.

Passed on March 3, 2021, it will become effective as of Jan. 1, 2023 - the Supply Chain Act for companies with more than 3,000 employees. The draft law on corporate due diligence in supply chains - The Supply Chain Act - decided by the German Cabinet is expected to be finalized by the German Bundestag before the summer break.

With the fire at a textile factory in Pakistan in 2013, which claimed more than 250 victims, the topic of supply chain management and sustainable procurement received a great deal of publicity and was placed on the political agenda at various levels: companies can relocate their production abroad - but not their responsibility.

In recent years, a number of measures have been taken worldwide to improve the situation in global value chains. In particular, this involves compliance with human rights, social issues and environmental protection. However, the results are sobering: According to the BMZ (Federal Ministry for Economic Cooperation and Development), 25 million people are currently in forced labor, and 75 million boys and girls worldwide are affected by exploitative child labor.

But where does responsibility begin, and where does it end? The recently passed draft law on corporate due diligence in supply chains is a compromise decision by the ministries involved for development, labor and economy.

Experts from the accredited certification organization GUT Certification Company for Management Systems in Berlin have compiled key statements and estimations:

Which human rights do the due diligence obligations relate to?

  • Integrity of life and health
  • Freedom from slavery and forced labor
  • Protection of children and freedom from child labor
  • Freedom of association and the right of collective bargaining
  • Protection against torture
  • Fair working conditions (occupational health and safety, breaks)
  • Environmental obligations to protect human health

Circle of affected companies located in Germany and deadlines:

  • From 2023: Companies with more than 3,000 employees (over 600 companies in Germany)
  • From 2024: Companies with more than 1,000 employees (2,900 companies)

Obligations in the value chain
In addition to the affected companies' own business operations, responsibility initially extends only to their direct suppliers and service providers. Within the framework of risk management, adverse effects on human rights and environmental due diligence obligations are to be identified and documented in corresponding risk reports.

As long as there are no concrete indications of human rights violations, the monitoring of indirect suppliers is not the responsibility of the companies involved.

The documents are to be checked by the Federal Office for Economic Affairs and Export Control (BAFA). In the event of violations of the law, companies will initially face sanctions in the form of fines, however, in the event of serious violations, they may also be excluded from the granting of public contracts.

Overall, the "Act on Corporate Due Diligence in Supply Chains" does not provide for a duty to succeed or a guarantee liability, but primarily requires the companies involved to take measures within the framework of an "obligation of efforts".

The law does not provide for civil liability for any human rights violations in the supply chain. However, in the event of violations of human and labor rights, foreign employees are to be given the opportunity to be represented by trade unions and before German courts.

What does a company need to do in its own business unit and with its direct supplier?
Companies must implement the following measures:

  • Pass declaration of principles on respect for human rights
  • Risk analysis: establish and implement procedures to identify adverse human rights impacts
  • Risk management (incl. corrective measures) to prevent potentially negative impacts on human rights
  • Set up complaints mechanism
  • Report transparently and publicly
  • In the event of a violation, corrective measures must be taken immediately in the company's own business area, and it is imperative that these measures lead to the termination of the violation. In addition, further preventive measures must be initiated
  • If the violation with the direct supplier cannot be terminated in the foreseeable future, a concrete plan for minimization and avoidance must be created. Appropriate measures must be taken for this purpose, starting with supplier development within a defined time frame and ending with the discontinuation of the business relationship.

What does a company have to do with the indirect supplier?
Here, the due diligence obligations only apply on an occasion-related basis. If the company becomes aware of a possible violation by an indirect supplier, it must immediately:

  • Carry out a risk analysis
  • Implement a concept for minimization and prevention
  • Establish appropriate preventive measures regarding the causer of the violation

Is that a breakthrough? Barely.
With the aim of improving the human rights situation along the supply chain of German companies and thus implementing the UN Guiding Principles on Business and Human Rights, the German government passed the National Action Plan on Business and Human Rights (NAP) back in 2016. This urged companies to review their business activities and relationships with regard to human rights risks and implement necessary measures - on a voluntary basis.

However, the German government's report was sobering. For example, the monitoring of the implementation status of the NAP's requirements carried out from 2018 to 2020 revealed, that less than 20% of the German companies surveyed have voluntarily fulfilled their human rights due diligence obligations to date.

Now, ethical obligations are becoming part of the compliance, at least for the big companies in Germany. The majority of the "giants" involved are already familiar with the obligation under the EU Conflict Minerals Regulation and/or the EU CSR Directive: Corporate responsibility in the supply chain is a mandatory part of non-financial reporting. However, the materiality view here is defined by size of loss and not the topicality of the problem in the supply chain.

What does the new law change? With the law passed, everything remains the same for now: Digging in deeper and developing one’s own supply chain is still not mandatory.

Status Quo
From experience in validating sustainability reports, GUTcert auditors see that many German companies of various sizes are already addressing sustainability concerns in the supply chain based on their own corporate sustainability and ethical obligations:
 
The introduction of a code of conduct for business partners is already part of everyday life in many companies. When contracts are listed for the first time and renewed, the direct suppliers and service providers must adopt certain obligations and carry them forward into their own value chain.

Documentation of the risk analysis and its results as required by law is also no longer a novelty. At the latest in the context of conventional economic concerns, it is no longer possible to imagine supply chains without risks. The pandemic had brought this topic even more into focus in the light of interrupted supply chains in many places. Many companies have already expanded the purely economic risks to include sustainability-related issues, i.e. environmental and social concerns, human rights clauses and anti-corruption rules.

What is often missing, however, is an effective monitoring of the respective performance of the business partners. Self-reporting is the common tool in demonstrating sustainability in the supply chain. On-site controls are linked with high costs and often with the lack of knowledge about the possible means of a sustainability management. Some risks therefore often remain "blind spots".

What to do?
A matrix of one's own corporate sustainability risks of the value chain related to countries, industries and products is a first step in the right direction. With or without the law: The important thing is to take a serious look at your own supply chain and set the boundaries, so that existing risks of violation can actually be addressed - step by step. This way, any company can work out the key risks and opportunities with manageable effort. Help is provided by some internationally recognized sources that can serve as a basis for risk evaluation.
 
Targets and measures should be derived from the main risks and opportunities. These can range from the company's own controls and association work in its own industry to cooperation with international organizations, platforms and certifications. There are many options if one is looking for them.

Source:

GUT Certification Company for Management Systems

(c) Fraunhofer IAP
08.06.2021

Fraunhofer IAP: Recyclable, Fiber-reinforced Material made from Bio-based Polylactic Acid

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

The German Federal Ministry of Food and Agriculture (BMEL) is intensively promoting the development of biomaterials as part of its Renewable Resources funding program. More than 100 projects are currently underway, covering a wide range of topics: from plastics that are degradable in the sea to natural fiber-reinforced lightweight components for the automotive sector. The projects are supported by the Agency for Renewable Resources, the BMEL project management agency responsible for the Renewable Resources funding program.

Easier recycling of fiber-reinforced plastics
PLA is one of the particularly promising bio-based materials. The global market for this polymer is growing by around 10 percent a year. PLA is also used, among other things, as a matrix in fiber-reinforced plastics. In these mechanically resilient plastics, reinforcing fibers are embedded in a plastic matrix.

The Fraunhofer IAP project is now focusing on these reinforcing fibers: "We are further developing our PLA fibers in order to transfer them to industrial scale together with partners from industry. These fibers are ideally suited for reinforcing PLA plastics. The resulting self-reinforcing single-component composite promises great recycling benefits. Since the fiber and the matrix of PLA are chemically identical, complex separation steps are not necessary," explains Dr. André Lehmann, expert for fiber technology at Fraunhofer IAP.

Novel PLA fibers and films are more thermally stable
The challenge with this approach is that conventional PLA has a relatively low temperature resistance. Technical fibers can be produced most economically using the melt spinning process. The Fraunhofer IAP team is now using more thermally stable stereocomplex PLA (sc-PLA) for the fibers. The term stereocomplex refers to a special crystal structure that the PLA molecules can form. Sc-PLA fibers have a melting point that is 40 - 50 °C higher and can therefore withstand the incorporation process in a matrix made of conventional PLA. In the project, the researchers are developing and optimizing a melt spinning process for sc-PLA filament yarns. The partner in this work package is Trevira GmbH, a manufacturer of technical and textile fiber and filament yarn specialties that are in demand from automotive suppliers and contract furnishers, among others. Furthermore, the development of a manufacturing process for sc-PLA reinforced flat films is planned. The international adhesive tape manufacturer tesa SE is participating in this task, and will test the suitability of sc-PLA films as adhesive foils. In a third work package, the Fraunhofer IAP will finally process the filaments in a double pultrusion process to produce granules suitable for injection molding.

Bio-based solutions for the automotive and textile industries
The scientists led by Dr. André Lehmann are certain that the self-reinforced PLA material can conquer many new areas of application. The automotive and textile industries are already showing interest in bio-based materials that are also easier to recycle. In terms of price, PLA would already be competitive here, and now the material is also to be made technically fit for the new tasks.

Professor Alexander Böker, head of Fraunhofer IAP, says: "The steadily growing demand from industry for sustainable solutions underlines how important it is to develop biobased and at the same time high-performance materials. With our research, we are also actively driving the development of a sustainable and functioning circular economy and therefore very much welcome the support from the federal government."

Information on the project is available at fnr.de under the funding code 2220NR297X.