Textination Newsline

Reset
82 results
The developed textile mitigates health risks from prolonged extreme cold exposure, including hemoconcentration-based arterial blood clotting, breathing issues, and weakened immunity. Photo: IIT Guwahati
02.04.2025

Self-Cleaning, Flexible Heating Fabric for Cold Climates

Indian Institute of Technology Guwahati researchers have developed a water-repellent, conductive textile that converts electricity and sunlight into heat. Designed to keep wearers warm in cold environments, this innovation addresses the serious health risks posed by prolonged exposure to very low temperatures, including hemoconcentration-based arterial blood clotting, breathing difficulties, and weakened immunity.
 
The findings of this research have been published in the journal, Nano-Micro-Small, in a paper co-authored by Prof. Uttam Manna, Department of Chemistry, IIT Guwahati, along with his research team, Ms. Debasmita Sarkar, Mr. Haydar Ali, Mr. Rajan Singh, Mr. Anirban Phukan, Mr. Chittaranjan Mishra, and Prof. Roy P. Paily from Department of Electronics and Electrical Engineering, IIT Guwahati.

Indian Institute of Technology Guwahati researchers have developed a water-repellent, conductive textile that converts electricity and sunlight into heat. Designed to keep wearers warm in cold environments, this innovation addresses the serious health risks posed by prolonged exposure to very low temperatures, including hemoconcentration-based arterial blood clotting, breathing difficulties, and weakened immunity.
 
The findings of this research have been published in the journal, Nano-Micro-Small, in a paper co-authored by Prof. Uttam Manna, Department of Chemistry, IIT Guwahati, along with his research team, Ms. Debasmita Sarkar, Mr. Haydar Ali, Mr. Rajan Singh, Mr. Anirban Phukan, Mr. Chittaranjan Mishra, and Prof. Roy P. Paily from Department of Electronics and Electrical Engineering, IIT Guwahati.

Extreme cold temperatures can lead to health problems that can even be fatal. Studies indicate that deaths due to extreme cold outnumber those caused by extreme heat. Traditional solutions protect oneself from extreme cold, such as heaters or layered clothing are often bulky or require a constant power source. Conductive textiles offer a lightweight, flexible alternative, but existing versions often have limitations, such as poor durability, high power consumption, and vulnerability to water exposure.

To overcome these challenges, IIT Guwahati research team developed a novel approach by sprayed ultra-thin and clean silver nanowires onto cotton fabric to make it conductive. These nanowires are 100,000 times thinner than a human hair, allowing electricity to flow through the fabric, helping it generate heat while remaining soft and flexible. Due to its exceptional electrical conductivity and the ability to convert both electricity and sunlight into heat, silver nanowires were chosen for this experiment. The low electrical resistance of silver allows the electrothermal conversion at low applied voltage and eliminating the risk of electrocution.

One limitation with silver nanowires is that it can tarnish over time, affecting performance. To address this, researchers applied a water-repellent coating to the silver nanowires that protects against oxidation, water, and stains. The coating, inspired by lotus leaves, has a microscopic rough surface texture, which causes water to roll off instead of soaking in. This keeps the textile dry, ensuring long-lasting conductivity and effective heating, even in damp conditions. The water-repellent coating also prevents damage from sweat, rain, or accidental spills, making it reliable for outdoor and everyday applications.

The textile can convert electricity using a small rechargeable battery or solar energy into heat and can maintain a desired temperature between 40°C and 60°C for over 10 hours.

The researchers tested the textile in wearable knee and elbow bands, demonstrating its potential to provide sustained warmth for individuals working in cold environments and arthritis patients needing localized heat therapy. Additionally, the textile has broader applications, such as on-demand water heating and accelerating chemical reactions by wrapping it around the reaction vessels.

Speaking about the developed textile, Prof. Uttam Manna, said, “Our textile is self-cleanable, breathable, and flexible and can easily be scaled up. Its durability and long-lasting performance make it useful in a range of applications that require controlled heating."
The research team has filed an Indian patent on the innovation and is now working towards integrating the developed material with a miniaturised and appropriate electronic circuit to create viable products. Additionally, the team is seeking industry collaborations to bring the innovation to market for potential dry thermos-therapy applications in the near future.

Source:

Indian Institute of Technology Guwahati

Dr Alana James and Dr Kelly Sheridan, pictured in the FibER Hub Dr Alana James and Dr Kelly Sheridan, pictured in the FibER Hub. Northumbria University
17.02.2025

Extent of microfibre pollution to be explored at new research hub

A newly established research hub in North East England will explore the extent and environmental impact of microfibre loss from textiles.

Microfibre shedding from clothing during machine washing and drying is well known, with the tiny fibres causing harm to wildlife and the environment when they enter soil, air and waterways.

Located on Northumbria University’s campus in the centre of Newcastle, the Fibre-fragmentation and Environment Research Hub (FibER Hub) is the result of a collaboration between the University and The Microfibre Consortium (TMC) and will extensively test a wide variety of fabrics to determine the level of microfibre loss under different conditions and the associated environmental impacts.

A newly established research hub in North East England will explore the extent and environmental impact of microfibre loss from textiles.

Microfibre shedding from clothing during machine washing and drying is well known, with the tiny fibres causing harm to wildlife and the environment when they enter soil, air and waterways.

Located on Northumbria University’s campus in the centre of Newcastle, the Fibre-fragmentation and Environment Research Hub (FibER Hub) is the result of a collaboration between the University and The Microfibre Consortium (TMC) and will extensively test a wide variety of fabrics to determine the level of microfibre loss under different conditions and the associated environmental impacts.

Recent research has shown that the clothes we wear are shedding microfibres throughout their entire lifespan, from textile manufacture through to everyday wear. Even microfibres from fabrics considered ‘natural’, such as cotton, can have a negative impact on the environment, as manufacturing processes introduce chemical dyes and finishes to the fabric so that it is no longer in its natural state.

Based in the Northumbria School of Design, Arts and Creative Industries, the FibER Hub features state-of-the-art equipment which will allow researchers to understand exactly what and how much fibre a fabric sheds at each stage of its lifespan.

In recent years, efforts have focused on quantifying microfibre loss from domestic laundering. This new collaboration will build on existing knowledge and compliment these learnings through the exploration of additional environmental settings in which textiles shed fibres.

It is hoped that the research will inform the development of more sustainable textiles in the future, with targeted interventions throughout the lifespan to reduce shedding rates.
Work on this topic is being led by The Microfibre Consortium (TMC), a science-led nonprofit organisation which is convening the global textiles sector through The Microfibre 2030 Commitment and Roadmap.

TMC connects academic research with the reality of commercial supply chain production to facilitate science-led change within the industry. It is the first and only organisation that is fully focused on this issue and works on behalf of its 95 signatories, which include global brands and retailers, suppliers, and NGOs.

The FibER Hub has been developed as part of the IMPACT+ project – a multi-disciplinary network of academics and industry experts, set up to challenge the way environmental impact is measured and assessed across the fashion and textile industries.

Established in 2023, the project is funded through UK Research and Innovation’s circular fashion and textile programme NetworkPlus, and includes academics from Northumbria University, King’s College London and Loughborough University, covering a variety of expertise, such as water, air and soil pollution, forensic science, design, and big data.

Working alongside them are representatives from global fashion brands including Barbour, Montane, and ASOS; sustainable clothing companies Agogic and This is Unfolded; campaign groups Fashion Revolution and WRAP; and the Northern Clothing and Textile Network, Newcastle City Council and Newcastle Gateshead Initiative.

Northumbria’s Dr Alana James is Principal Investigator for the project and said: “This strategic partnership reflects the core aim of the IMPACT+ Network by focusing on microfibres as an overlooked and unmeasured environmental pollutant.”

“Interdisciplinary collaboration with design and environmental science will enable our research to reduce fibre shedding at the root cause, whilst implementing these insights directly within an industry setting.”

Dr Kelly Sheridan is Chief Executive Officer of TMC and an Associate Professor in Forensic Science at Northumbria. Her research focuses on textile fibres and fibre fragmentation.

She said: “The FibER Hub collaboration enables TMC to draw on the interdisciplinary skills and technical capabilities of Northumbria and the IMPACT+ team to expand our knowledge offering to our signatory community.”

“Through this collaboration, the TMC research team will provide direction to relevant research informed by industry needs, to go beyond what is possible today and create robust, wide ranging and comprehensive lifespan data on fibre fragmentation.”

Source:

Northumbria University

Photo by FlyD on Unsplash
04.02.2025

Sustainable Textiles – The Way Forward

High dependence on fossil carbon, associated high carbon footprint, low recycling rates and microplastics: several solutions are emerging.

The evolution of the demand for textile fibres from 1960 to the present day shows how the textile industry found itself in this dilemma. In 1960, around 95% of textile fibres were of natural origin, from bio-based carbon, and there was no problem with microplastics, all fibres were biodegradable.

High dependence on fossil carbon, associated high carbon footprint, low recycling rates and microplastics: several solutions are emerging.

The evolution of the demand for textile fibres from 1960 to the present day shows how the textile industry found itself in this dilemma. In 1960, around 95% of textile fibres were of natural origin, from bio-based carbon, and there was no problem with microplastics, all fibres were biodegradable.

The explosion in demand – 650% between 1960 and 2023 – could only be met by synthetic fibres from the chemical and plastics industries. Their share grew from 3% in 1960 to 68% in 2023 and from less than 700,000 tonnes to 85 million tonnes/year (The Fiber Year 2024). The new fibres covered a wide range of properties, could even achieve previously unknown properties and, above all, thanks to a powerful and innovative chemical and plastics industry, production volumes could be rapidly increased and comparatively low prices realised.
 
At the same time, sustainability has declined, the carbon footprint of the textiles has increased significantly and the issue of microplastics requires solutions.

The first step would be to significantly increase the proportion of renewable fibres, as this is the only way to reduce dependence on fossil carbon, especially in the form of crude oil, and thus reduce the carbon footprint. But how can this be done? As defined by the Renewable Carbon Initiative, renewable carbon comes from biomass, CO2 and recycling: From carbon above ground. This addresses the core problem of climate change, which is extracting and using additional fossil carbon from the ground that will end up in the atmosphere.
 
What can cotton, bast fibres and wool contribute?
Cotton fibre production can hardly be increased, it is stagnating between 20 and max. 25 million tonnes/year. Cultivated areas can hardly be expanded, and existing areas are salinized by the irrigation required. With the exception of about 1% organic cotton, significant amounts of pesticides are used. The market share of “preferred” cotton – defined by a list of recognized programmes – will fall from 27% of total cotton production in 2019/20 to 24% in 2020/21, after years of growth. (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report) Bast fibres such as jute (75%), flax, hemp, ramie or kenaf would require a huge boost in technology development and capacity investment and will nevertheless probably remain more expensive than cotton, simply because bast fibres are much more complicated to process, e.g. separating the fibre from the stalk, which is not necessary for cotton as a fruit fibre. As a source of cellulose fibre, bast fibres will remain more expensive than wood.

Although bast fibres are more sustainable than many other fibres, there is unlikely to be a major change – unless China focuses on bast fibres as a substitute for cotton. Plans to do so have been put on hold due to technological problems.

The importance of man-made cellulosic fibres (MMCFs) or simply cellulose fibres
Cellulose fibre production has been growing steadily over the last decades, reaching an all-time high of nearly 8 million tonnes in 2023, and is expected to grow further to 11 million tonnes in 2030. Cellulosic fibres are the only bio-based and biodegradable fibres that cover a wider range of properties and applications and can rapidly increase their capacity. The raw materials can be virgin wood as well as all types of cellulosic waste streams from forestry, agriculture, cotton processing waste, textile waste and paper waste. Increasing the share of cellulosic fibres will therefore play a crucial role in solving the sustainability challenges of the textile industry.

The production of MMCFs includes viscose, lyocell, modal, acetate and cupro. The market share of FSC and/or PEFC certified MMCF increased from 55–60% in 2020 to 60–65% of all MMCF in 2021. The market share of “recycled MMCFs” increased to an estimated share of 0.5%. Much research and development is underway. As a result, the volumes of recycled MMCFs are expected to increase significantly in the coming years. (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report)

The CEPI study “Forest-Based Biorefineries: Innovative Bio-Based Products for a Clean Transition” (renewable-carbon.eu/publications/product/innovative-bio-based-products-for-a-clean-transition-pdf/) identified 143 biorefineries in Europe, of which 126 are operational and 17 are planned. Most of them are based on chemical pulping (67%) – the precursor of cellulose fibres. Most biorefineries are located in Sweden, Finland, Germany, Portugal and Austria. But there are already biorefineries in operation or planned in 18 different European countries.

The global report “Is there enough biomass to defossilise the Chemicals and Derived Materials Sector by 2050?” (upcoming publication end of February 2025, available here: renewablecarbon.eu/publications) shows particularly high growth in dissolving/chemical pulp (from 9 in 2020 to 44 million tonnes in 2050; growth of 406%), cellulose fibres (from 7 in 2020 to 38 million tonnes in 2050; growth of 447%) and cellulose derivatives (from 2 in 2020 to 6 million tonnes in 2050; growth of 190%).

Biosynthetics – Bio-based and CO2-based Synthetic Fibres
To further reduce the share of fossil-based synthetic fibres, bio-based polymer fibres (also called “biosynthetics”) are an excellent option because of their wide range of properties – only the implementation will take decades as the share today is only below 0.5%. There are many options, such as polyester fibres (PLA, PTT, PEF, PHA), polyolefin fibres (PE/PP), bio-based PA fibres from castor oil. PTT, for example, is well established in the US carpet market and PLA in the hygiene market. They are all bio-based, but only a few are also biodegradable (PLA, PHA).
 
Biosynthetics are one of many applications of bio-based polymers. In general, 17 bio-based polymers are currently commercially available with an installed capacity of over 4 million tonnes in 2023. Ten of these bio-based polymers are used as biosynthetics. resulting in the production of over one million tonnes of biosynthetics (nova report: Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2023–2028, renewable-carbon.eu/publications/product/bio-based-buildingblocks-and-polymers-global-capacities-production-and-trends-2023-2028-short-version/).

In principle, many fibres can also be made from CO2, but here the technology and capacity needs to be developed, perhaps in parallel with the production of sustainable aviation fuels from CO2, which will become mandatory.

Circular Economy – Recycling of Textile Waste & Fibre-to-Fibre Recycling
The textile industry is at a pivotal moment, where sustainability is no longer an option but a necessity. As the environmental impact of textile production and disposal becomes increasingly clear, the pressure to adopt circular economy principles is growing.

One promising solution is fibre-to-fibre recycling, a process that converts used textiles into new, highquality fibres, effectively closing the waste loop. While significant progress has been made in the European Union, challenges remain, particularly in scaling up technologies, lack of collection systems and handling of mixed fibre textiles. Europe currently generates approximately 6.95 (1.25 + 5.7) million tonnes of textile waste per year, of which only 1.95 million tonnes is collected separately and 1.02 million tonnes is treated by recycling or backfilling.
 
The recycling of textiles reduces the demand for virgin fibres and the textile footprint. The share of recycled fibres increased slightly from 8.4% in 2020 to 8.9% in 2021, mainly due to an increase in bottlebased PET fibres. However, in 2021, less than 1% of the global fibre market will come from pre- and post-consumer recycled textiles (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report). New regulations from Brussels for closed-loop recycling, especially bottle-to-bottle recycling, could threaten the use of bottle-based PET fibres in the textile industry. This would mean a reduction in recycling rates in the textile industry until the logistics and technologies are in place to recycle textiles on a large scale. This will be necessary to contribute to the circular economy. Several research projects are underway to find solutions and first pilot implementations are available.

The Future of Sustainable Textiles
The sustainable textile industry of the future will be built on a foundation of cotton fibres and fast-growing cellulose fibres, later strongly supported by bio- and CO2-based synthetic fibres (“biosynthetics”), and high recycling rates for all types of fibres. This combination can eventually replace most fossil-based synthetic fibres by 2050.

To get the latest information on cellulose fibres, the nova-Institute organises the “Cellulose Fibres Conference” every year, which will take place next time in Cologne on 12 and 13 March 2025 – this year for the first time with biosynthetics.

Source:

Michael Carus and Dr. Asta Partanen, nova-Institute (Germany)

Stains on the white cotton fabric treated with zinc oxide. Photo: Mikael Nyberg / University of Turku
11.12.2024

Self-cleaning cotton or a colour-changing print

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

For many years researchers from Nordic countries have worked for making textile industry more sustainable. Now there are prototypes of cotton which can clean itself and of textiles which are created of invasive lupines.  

How could future clothes and textiles become more ecofriendly, smart and sustainable? A research group from Nordic countries has tried to figure out this for many years and in October the prototypes they have made were presented in an exhibition in Turku.

A doctoral researcher Alicja Lawrynowicz from Faculty of Technology at the University of Turku has been developing two different smart textiles. In one of the projects researchers have created a cotton fabric which can clean itself without water.

This is possible because the fabric has been treated with mineral called zinc oxide.
 
The mineral forms a self-cleaning layer and stains on the fabric disappear when they are exposed to the daylight, in other words ultraviolet light. If stains disappear by themselves, it reduces the need of washing and garment burdens nature less.

Here you can see how the stains gradually disappear on the white cotton fabric that has been treated with zinc oxide.

In the other textile project, researchers have managed to develop non-toxic textile print which changes its colour when it is subjected to sunlight. Mineral hackmanite, which reacts to ultraviolet radiation, is used here. The mineral does not originate from mines but is created in a laboratory in Turku.

For first time ever, hackmanite is now used in textile prints. The mineral works as an ultraviolet censor and changes its colour when you have been too long time in the sun and must protect yourself. It can reduce the risk for the damage of the sun, says Alicja Lawrynowicz.

Material out to the market
Prototypes which now have been retrieved are not yet available in larger scale. So, what is going to happen with all discoveries?
The idea is that they are not going to stay in the laboratory. We hope that in the future our innovations will be used in industry, says Lawrynowicz.

The research is multidisciplinary, which means that there has been cooperation between different research groups. Research goes on also in other Nordic countries.  

Lupine can become textiles
In Denmark one research group has invested in ecofriendly colouring and created dyes out of big amounts of waste from local restaurants, among others avocado and onion peels. Avocado peels give textiles a beautiful yellow colour and onion creates brown nuances. In future these colours could replace traditional, toxic dyes.

At the same time researchers in Aalto University have produced textiles out of lupine, which is an invasive species in Finland.

Until now we have been removing lupines out of ditches and seeing it as a problem, but here researchers have created fibers and been able to weave a cloth out of it, says research coordinator Helen Salminen from the field of material science at the University of Turku.

Within the framework of the project researchers in Sweden have in turn worked on developing alternatives to plastic fibers (elastane) which are often used in jeans fabric for making fabric more elastic.

Cotton which contains a few percent of plastic fibers is difficult to recycle. This makes it difficult to use the fabric as a raw material for further processes. For that reason, it is important to find new ways to weave fabric so that fabric can be recycled and can be elastic without plastic fibers, says Alicja Lawrynowicz.

Source:

Aalto University, YLE Svenska about the NordForsk-funded project 'Beyond e-Textiles' and 'Interlaced' exhibition at the University of Turku

Image AI generated, Pixabay
22.10.2024

NABU Study: Textile recycling has huge potential

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 
A variety of approaches are needed to reduce the significant environmental impacts of textile production. The priorities are to extend the useful life of textiles and to change the way we consume them. However, the recycling of used textiles that can no longer be reused must also be expanded in terms of both quantity and quality. The Oeko-Institut has therefore been commissioned by NABU to analyse the obstacles to and potential for textile recycling in Germany and In addition to clothing, textiles include home textiles such as bed linen and curtains, as well as technical textiles used, for example, in car manufacturing or in medicine.

High-quality textile recycling alone is not financially viable; rather, a legal framework is needed to promote it in the future. ‘We don't need more cleaning rags,’ says Anna Hanisch, NABU expert on circular economy, ‘Our study shows that there is great potential for higher-quality recycling so that old textiles can be turned into new textiles again. To achieve this, fibre-to-fibre recycling must be expanded. The prerequisite for this is automatic sorting by fibre composition. This is because non-reusable used textiles must be sorted before recycling. This is currently done by hand. A technical solution is what makes recycling economically viable in the first place.’
 
The mechanical recycling that has been used most of the time so far shortens the fibres, so that only a few recycled fibres are suitable for use in new textiles. For this reason, depolymerisation processes are being developed. These require more energy and chemicals, but enable higher-quality recycled fibres for new textiles. According to NABU, extended producer responsibility is necessary to finance and establish these processes. This would have to supplement the EU's mandatory separate collection of used textiles, which will come into force in 2025.

In order to reduce the environmental impact associated with textile production, various approaches are needed: the priority should be to use textiles for longer. However, recycling used textiles that can no longer be used is also part of the solution and must be expanded in terms of both quantity and quality.

Technologically, all approaches have their merits for certain mass flows in order to increase the recycling and use of recycled materials from used textiles in new products. The technologies complement each other. After sorting for reuse, recycling processes should be prioritised as follows:

  1. First mechanical recycling, as it requires the least energy.
  2. Then comes solvent-based processing and depolymerisation, which require a similar amount of effort.
  3. Finally, there is feedstock recycling, which consumes the most resources.

Hanisch: ‘A circular economy starts with the design. For example, in order for textiles to be recycled, they should contain as few different materials as possible. To achieve this, we need ambitious ecodesign requirements for textiles. The focus here must be on durability and recyclability. Above all, however, incentives are needed to reuse recycled raw materials from old textiles. So far, this has hardly happened voluntarily.’   

The Materials Market Report 2024 (c) Textile Exchange
30.09.2024

Materials Market Report 2024: Fossil-based synthetics dominate

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

Textile Exchange launched the first Materials Market Report in 2013 as a comprehensive, annual publication that provides unique data and insights into global fiber and raw materials production.

The Materials Market Report shares best available data on global fibre and material production volumes alongside program-specific volumes and other insights such as the number of certified sites. For the purpose of this report, leather, rubber, and down are considered non-fibre raw materials and are therefore included separately from the section and charts on ‘global fibre’.

It helps inform the textile industry’s efforts to reduce emissions associated with raw material production in line with a 1.5-degree temperature rise pathway. The report highlights the urgency to accelerate the transition to fibres from preferred sources, intensify efforts to significantly reduce reliance on virgin fossil-based materials, and invest in strategies that separate value creation from the need for extracting new materials.

It’s important to note that the compilation of global market data for fibres and raw materials is challenging and the quality of available data is often limited. The collection of primary data from suppliers is beyond the scope of this report so Textile Exchange relies on secondary data from industry associations, international organizations, governmental organizations, standard setters, and research institutes.

While Textile Exchange has collected, analysed, and compiled this information in all good conscience and has cross-checked it wherever possible, the report is intended for general guidance and information purposes only. Data gaps and inconsistencies are common in global market data, so modelling has often had to be applied.

Global fibre production reached an all-time high of 124 million tonnes in 2023, according to the latest Materials Market Report– which looks at total volumes used for apparel, home textiles, footwear, or any other application.

The data shows that the market share of virgin fossil-based synthetics continued to increase in 2023, with a decline in that of cotton and recycled fibres. Other key takeaways from the report’s data include:

  • Record fibre production: Despite industry efforts, global fibre production has more than doubled since 2000. The last year’s 124 million tonnes represents a 7% increase from 116 million tonnes in 2022, and is expected to rise to 160 million tonnes in 2030 if current trends continue.
  • Synthetics continue to dominate: The production of virgin fossil-based synthetic fibres increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Polyester remained the most produced fibre globally, accounting for 57% of total fibre production.
  • Recycled synthetics face challenges: Although recycled polyester fibre production slightly increased in 2023, the overall market share of recycled polyester decreased from 13.6% to 12.5%. For polyamide (nylon), the second most used synthetic fibre, recycled fibres constituted only 2% of the total market share. These trends are attributed to the lower prices and continued production of virgin synthetics, as well as current limitations in recycling technologies. Less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.

    The combined share of all recycled fibres slightly decreased in 2023, from around 7.9% to 7.7%, mainly due to an increase in the production of fossil-based polyester, which had lower prices than recycled polyester. Fossil based synthetics production increased from 67 million tonnes in 2022 to 75 million tonnes in 2023. Meanwhile, less than 1% of the global fibre market came from pre- and post-consumer recycled textiles.
  • Cotton production saw a slight decline: Total global cotton volumes fell slightly from 25.1 million tonnes in 2022 to 24.4 million tonnes in 2023. However, the share of cotton produced under sustainability programs remained stable, accounting for 29% of all cotton produced.
  • Certified wool climbs: Data showed positive trends for wool produced under standards such as the Responsible Wool Standard (RWS), ZQ, SustainaWOOL (GREEN and GOLD), Sustainable Cape Wool Standard (SCWS) and Climate Beneficial programs. This increased from 4.2% in 2022 to 4.8% in 2023. Recycled wool continued to account for around 6% of the global wool market.
  • Certified mohair and cashmere reached almost half of market share: Certified fibres such as mohair and cashmere saw notable growth, both with market shares of 47%.
  • Manmade cellulosic fibres production increased: Overall MMCF production increased from 7.4 million tonnes in 2022 to 7.9 million tonnes in 2023, representing 6% of the global fibre market.

The report highlights a continued reliance on new virgin fossil-based synthetic materials, threatening to undermine the industry’s commitments to its climate goals. It also shows the current limitations of textile-to-textile recycling and an urgent need for innovative solutions, with most recycled polyester still coming from PET bottles.

Amid these concerns, one positive trend that stands out is the increased industry demand for responsible animal fibres through programs like the Responsible Mohair Standard (RMS) and Responsible Alpaca Standard (RAS), both contributing to better animal welfare and environmental management. This indicates the potential of farm-level standards of this kind to increase market recognition of more sustainable practices on the ground.

“We hope this data serves as a clear call to action for the industry, highlighting both the successes and the critical areas where we must intensify our focus to meet climate targets,” said Claire Bergkamp, CEO of Textile Exchange.

“Unlocking textile-to-textile recycling pathways will be essential to reducing reliance on virgin synthetics. Equally important is continuing to support those on the ground who are driving the transition from conventional systems to preferred materials. It is more urgent than ever to support those who have already invested in preferred systems, while also enabling the transition away from conventional at scale.”

Download of the Materials Market Report 2024.

More information:
fibre production Market report
Source:

Textile Exchange

This image from the CoCuRA software shows how it identifes conventional cotton, organic cotton and other agricultural fields. Source GOTS
17.09.2024

Detecting organically grown cotton with AI support via satellite

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

Global Standard is a trailblazer, solution provider and thought leader in the voluntary sustainability standards space, and the Satellite Cotton Monitoring Project continues this tradition of innovation and creative thinking.

How it Works
Co-financed by Global Standard, the non-profit behind GOTS, and the European Space Agency’s (ESA) Business Applications and Space Solutions (BASS) programme, the project leverages the Cotton Cultivation Remote Assessment (CoCuRA) software developed by Marple.

Field teams visited over 6,000 fields in India, across the states of Gujarat, Haryana, Madhya Pradesh and Maharashtra, collecting data on crops, soil types and cultivation status. This data was then used by Marple to refine the CoCuRA algorithm for cotton specifics in India. Once the algorithm was trained, it was applied to the entire agricultural area of India, covering a staggering 2.7 million square kilometres. Within seconds, CoCuRA detected all organic and conventional cotton fields with remarkable accuracy. A project of this magnitude is only possible with CoCuRA with no other comparable project or data in existence.

Enhancing Organic Cotton Availability
The technology's ability to pinpoint cotton fields where farmers use near-organic or uncertified organic methods can ensure a steady increase in certified organic cotton by facilitating their certification process.

Jeffrey Thimm, organic production specialist at Global Standard, said, "This technology identifies farmers who use sustainable methods that meet organic standards but lack certification. By integrating these farms into conversion projects, it boosts organic cotton supply, promotes sustainable farming practices and enables farmers to access premiums on their supplies."

Securing Organic Fibre Integrity
Building on GOTS's robust integrity measures, the CoCuRA software integrates AI technology with satellite data to verify cultivation practices meticulously. The data collected also contributes to Global Standards’ Global Fibre Registry, consolidating comprehensive data on raw material production before entering the GOTS value chain, further adding to fraud detection and prevention.

Sustainability in Textiles
Global Standard is recognised for its comprehensive approach to sustainability. From promoting human rights along the value chain to banning harmful chemicals in certified textiles, GOTS sets a benchmark for integrity and sustainability. In addition, GOTS certification is a powerful tool that helps companies comply with legal requirements globally.

"For over 20 years, we have been pioneering solutions to help the industry on its journey towards sustainability,” said Claudia Kersten, managing director of Global Standard. “This project is a game changer, combining satellite technology with AI to meet the growing demand for genuine organic cotton. In addition, this eye in the sky will prevent fraud by allowing us to crosscheck locations and field sizes in a very cost-efficient way. It's a win-win-win situation: farmers have an incentive to grow organic and improve their lives, the industry can secure its supply and meet its sustainability goals, and consumers have a greater choice of organic textiles."

Future Prospects and Global Impact
Following the successful pilot in India, the project aims to expand globally.

Daniel Lanz, managing partner at Marple, said, "India faces unique challenges in the satellite-based detection of agricultural fields. Firstly, the country is extremely large and spans several climate zones. Secondly, field sizes are very small, and thirdly, field boundaries are often indistinguishable, with one field merging into the next. Despite these challenges, CoCuRA has achieved astonishing accuracy in detecting cotton fields and assessing their cultivation methods. This breakthrough provides a pioneering overview of cotton production in India that would be impossible to achieve on the ground. CoCuRA will help protect the integrity of organic farmers and may facilitate more smallholders transitioning to organic farming by simplifying the certification process."

Guillaume Tuan Prigent, a business developer and partnership officer in ESA’s Applications Projects and Studies Division said, “The potential impact of the solution lies in its ability to be scaled and this is exactly what we are working on. We are looking to deliver a solution that could have a global impact for the benefit of all. “

Global Standard is eager to see this technology extend to other regions and additional fibres, which could revolutionise how crops are monitored.

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Biofibers made from gelatin in a rainbow of colors. © Utility Research Lab
25.06.2024

Designers make dissolvable textiles from gelatin

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

Introducing the fashion of the future: a T-shirt you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the CU Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The team, led by Eldy Lázaro Vásquez, a doctoral student in the ATLAS Institute, presented its findings in May at the CHI Conference on Human Factors in Computing Systems in Honolulu.

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

The study tackles a growing problem around the world: In 2018 alone, people in the United States added more than 11 million tons of textiles to landfills, according to the Environmental Protection Agency—nearly 8% of all municipal solid waste produced that year.

The researchers envision a different path for fashion.

Their machine is small enough to fit on a desk and cost just $560 to build. Lázaro Vásquez hopes the device will help designers around the world experiment with making their own biofibers.

“You could customize fibers with the strength and elasticity you want, the color you want,” she said. “With this kind of prototyping machine, anyone can make fibers. You don’t need the big machines that are only in university chemistry departments.”

Spinning threads
The study arrives as fashionistas, roboticists and more are embracing a trend known as “smart textiles.” Levi’s Trucker Jacket with Jacquard by Google, for example, looks like a denim coat but includes sensors that can connect to your smartphone.

But such clothing of the future comes with a downside, Rivera said:

“That jacket isn't really recyclable. It's difficult to separate the denim from the copper yarns and the electronics.”

To imagine a new way of making clothes, the team started with gelatin. This springy protein is common in the bones of many animals, including pigs and cows. Every year, meat producers throw away large volumes of gelatin that doesn’t meet requirements for cosmetics or food products like Jell-O. (Lázaro Vásquez bought her own gelatin, which comes as a powder, from a local butcher shop.)

She and her colleagues decided to turn that waste into wearable treasure.

The group’s machine uses a plastic syringe to heat up and squeeze out droplets of a liquid gelatin mixture. Two sets of rollers in the machine then tug on the gelatin, stretching it out into long, skinny fibers—not unlike a spider spinning a web from silk. In the process, the fibers also pass through liquid baths where the researchers can introduce bio-based dyes or other additives to the material. Adding a little bit of genipin, an extract from fruit, for example, makes the fibers stronger.

Other co-authors of the research included Mirela Alistar and Laura Devendorf, both assistant professors in ATLAS.

Dissolving duds
Lázaro Vásquez said designers may be able to do anything they can imagine with these sorts of textiles.

As a proof of concept, the researchers made small textile sensors out of gelatin fibers and cotton and conductive yarns, similar to the makeup of a Jacquard jacket. The team then submerged these patches in warm water. The gelatin dissolved, releasing the yarns for easy recycling and reuse.

Designers could tweak the chemistry of the fibers to make them a little more resilient, Lázaro Vásquez said—you wouldn’t want your jacket to disappear in the rain. They could also play around with spinning similar fibers from other natural ingredients. Those materials include chitin, a component of crab shells, or agar-agar, which comes from algae.

“We’re trying to think about the whole lifecycle of our textiles,” Lázaro Vásquez said. “That begins with where the material is coming from. Can we get it from something that normally goes to waste?”

More information:
Gelatin biofibres DIY
Source:

University of Colorado Boulder | Daniel Strain

Photo: Damir Omerovic, Unsplash
12.06.2024

Crops to tackle environmental harm of synthetics

From risottos to sauces, mushrooms have long been a staple in the kitchen. Now fungi are showing the potential to serve up more than just flavor—as a sustainable, bendy material for the fashion industry.

Researchers are using the web-like structure of the mushroom's root system—the mycelium—as an alternative to synthetic fibers for clothing and other products such as car seats.

"It's definitely a change of mindset in the manufacturing process," said Annalisa Moro, EU project leader at Italy-based Mogu, which makes interior-design products from the mycelium. "You're really collaborating with nature to grow something rather than create it, so it's kind of futuristic."

Mogu, located 50 kilometers northwest of Milan, is managing a research initiative to develop nonwoven fabrics made of mycelium fibers for the textile industry.

From risottos to sauces, mushrooms have long been a staple in the kitchen. Now fungi are showing the potential to serve up more than just flavor—as a sustainable, bendy material for the fashion industry.

Researchers are using the web-like structure of the mushroom's root system—the mycelium—as an alternative to synthetic fibers for clothing and other products such as car seats.

"It's definitely a change of mindset in the manufacturing process," said Annalisa Moro, EU project leader at Italy-based Mogu, which makes interior-design products from the mycelium. "You're really collaborating with nature to grow something rather than create it, so it's kind of futuristic."

Mogu, located 50 kilometers northwest of Milan, is managing a research initiative to develop nonwoven fabrics made of mycelium fibers for the textile industry.

Called MY-FI, the project runs for four years through October 2024 and brings together companies, research institutes, industry organizations and academic institutions from across Europe.

MY-FI highlights how the EU is pushing for more sustainable production and consumption in the textile and apparel industry, which employs around 1.3 million people in Europe and has annual turnover of €167 billion.

While getting most of its textiles from abroad, the EU produces them in countries including France, Germany, Italy and Spain. Italy accounts for more than 40% of EU apparel production.

Delicate and durable
The mycelium grows from starter spawn added to crops such as cereals. The threadlike filaments of the hyphae, the vegetative part of the fungus, create a material that grows on top. It is harvested and dried, resulting in soft, silky white sheets of nonwoven fabric that are 50 to 60 square centimeters.

The delicate material is made stronger and more durable through the addition of bio-based chemicals that bind the fibers together.

Its ecological origins contrast with those of most synthetic fibers such as nylon and polyester, which derive from fossil fuels such as coal and oil.

That means production of synthetic fibers adds to greenhouse-gas emissions that are accelerating climate change. In addition, when washed, these materials shed microplastics that often end up polluting the environment including rivers, seas and oceans.

The MY-FI mycelium needs very little soil, water or chemicals, giving it greener credentials than even natural fibers such as cotton.

Dress rehearsal
For the fashion industry, the soft, water-resistant properties of the mycelium are as appealing as its environmental credentials.

Just ask Mariagrazia Sanua, sustainability and certification manager at Dyloan Bond Factory, an Italian fashion designer and manufacturer that is part of MY-FI.

The company has used the mycelium-based material—in black and brown and with a waxed finish—to produce a prototype dress, a top-and-midi-skirt combination, bags and small leather accessories.

Laser cutting and screen printing were used to evaluate the material's behavior. The challenge was to adapt to the sheets of fabric—squares of the mycelium material rather than traditional rolls of textiles like cotton, linen and polyester—as well as properties such as tensile strength and seam tightness.

"We have had to completely change the paradigm and design processes and garments based on the material," said Sanua.

The company hopes the mycelium material will be a way of offering consumers a range of products that can be alternatives to animal leather.

Leather-unbound
Meanwhile, Germany-based Volks¬wagen, the world's No. 2 car manufacturer, is looking to mycelium technologies to reduce its environmental footprint and move away from leather for vehicle interiors.

Customers increasingly want animal-free materials for interiors from seat covers and door panels to dashboards and steering wheels, so adding a sustainable substitute for leather is an exciting prospect, according to Dr. Martina Gottschling, a researcher at Volkswagen Group Innovation.

"A fast-growing biological material that can be produced animal-free and with little effort, which also does not require petroleum-based resources, is a game-changer in interior materials," she said.

The mycelium material is also lighter than leather, another positive for reducing VW's carbon footprint.

The company's involvement in MY-FI is driving project researchers at Utrecht University in the Netherlands and I-TECH Lyon in France to enhance the durability of the mycelium fabric. To move from prototype to production line, the fabric must meet quality requirements set by VW to ensure the material lasts for the life of the vehicle.

It's a challenge that Gottschling believes will be met in the coming decade.

"We already see the material as one of the high-quality materials for interior applications that will be possible in the future," she said.

When life gives you tomatoes
Mushrooms aren't the only food with the potential to spin a sustainable-yarn revolution. Tomato stems have a hidden talent too, according to Dr. Ozgur Atalay and Dr. Alper Gurarslan of Istanbul Technical University in Turkey.

Seeing tomato vines left to wither in the fields after the crop was harvested, Atalay and Gurarslan began to investigate whether the stems could be transformed into sustainable fibers.

Tests proved that the agricultural waste could indeed be turned into yarn. But Atalay and Gurarslan were determined to go a step further. They wanted to use tomato stems to create a type of yarn for garments that monitor heart beats, respiratory rates and joint movements.

The two researchers lead a project to create this kind of electrically conductive apparel using—for the first time—sustainable materials.

Called SMARTWASTE, the project runs for four years until the end of 2026 and also involves academic and research organizations from Germany, Italy, the Netherlands and Poland.

"The beauty of the project is that we are starting from waste," said Atalay. "We are taking agricultural waste and not just creating regular textiles but something much more valuable."

While cost estimates will follow later in the project when design partners work on creating actual products, he signaled that smart clothing will be a good deal more expensive than the ordinary kind.

A smart textile shirt could cost as much as €1,000, according to Atalay.

The specialized material, limited production runs and research and development needed to create wearable technologies that are durable, washable and comfortable all contribute to the price tag.

Advancements in technology should eventually lead to lower production costs and consumer prices.

Seeds of poplar success
The Turkish countryside has also inspired a second strand to the project. Turkey's abundant poplar trees and—more specifically—their white, fluffy cotton-like seeds prompted Gurarslan to investigate whether they could be a sustainable textile source.

While their fibers have been dismissed as too short to make a yarn, the seeds have three particular properties that appeal to the textile industry: a hollow, pipe-like structure that can trap heat to provide thermal qualities, an antibacterial nature and water resistance.

The network of SMARTWASTE experts has blended the seeds with recycled polyester to make a nonwoven fabric that the team intends to turn into textile products with enhanced thermal properties.

The researchers hope this is just the start of a far-reaching transformation of textiles.

"Our goal is to train the next generation of researchers and innovators in sustainable textiles," said Atalay.

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

(c) RMIT University
26.02.2024

Cooling down with Nanodiamonds

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

Researchers from RMIT University are using nanodiamonds to create smart textiles that can cool people down faster.

The study found fabric made from cotton coated with nanodiamonds, using a method called electrospinning, showed a reduction of 2-3 degrees Celsius during the cooling down process compared to untreated cotton. They do this by drawing out body heat and releasing it from the fabric – a result of the incredible thermal conductivity of nanodiamonds.

Published in Polymers for Advanced Technologies, project lead and Senior Lecturer, Dr Shadi Houshyar, said there was a big opportunity to use these insights to create new textiles for sportswear and even personal protective clothing, such as underlayers to keep fire fighters cool.

The study also found nanodiamonds increased the UV protection of cotton, making it ideal for outdoor summer clothing.

“While 2 or 3 degrees may not seem like much of a change, it does make a difference in comfort and health impacts over extended periods and in practical terms, could be the difference between keeping your air conditioner off or turning it on,” Houshyar said. “There’s also potential to explore how nanodiamonds can be used to protect buildings from overheating, which can lead to environmental benefits.”

The use of this fabric in clothing was projected to lead to a 20-30% energy saving due to lower use of air conditioning.

Based in the Centre for Materials Innovation and Future Fashion (CMIFF), the research team is made up of RMIT engineers and textile researchers who have strong expertise in developing next-generation smart textiles, as well as working with industry to develop realistic solutions.

Contrary to popular belief, nanodiamonds are not the same as the diamonds that adorn jewellery, said Houshyar. “They’re actually cheap to make — cheaper than graphene oxide and other types of carbon materials,” she said. “While they have a carbon lattice structure, they are much smaller in size. They’re also easy to make using methods like detonation or from waste materials.”

How it works
Cotton material was first coated with an adhesive, then electrospun with a polymer solution made from nanodiamonds, polyurethane and solvent.

This process creates a web of nanofibres on the cotton fibres, which are then cured to bond the two.

Lead researcher and research assistant, Dr Aisha Rehman, said the coating with nanodiamonds was deliberately applied to only one side of the fabric to restrict heat in the atmosphere from transferring back to the body.  

“The side of the fabric with the nanodiamond coating is what touches the skin. The nanodiamonds then transfer heat from the body into the air,” said Rehman, who worked on the study as part of her PhD. “Because nanodiamonds are such good thermal conductors, it does it faster than untreated fabric.”

Nanodiamonds were chosen for this study because of their strong thermal conductivity properties, said Rehman. Often used in IT, nanodiamonds can also help improve thermal properties of liquids and gels, as well as increase corrosive resistance in metals.

“Nanodiamonds are also biocompatible, so they’re safe for the human body. Therefore, it has great potential not just in textiles, but also in the biomedical field,” Rehman said.

While the research was still preliminary, Houshyar said this method of coating nanofibres onto textiles had strong commercial potential.
 
“This electrospinning approach is straightforward and can significantly reduce the variety of manufacturing steps compared to previously tested methods, which feature lengthy processes and wastage of nanodiamonds,” Houshyar said.

Further research will study the durability of the nanofibres, especially during the washing process.

Source:

Shu Shu Zheng, RMIT University

Bacteria, eating Plastic and producing Multipurpose Spider Silk Photo: Kareni, Pixabay
05.02.2024

Bacteria, eating Plastic and producing Multipurpose Spider Silk

For the first time, researchers have used bacteria to “upcycle” waste polyethylene: Move over Spider-Man: Researchers at Rensselaer Polytechnic Institute have developed a strain of bacteria that can turn plastic waste into a biodegradable spider silk with multiple uses.

Their new study marks the first time scientists have used bacteria to transform polyethylene plastic — the kind used in many single-use items — into a high-value protein product.

That product, which the researchers call “bio-inspired spider silk” because of its similarity to the silk spiders use to spin their webs, has applications in textiles, cosmetics, and even medicine.

For the first time, researchers have used bacteria to “upcycle” waste polyethylene: Move over Spider-Man: Researchers at Rensselaer Polytechnic Institute have developed a strain of bacteria that can turn plastic waste into a biodegradable spider silk with multiple uses.

Their new study marks the first time scientists have used bacteria to transform polyethylene plastic — the kind used in many single-use items — into a high-value protein product.

That product, which the researchers call “bio-inspired spider silk” because of its similarity to the silk spiders use to spin their webs, has applications in textiles, cosmetics, and even medicine.

“Spider silk is nature’s Kevlar,” said Helen Zha, Ph.D., an assistant professor of chemical and biological engineering and one of the RPI researchers leading the project. “It can be nearly as strong as steel under tension. However, it’s six times less dense than steel, so it’s very lightweight. As a bioplastic, it’s stretchy, tough, nontoxic, and biodegradable.”

All those attributes make it a great material for a future where renewable resources and avoidance of persistent plastic pollution are the norm, Zha said.

Polyethylene plastic, found in products such as plastic bags, water bottles, and food packaging, is the biggest contributor to plastic pollution globally and can take upward of 1,000 years to degrade naturally. Only a small portion of polyethylene plastic is recycled, so the bacteria used in the study could help “upcycle” some of the remaining waste.

Pseudomonas aeruginosa, the bacteria used in the study, can naturally consume polyethylene as a food source. The RPI team tackled the challenge of engineering this bacteria to convert the carbon atoms of polyethylene into a genetically encoded silk protein. Surprisingly, they found that their newly developed bacteria could make the silk protein at a yield rivaling some bacteria strains that are more conventionally used in biomanufacturing.

The underlying biological process behind this innovation is something people have employed for millennia.

“Essentially, the bacteria are fermenting the plastic. Fermentation is used to make and preserve all sorts of foods, like cheese, bread, and wine, and in biochemical industries it’s used to make antibiotics, amino acids, and organic acids,” said Mattheos Koffas, Ph.D., Dorothy and Fred Chau ʼ71 Career Development Constellation Professor in Biocatalysis and Metabolic Engineering, and the other researcher leading the project, and who, along with Zha, is a member of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

To get bacteria to ferment polyethylene, the plastic is first “predigested,” Zha said. Just like humans need to cut and chew our food into smaller pieces before our bodies can use it, the bacteria has difficulty eating the long molecule chains, or polymers, that comprise polyethylene.

In the study, Zha and Koffas collaborated with researchers at Argonne National Laboratory, who depolymerized the plastic by heating it under pressure, producing a soft, waxy substance. Next, the team put a layer of the plastic-derived wax on the bottoms of flasks, which served as the nutrient source for the bacteria culture. This contrasts with typical fermentation, which uses sugars as the nutrient source.

“It’s as if, instead of feeding the bacteria cake, we’re feeding it the candles on the cake,” Zha said.

Then, as a warming plate gently swirled the flasks’ contents, the bacteria went to work. After 72 hours, the scientists strained out the bacteria from the liquid culture, purified the silk protein, and freeze dried it. At that stage, the protein, which resembled torn up cotton balls, could potentially be spun into thread or made into other useful forms.

“What’s really exciting about this process is that, unlike the way plastics are produced today, our process is low energy and doesn’t require the use of toxic chemicals,” Zha said. “The best chemists in the world could not convert polyethylene into spider silk, but these bacteria can. We’re really harnessing what nature has developed to do manufacturing for us.”

However, before upcycled spider silk products become a reality, the researchers will first need to find ways to make the silk protein more efficiently.

“This study establishes that we can use these bacteria to convert plastic to spider silk. Our future work will investigate whether tweaking the bacteria or other aspects of the process will allow us to scale up production,” Koffas said.

“Professors Zha and Koffas represent the new generation of chemical and biological engineers merging biological engineering with materials science to manufacture ecofriendly products. Their work is a novel approach to protecting the environment and reducing our reliance on nonrenewable resources,” said Shekhar Garde, Ph.D., dean of RPI’s School of Engineering.

The study, which was conducted by first author Alexander Connor, who earned his doctorate from RPI in 2023, and co-authors Jessica Lamb and Massimiliano Delferro with Argonne National Laboratory, is published in the journal “Microbial Cell Factories.”

Source:

Samantha Murray, Rensselaer

New conductive, cotton-based fiber developed for smart textiles Photo: Dean Hare, WSU Photo Services
29.12.2023

New conductive, cotton-based fiber developed for smart textiles

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline.

The newly developed material showed good potential for wearable e-textiles. The WSU researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas, detailing their findings in the journal Carbohydrate Polymers.

“We have one fiber in two sections: one section is the conventional cotton: flexible and strong enough for everyday use, and the other side is the conductive material,” said Hang Liu, WSU textile researcher and the study’s corresponding author. “The cotton can support the conductive material which can provide the needed function.”

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline.

The newly developed material showed good potential for wearable e-textiles. The WSU researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas, detailing their findings in the journal Carbohydrate Polymers.

“We have one fiber in two sections: one section is the conventional cotton: flexible and strong enough for everyday use, and the other side is the conductive material,” said Hang Liu, WSU textile researcher and the study’s corresponding author. “The cotton can support the conductive material which can provide the needed function.”

While more development is needed, the idea is to integrate fibers like these into apparel as sensor patches with flexible circuits. These patches could be part of uniforms for firefighters, soldiers or workers who handle chemicals to detect for hazardous exposures. Other applications include health monitoring or exercise shirts that can do more than current fitness monitors.

“We have some smart wearables, like smart watches, that can track your movement and human vital signs, but we hope that in the future your everyday clothing can do these functions as well,” said Liu. “Fashion is not just color and style, as a lot of people think about it: fashion is science.”

In this study, the WSU team worked to overcome the challenges of mixing the conductive polymer with cotton cellulose. Polymers are substances with very large molecules that have repeating patterns. In this case, the researchers used polyaniline, also known as PANI, a synthetic polymer with conductive properties already used in applications such as printed circuit board manufacturing.

While intrinsically conductive, polyaniline is brittle and by itself, cannot be made into a fiber for textiles. To solve this, the WSU researchers dissolved cotton cellulose from recycled t-shirts into a solution and the conductive polymer into another separate solution. These two solutions were then merged together side-by-side, and the material was extruded to make one fiber.

The result showed good interfacial bonding, meaning the molecules from the different materials would stay together through stretching and bending.

Achieving the right mixture at the interface of cotton cellulose and polyaniline was a delicate balance, Liu said.

“We wanted these two solutions to work so that when the cotton and the conductive polymer contact each other they mix to a certain degree to kind of glue together, but we didn’t want them to mix too much, otherwise the conductivity would be reduced,” she said.

Additional WSU authors on this study included first author Wangcheng Liu as well as Zihui Zhao, Dan Liang, Wei-Hong Zhong and Jinwen Zhang. This research received support from the National Science Foundation and the Walmart Foundation Project.

Source:

Sara Zaske, WSU News & Media Relations

Chemist Unlocks Plastic Alternatives Using Proteins and Clothing Scraps Photo: Challa Kumar, professor emeritus of chemistry, in his lab. (Contributed photo)
21.12.2023

Chemist Unlocks Plastic Alternatives Using Proteins and Clothing Scraps

Challa Kumar has developed methods to create novel plastic-like materials using proteins and fabric.

Every year, 400 million tons of plastic waste are generated worldwide. Between 19 and 23 million tons of that plastic waste makes its way into aquatic ecosystems, and the remaining goes into the ground. An additional 92 million tons of cloth waste is generated annually.

Challa Kumar, professor emeritus of chemistry, “fed up” with the tremendous amount of toxic waste people continually pump into the environment, felt compelled to do something. As a chemist, doing something meant using his expertise to develop new, sustainable materials.

“Everyone should think about replacing fossil fuel-based materials with natural materials anywhere they can to help our civilization to survive,” Kumar says. “The house is on fire, we can’t wait. If the house is on fire and you start digging a well – that is not going to work. It’s time to start pouring water on the house.”

Challa Kumar has developed methods to create novel plastic-like materials using proteins and fabric.

Every year, 400 million tons of plastic waste are generated worldwide. Between 19 and 23 million tons of that plastic waste makes its way into aquatic ecosystems, and the remaining goes into the ground. An additional 92 million tons of cloth waste is generated annually.

Challa Kumar, professor emeritus of chemistry, “fed up” with the tremendous amount of toxic waste people continually pump into the environment, felt compelled to do something. As a chemist, doing something meant using his expertise to develop new, sustainable materials.

“Everyone should think about replacing fossil fuel-based materials with natural materials anywhere they can to help our civilization to survive,” Kumar says. “The house is on fire, we can’t wait. If the house is on fire and you start digging a well – that is not going to work. It’s time to start pouring water on the house.”

Kumar has developed two technologies that use proteins and cloth, respectively, to create new materials. UConn’s Technology Commercialization Services (TCS) has filed provisional patents for both technologies.

Inspired by nature’s ability to construct a diverse array of functional materials, Kumar and his team developed a method to produce continuously tunable non-toxic materials.

“Chemistry is the only thing standing in our way,” Kumar says. “If we understand protein chemistry, we can make protein materials as strong as a diamond or as soft as a feather.”

The first innovation is a process to transform naturally occurring proteins into plastic-like materials. Kumar’s student, Ankarao Kalluri ’23 Ph.D., worked on this project.

Proteins have “reactor groups” on their surfaces which can react with substances with which they come into contact. Using his knowledge of how these groups work, Kumar and his team used a chemical link to bind protein molecules together.

This process creates a dimer – a molecule composed to two proteins. From there, the dimer is joined with another dimer to create tetramer, and so on until it becomes a large 3D molecule. This 3D aspect of the technology is unique, since most synthetic polymers are linear chains.

This novel 3D structure allows the new polymer to behave like a plastic. Just like the proteins of which it is made, the material can stretch, change shape, and fold. Thus, the material can be tailored via chemistry for a variety of specific applications.

Unlike synthetic polymers, because Kumar’s material is made of proteins and a bio-linking chemical, it can biodegrade, just like plant and animal proteins do naturally.

“Nature degrades proteins by ripping apart the amide bonds that are in them,” Kumar says. “It has enzymes to handle that sort of chemistry. We have the same amide linkages in our materials. So, the same enzymes that work in biology should also work on this material and biodegrade it naturally.”

In the lab, the team found that the material degrades within a few days in acidic solution. Now, they are investigating what happens if they bury this material in the ground, which is the fate of many post-consumer plastics.

They have demonstrated that the protein-based material can form a variety of plastic-like products, including coffee cup lids and thin transparent films. It could also be used to make fire-resistant roof tiles, or higher-end materials like, car doors, rocket cone tips, or heart valves.

The next steps for this technology are to continue testing their mechanical properties, like strength or flexibility, as well as toxicity.

“I think we need to have social consciousness that we cannot put out materials into the environment that are toxic,” Kumar says. “We just cannot. We have to stop doing that. And we cannot use materials derived from fossil fuels either.”

Kumar’s second technology uses a similar principle, but instead of just proteins, uses proteins reinforced with natural fibers, specifically cotton.

“We are creating a lot of textile waste each year due to the fast-changing fashion industry” Kumar says. “So why not use that waste to create useful materials – convert waste to wealth.”

Just like the plastic-like protein materials (called “Proteios,” derived from original Greek words), Kumar expects composite materials made from proteins and natural fibers will biodegrade without producing toxic waste.

In the lab, Kumar’s former student, doctoral candidate Adekeye Damilola, created many objects with protein-fabric composites, which include small shoes, desks, flowers, and chairs. This material contains textile fibers which serve as the linking agent with the proteins, rather than the cross-linking chemical Kumar uses for the protein-based plastics.

The crosslinking provides the novel material with the strength to withstand the weight that would be put on something like a chair or a table. The natural affinity between fibers and proteins is why it’s so hard to get food stains out of clothing. This same attraction makes strong protein-fabric materials.

While Kumar’s team has only worked with cotton so far, they expect other fiber materials, like hemp fibers or jute, would behave similarly due to their inherent but common chemical properties with cotton.

“The protein naturally adheres to the surface of the protein,” Kumar says. “We used that understanding to say ‘Hey, if it binds so tightly to cotton, why don’t we make a material out of it.’ And it works, it works amazingly.”

With the support of TCS, Professor Kumar is currently seeking industry partners to bring these technologies to market. For more information contact Michael Invernale at michael.invernale@uconn.edu.

Source:

Anna Zarra Aldrich '20 (CLAS), Office of the Vice President for Research

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Photo unsplash.com
05.09.2023

Ananas Anam and TENCEL™ collaborate with Calvin Klein

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

As the fashion sector has begun to realize the negative environmental effects of synthetic materials, a lot of brands have turned towards plant-based materials such as PIÑAYARN®. Using a low-impact manufacturing process, PIÑAYARN® is derived from pineapple leaf waste and involves a water-free spinning process. The addition of TENCEL™ Lyocell, a fiber made from wood pulp obtained from responsibly managed forests and produced using a solvent spinning process that recycles both the solvent and water at a recovery rate of more than 99%, offers full traceability of the TENCEL™ fiber in the final blended yarn.

Melissa Braithwaite, PIÑAYARN® Product Development Manager at Ananas Anam said “The inspiration for PIÑAYARN® came from the need to provide the textile industry with an alternative to overused, often polluting, conventional fibers, such as cotton or polyester. We have an abundance of available raw material within our business, and broadening our product offering means we can valorize more waste, increasing our positive impact on the environment and society.”

Indeed, as the consumer demand for more eco-responsible textile products and footwear grows, so too has the popularity of wood-based fibers as a material alternative. Ananas Anam and TENCEL™’s collaboration with Calvin Klein has been a success in that the physical characteristics and planet-conscious benefits of both PIÑAYARN® and TENCEL™ fibers complement each other perfectly, creating a blended material that is soft and usable for various woven and knitted applications.

For material developers like Ananas Anam seeking the ideal fiber blend partner to create PIÑAYARN®, TENCEL™ Lyocellfibers are celebrated for their versatility and ability to be blended with a wide range of textiles such as hemp, linen and of course Anam PALF™ pineapple leaf fiber, to enhance the aesthetics, performance and functionality of fabrics. Additionally, beyond being used in shoe uppers, TENCEL™ Lyocell fibers can be used in every part of the shoe including the upper fabric, lining, insoles, padding, laces, zipper and sewing thread. TENCEL™ Lyocell can also be used in powder form for use in the outsoles of shoes.

“We are extremely excited about this collaboration with Ananas Anam for the launch of The Sustainable Knit Trainer by Calvin Klein, an eco-responsible and planet-friendly shoe for conscious consumers. This partnership is the perfect example of our commitment to provide education and expertise to support anyone who chooses to improve the environmental and social credentials of their products by using more responsible materials,” said Nicole Schram, Global Business Development Manager at Lenzing.

Source:

Lenzing AG

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.