Textination Newsline

Reset
49 results
Neste provides renewable Neste RE, a raw material for polymers and chemicals made from bio-based materials. Source: Neste
06.08.2024

First polyester supply chain from sustainable feedstock

A consortium of seven companies across five countries has jointly established a supply chain for more sustainable polyester fiber. Instead of fossil materials, renewable and bio-based materials as well as carbon capture and utilization (CCU*) will be used in the manufacturing of polyester fibers for The North Face brand in Japan. The consortium parties are Goldwin, in the role of project owner, Mitsubishi Corporation, Chiyoda Corporation (all three from Japan), SK geo centric (South Korea), Indorama Ventures (Thailand), India Glycols (India) and Neste.

Neste will provide renewable Neste RE™ as one of the required ingredients for polyester production. The polyester fiber produced in the project is planned to be used by Goldwin for a part of The North Face products, including sports uniforms, in July 2024. After that, the launch of further Goldwin products and brands will be considered.

A consortium of seven companies across five countries has jointly established a supply chain for more sustainable polyester fiber. Instead of fossil materials, renewable and bio-based materials as well as carbon capture and utilization (CCU*) will be used in the manufacturing of polyester fibers for The North Face brand in Japan. The consortium parties are Goldwin, in the role of project owner, Mitsubishi Corporation, Chiyoda Corporation (all three from Japan), SK geo centric (South Korea), Indorama Ventures (Thailand), India Glycols (India) and Neste.

Neste will provide renewable Neste RE™ as one of the required ingredients for polyester production. The polyester fiber produced in the project is planned to be used by Goldwin for a part of The North Face products, including sports uniforms, in July 2024. After that, the launch of further Goldwin products and brands will be considered.

The seven companies apply a mass balancing approach to ensure credible traceability of material streams throughout the supply chain and will jointly continue to proactively promote the defossilization of materials to contribute to a more sustainable society.

Neste (NESTE, Nasdaq Helsinki) uses science and innovative technology to transform waste and other resources into renewable fuels and circular raw materials. The company creates solutions for combating climate change and accelerating a shift to a circular economy. Being the world’s leading producer of sustainable aviation fuel (SAF) and renewable diesel and a forerunner in developing renewable and circular feedstock solutions for polymers and chemicals, the company aims to help its customers to reduce their greenhouse gas emissions by at least 20 million tons annually by 2030.

The company’s ambition is to make the Porvoo oil refinery in Finland the most sustainable refinery in Europe. Neste is committed to reaching carbon-neutral production by 2035, and will reduce the carbon emission intensity of sold products by 50% by 2040. Neste has also set high standards for biodiversity, human rights and the supply chain. The company has consistently been included in the CDP and the Global 100 lists of the world’s most sustainable companies. In 2023, Neste's revenue stood at EUR 22.9 billion

Source:

Neste

The yuck factor counteracts sustainable laundry habits Photo: Chalmers University of Technology | Mia Halleröd Palmgren
17.06.2024

The yuck factor counteracts sustainable laundry habits

Most people today would lean towards environmentally friendly life choices, but not at the expense of being clean. When it comes to our washing habits, the fear of being perceived as dirty often wins out over the desire to act in an environmentally friendly way. And the more inclined we are to feel disgusted, the more we wash our clothes. This is shown by a unique study from Chalmers University of Technology, Sweden, that examines the driving forces behind our laundering behaviours and provides new tools for how people's environmental impact can be reduced.

Most people today would lean towards environmentally friendly life choices, but not at the expense of being clean. When it comes to our washing habits, the fear of being perceived as dirty often wins out over the desire to act in an environmentally friendly way. And the more inclined we are to feel disgusted, the more we wash our clothes. This is shown by a unique study from Chalmers University of Technology, Sweden, that examines the driving forces behind our laundering behaviours and provides new tools for how people's environmental impact can be reduced.

Today, we wash our clothes more than ever before, and the emissions from laundering have never been higher. Some of the reasons are that we use each garment fewer times before throwing them in the laundry bin, technological advances have made it easier and cheaper to do laundry, and access to washing machines has increased. Of the global emissions of microplastics, 16–35 percent come from washing synthetic fibres. In addition, detergents contribute to eutrophication, and the use of energy and water for washing also has environmental impacts.

"Even though the machines have become more energy-efficient, it is how often we choose to wash that has the greatest impact on the climate – and we have never done as much washing as we do today. At the same time, most of us seem to be uninterested in changing our laundering behaviours to reduce climate impact," says Erik Klint, doctoral student at the Division of Environmental Systems Analysis at Chalmers.

He has led a recently published research study that takes a new, unexplored approach to our washing habits: to examine the underlying mechanisms of excessive laundering from a psychological perspective. The study focuses on two driving forces that affect washing behaviour: (1) environmental identity – how strongly we identify with the group of environmentally conscious people, and (2) how inclined we are to have feelings of disgust. Two clearly conflicting driving forces, the study shows.

"We humans are constantly faced with different goal conflicts. In this case, there is a conflict between the desire to reduce one's washing to save the environment and the fear of being perceived as a disgusting person with unclean clothes. Disgust is a strong psychological and social driving force. The study shows that the higher our sensitivity to disgust, the more we wash, regardless of whether we value our environmental identity highly. The feeling of disgust simply wins out over environmental awareness," he says.

Disgust is an evolutionarily linked emotion
The fact that disgust drives our behaviour so strongly has several bases. Erik Klint describes disgust as an evolutionarily conditioned emotion, which basically functions as a protection against infection or dangerous substances. In addition to this, the feeling of disgust is closely related to the feeling of shame and can thus also have an influence in social contexts.

"We humans don't want to do things that risk challenging our position in the group – such as being associated with a person who doesn't take care of their hygiene," he says.

This has implications for our washing behaviour.

“Here, an evolutionarily rooted driving force is set against a moral standpoint, and in most cases you're likely to react to that evolutionarily linked emotion," he says.

"Washing campaigns have the wrong starting point"
According to Erik Klint, the study highlights that today's campaigns and messages to get people to act in an environmentally friendly way have the wrong starting point, since they often fail to take into account the psychological aspects behind people's behaviour.

"It doesn't matter how sensible and research-based an argument you have, if they run counter to people's different driving forces, such as the desire to feel a sense of belonging to a group, then they won’t work," he says.

The questions "How do we get people to wash less”, and “How do we do it in a more environmentally friendly way?” are misplaced, says Erik Klint, who points out that the focus should instead be on the indirect behaviour which leads to the actual washing. It might be subtle, but he suggests that a better question is instead “How do we get people to generate less laundry, specifically laundry that needs to be cleaned by a washing machine?”

"You do laundry because the laundry basket is full, because your favourite sweater is dirty, or because there is a free laundry timeslot in your shared laundry. Therefore, the focus needs to be on what happens before we run the washing machine, i.e., the underlying behaviours that create a need to wash. For example, how much laundry we generate, how we sort the clothes in the machine, or when we think the washing machine is full," he says.

One of the study's main suggestions is to encourage people to use clothes more often before they end up in the laundry basket.

"It can be about targeting excessive washing, with messages such as 'most people use their T-shirt more than once.' But also replacing washing machine use with other actions, such as airing the garments, brushing off dirt, or removing individual stains by hand. One way could be to highlight the economic arguments here, as clothes get worn out when they go through the machine," he says.

Hoping to reduce the environmental impact of laundry
Gregory Peters, Professor of Quantitative Sustainability Assessment at Chalmers and co-author of the study, emphasises that the research is a unique combination of behavioural science and natural science.

"This study is part of a more extensive thesis that goes beyond the usual research framework for LCA – life cycle assessments – and has made it possible to create more holistic understanding of how we wash and what drives washing behaviour. The direct result we hope for is to contribute to reduced environmental impact from laundry, but it is possible that the research can be generalised to other areas where behaviour and technology interact," he says.

More about washing habits and climate impact

  • The amount of laundry washed by European consumers has increased significantly. In 2015, the average European washed four machine loads per week. Although this is 0.7 fewer loads than in 2000, it still represents a sharp increase since the washing capacity of the machines has grown sharply during the same period. In 2015, 64 percent of all washing machines had a capacity of more than six kilograms, compared with 2 percent in 2004. At the same time, most consumers state that they use the machine's full capacity.
  • In 2010, it was estimated that about 30 percent of the world's households had access to a washing machine, and in 2024, according to a review of half of the world's population, living in 18 countries in different parts of the world, 80 percent of the households had access to a washing machine. Sources: Statista (2024), Pakula and Stamminger (2010)
  • 16–35 percent of global emissions of microplastics come from washing synthetic fibres. Washing synthetic products leads to more than half a million tonnes of microplastics accumulating on the seabed every year. A single wash of polyester clothing can release 700,000 microplastic fibres that can then end up in the food chain.
Source:

Chalmers | Mia Halleröd Palmgren

Photo: Damir Omerovic, Unsplash
12.06.2024

Crops to tackle environmental harm of synthetics

From risottos to sauces, mushrooms have long been a staple in the kitchen. Now fungi are showing the potential to serve up more than just flavor—as a sustainable, bendy material for the fashion industry.

Researchers are using the web-like structure of the mushroom's root system—the mycelium—as an alternative to synthetic fibers for clothing and other products such as car seats.

"It's definitely a change of mindset in the manufacturing process," said Annalisa Moro, EU project leader at Italy-based Mogu, which makes interior-design products from the mycelium. "You're really collaborating with nature to grow something rather than create it, so it's kind of futuristic."

Mogu, located 50 kilometers northwest of Milan, is managing a research initiative to develop nonwoven fabrics made of mycelium fibers for the textile industry.

From risottos to sauces, mushrooms have long been a staple in the kitchen. Now fungi are showing the potential to serve up more than just flavor—as a sustainable, bendy material for the fashion industry.

Researchers are using the web-like structure of the mushroom's root system—the mycelium—as an alternative to synthetic fibers for clothing and other products such as car seats.

"It's definitely a change of mindset in the manufacturing process," said Annalisa Moro, EU project leader at Italy-based Mogu, which makes interior-design products from the mycelium. "You're really collaborating with nature to grow something rather than create it, so it's kind of futuristic."

Mogu, located 50 kilometers northwest of Milan, is managing a research initiative to develop nonwoven fabrics made of mycelium fibers for the textile industry.

Called MY-FI, the project runs for four years through October 2024 and brings together companies, research institutes, industry organizations and academic institutions from across Europe.

MY-FI highlights how the EU is pushing for more sustainable production and consumption in the textile and apparel industry, which employs around 1.3 million people in Europe and has annual turnover of €167 billion.

While getting most of its textiles from abroad, the EU produces them in countries including France, Germany, Italy and Spain. Italy accounts for more than 40% of EU apparel production.

Delicate and durable
The mycelium grows from starter spawn added to crops such as cereals. The threadlike filaments of the hyphae, the vegetative part of the fungus, create a material that grows on top. It is harvested and dried, resulting in soft, silky white sheets of nonwoven fabric that are 50 to 60 square centimeters.

The delicate material is made stronger and more durable through the addition of bio-based chemicals that bind the fibers together.

Its ecological origins contrast with those of most synthetic fibers such as nylon and polyester, which derive from fossil fuels such as coal and oil.

That means production of synthetic fibers adds to greenhouse-gas emissions that are accelerating climate change. In addition, when washed, these materials shed microplastics that often end up polluting the environment including rivers, seas and oceans.

The MY-FI mycelium needs very little soil, water or chemicals, giving it greener credentials than even natural fibers such as cotton.

Dress rehearsal
For the fashion industry, the soft, water-resistant properties of the mycelium are as appealing as its environmental credentials.

Just ask Mariagrazia Sanua, sustainability and certification manager at Dyloan Bond Factory, an Italian fashion designer and manufacturer that is part of MY-FI.

The company has used the mycelium-based material—in black and brown and with a waxed finish—to produce a prototype dress, a top-and-midi-skirt combination, bags and small leather accessories.

Laser cutting and screen printing were used to evaluate the material's behavior. The challenge was to adapt to the sheets of fabric—squares of the mycelium material rather than traditional rolls of textiles like cotton, linen and polyester—as well as properties such as tensile strength and seam tightness.

"We have had to completely change the paradigm and design processes and garments based on the material," said Sanua.

The company hopes the mycelium material will be a way of offering consumers a range of products that can be alternatives to animal leather.

Leather-unbound
Meanwhile, Germany-based Volks¬wagen, the world's No. 2 car manufacturer, is looking to mycelium technologies to reduce its environmental footprint and move away from leather for vehicle interiors.

Customers increasingly want animal-free materials for interiors from seat covers and door panels to dashboards and steering wheels, so adding a sustainable substitute for leather is an exciting prospect, according to Dr. Martina Gottschling, a researcher at Volkswagen Group Innovation.

"A fast-growing biological material that can be produced animal-free and with little effort, which also does not require petroleum-based resources, is a game-changer in interior materials," she said.

The mycelium material is also lighter than leather, another positive for reducing VW's carbon footprint.

The company's involvement in MY-FI is driving project researchers at Utrecht University in the Netherlands and I-TECH Lyon in France to enhance the durability of the mycelium fabric. To move from prototype to production line, the fabric must meet quality requirements set by VW to ensure the material lasts for the life of the vehicle.

It's a challenge that Gottschling believes will be met in the coming decade.

"We already see the material as one of the high-quality materials for interior applications that will be possible in the future," she said.

When life gives you tomatoes
Mushrooms aren't the only food with the potential to spin a sustainable-yarn revolution. Tomato stems have a hidden talent too, according to Dr. Ozgur Atalay and Dr. Alper Gurarslan of Istanbul Technical University in Turkey.

Seeing tomato vines left to wither in the fields after the crop was harvested, Atalay and Gurarslan began to investigate whether the stems could be transformed into sustainable fibers.

Tests proved that the agricultural waste could indeed be turned into yarn. But Atalay and Gurarslan were determined to go a step further. They wanted to use tomato stems to create a type of yarn for garments that monitor heart beats, respiratory rates and joint movements.

The two researchers lead a project to create this kind of electrically conductive apparel using—for the first time—sustainable materials.

Called SMARTWASTE, the project runs for four years until the end of 2026 and also involves academic and research organizations from Germany, Italy, the Netherlands and Poland.

"The beauty of the project is that we are starting from waste," said Atalay. "We are taking agricultural waste and not just creating regular textiles but something much more valuable."

While cost estimates will follow later in the project when design partners work on creating actual products, he signaled that smart clothing will be a good deal more expensive than the ordinary kind.

A smart textile shirt could cost as much as €1,000, according to Atalay.

The specialized material, limited production runs and research and development needed to create wearable technologies that are durable, washable and comfortable all contribute to the price tag.

Advancements in technology should eventually lead to lower production costs and consumer prices.

Seeds of poplar success
The Turkish countryside has also inspired a second strand to the project. Turkey's abundant poplar trees and—more specifically—their white, fluffy cotton-like seeds prompted Gurarslan to investigate whether they could be a sustainable textile source.

While their fibers have been dismissed as too short to make a yarn, the seeds have three particular properties that appeal to the textile industry: a hollow, pipe-like structure that can trap heat to provide thermal qualities, an antibacterial nature and water resistance.

The network of SMARTWASTE experts has blended the seeds with recycled polyester to make a nonwoven fabric that the team intends to turn into textile products with enhanced thermal properties.

The researchers hope this is just the start of a far-reaching transformation of textiles.

"Our goal is to train the next generation of researchers and innovators in sustainable textiles," said Atalay.

Researchers led by Bernd Nowack have investigated the release of nanoparticles during the washing of polyester textiles. Image: Empa Image: Empa
14.02.2024

Release of oligomers from polyester textiles

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

Empa researchers from Bernd Nowack's group in the Technology and Society laboratory have now joined forces with colleagues from China to take a closer look at nanoparticles released from textiles. Tong Yang, first author of the study, carried out the investigations during his doctorate at Empa. In earlier studies, Empa researchers were already able to demonstrate that both micro- and nanoplastics are released when polyester is washed. A detailed examination of the released nanoparticles released has now shown that not everything that appears to be nanoplastic at first glance actually is nanoplastic.

To a considerable extent, the released particles were in fact not nanoplastics, but clumps of so-called oligomers, i.e. small to medium-sized molecules that represent an intermediate stage between the long-chained polymers and their individual building blocks, the monomers. These molecules are even smaller than nanoplastic particles, and hardly anything is known about their toxicity either. The researchers published their findings in the journal Nature Water.

For the study, the researchers examined twelve different polyester fabrics, including microfiber, satin and jersey. The fabric samples were washed up to four times and the nanoparticles released in the process were analyzed and characterized. Not an easy task, says Bernd Nowack. "Plastic, especially nanoplastics, is everywhere, including on our devices and utensils," says the scientist. "When measuring nanoplastics, we have to take this 'background noise' into account."

Large proportion of soluble particles
The researchers used an ethanol bath to distinguish nanoplastics from clumps of oligomers. Plastic pieces, no matter how small, do not dissolve in ethanol, but aggregations of oligomers do. The result: Around a third to almost 90 percent of the nanoparticles released during washing could be dissolved in ethanol. "This allowed us to show that not everything that looks like nanoplastics at first glance is in fact nanoplastics," says Nowack.

It is not yet clear whether the release of so-called nanoparticulate oligomers during the washing of textiles has negative effects on humans and the environment. "With other plastics, studies have already shown that nanoparticulate oligomers are more toxic than nanoplastics," says Nowack. "This is an indication that this should be investigated more closely." However, the researchers were able to establish that the nature of the textile and the cutting method – scissors or laser – have no major influence on the quantity of particles released.

The mechanism of release has not been clarified yet either – neither for nanoplastics nor for the oligomer particles. The good news is that the amount of particles released decreases significantly with repeated washes. It is conceivable that the oligomer particles are created during the manufacturing of the textile or split off from the fibers through chemical processes during storage. Further studies are also required in this area.

Nowack and his team are focusing on larger particles for the time being: In their next project, they want to investigate which fibers are released during washing of textiles made from renewable raw materials and whether these could be harmful to the environment and health. "Semi-synthetic textiles such as viscose or lyocell are being touted as a replacement for polyester," says Nowack. "But we don't yet know whether they are really better when it comes to releasing fibers."

Source:

Empa

From MIT to Burning Man: The Living Knitwork Pavilion Credit Irmandy Wicaksono
24.10.2023

From MIT to Burning Man: The Living Knitwork Pavilion

Set against the vast and surreal backdrop of the Black Rock Desert in Nevada, Burning Man is an annual gathering that transforms the flat, barren expanse into a vibrant playground for artistic and creative expression. Here, "Burners" come to both witness and contribute to the ephemeral Black Rock City, which participants build anew each year. With its myriad art installations and performances, Black Rock City is a temporary home for creative minds from around the world.

Set against the vast and surreal backdrop of the Black Rock Desert in Nevada, Burning Man is an annual gathering that transforms the flat, barren expanse into a vibrant playground for artistic and creative expression. Here, "Burners" come to both witness and contribute to the ephemeral Black Rock City, which participants build anew each year. With its myriad art installations and performances, Black Rock City is a temporary home for creative minds from around the world.

This year among the large-scale art stood the Living Knitwork Pavilion, an unusual architectural piece crafted from knitted textiles and a lattice network of wood. Developed and built by a team of researchers from the MIT Media Lab and MIT School of Architecture and Planning, and led by PhD student Irmandy Wicaksono, the installation received a 2023 Black Rock City Honorarium. For the team, it was a highly challenging and fulfilling project, full of learning and surprises. Seeing it emerge and illuminate in the middle of the desert was truly magical.

In the Living Knitwork Pavilion, 12 modular fabric panels, known as Knitwork petals, are connected through a central tower. The whole installation stood as a dodecagonal pyramid shade structure, 18 feet tall and 26 feet wide, resembling a teepee. The fabrics were developed using digital machine knitting and a collection of functional and common yarns, including photochromic, luminous, and conductive yarns. Taking inspiration from the intricacy of textile patterns and temple carvings of Indonesia, Wicaksono leveraged the tension between knitted polyester and spandex yarns to create textural textile patterns or reliefs. The fusion of parametric and hand-designed motifs transforms the "Living Knitwork" into a narrative artwork, reflecting both a reverence for ancient artistry and a vision of the future. These reliefs, full of symbols and illustrations, depict 12 stories of the future — from solarpunk cities and bio-machine interfaces to the deep ocean and space exploration.

Burning Man and the Black Rock Desert are famed for their climbing enthusiasts and intense winds. Given that strong winds can make the fabrics behave like sails, exerting significant force, the team designed a structure capable of supporting the weight of many climbers, and withstanding wind speeds of up to 70 mph.

The finalized central structure of the pavilion consists of an asymptotic lattice network of lumber and joint elements, optimized for structural integrity while minimizing material use. The knitwork petals, integrated with double-knit structure and mesh openings, and thermoformed through melting yarns, maintain structural stability. Tailored channels for ropes and cables were also incorporated into the knitting design, ensuring each fabric and electrical component is securely anchored and protected, without compromising visual elegance. Facing winds that reached 36 mph this year, the Living Knitwork Pavilion remained steadfast throughout the Burning Man event, demonstrating its resilience in extreme desert conditions.

In support of Burning Man's push for more sustainable art, the Living Knitwork Pavilion utilized additive manufacturing of digital knitting. This method allowed for the creation of custom multi-layer textiles that are both aesthetic and functional, all while minimizing raw material use and waste. The team incorporated recycled materials in their fabrics, with 60 percent of the yarns coming from recycled plastic bottles. The pavilion also runs entirely on battery power and solar cells. The team worked together with the Solar Library, a sculptural solar panel that distributes energy to other arts on the playa, to eliminate generators and noise while promoting the use of renewable energy sources.

By day, the Living Knitwork Pavilion served as a shade structure, while providing a communal space for meditation and discovery. As the sun shifts through the day, hidden-encrypted textile patterns and visual experience are revealed through photochromism and luminescent glow. As dusk descended upon the desert, the pavilion underwent a metamorphosis, illuminating its surroundings through an immersive lighting and audio system. Through a distributed network of antennas embedded within the central structure and each knitwork petal, the team’s ultimate goal was to create an intimate experience that allows individual and collective movement and activity to influence the overall ambience of the space, involving sound and illumination.

Throughout Burning Man, the pavilion also hosted pop-up events, from yoga sessions, dance performances, live music, and even a wedding ceremony. Unfortunately, in the last two days of the event, a heavy rainstorm hit the Black Rock Desert — a rarity for the event. Yet, this climatic twist worked in favor of the pavilion, helping cleanse its textile surface from the accumulated dust and reviving its vivid blue color.

The result of this grand project is a collaboration that transcends disciplinary boundaries. The research team aims to exemplify the remarkable possibilities that arise when architecture, technology, and textile arts converge and bring communities together.

The interdisciplinary group behind the Living Knitwork Pavilion includes researchers from across the Media Lab, the MIT Center for Bits and Atoms, and the Department of Architecture: Irmandy Wicaksono, Sam Chin, Alfonso Parra Rubio, Nicole Bakker, Erik Strand, Gabriela Advincula, Manaswi Mishra, Age van der Mei, Judyta Cichoka, Tongge Yu, and Angelica Zhang.

Source:

Massachusetts Institute of Technology MIT News

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

How does New Sensitivity translate into something concrete in the lifestyle industry, and what does having a sensitive approach to design and products mean? Also the adoption of Artificial General Intelligence (AGI) is transforming current times. AGI has the potential to bring innovative solutions and help tackle significant challenges, also in the textile industry. However, AGI can have the opposite effect on society. AGI needs the mindset of New Sensitivity that helps simplify complexity, expand creativity, and find unseen solutions, also within the world of textiles.
     
"With Heimtextil Trends 24/25: New Sensitivity, we encourage the textile industry to approach the future with thoughtfulness and consideration. Specifically, we see this change in three different trends for a more sensitive world of textiles: biotechnical, plant-based and technological," Bisgaard Gaede continues.

Plant-based: textiles made from plant crops or plant by-products
Plant-based textiles mean that the fibres are derived from something that grows rather than being synthetically produced. The sustainable advantage of plant-based textiles is that their origin is natural and, therefore, more able to recirculate in existing ecosystems. They can be divided into two groups. The first group of textiles are made from plant crops. New resilient crops like cactus, hemp, abaca, seaweed, and rubber offer new sustainable textile solutions. Because of mechanical extraction, they can grow despite climate changes and require fewer chemicals in their development. The second group consists of textiles made of plant by-products which are leftover raw materials from production such as banana, olive, persimmon and hemp.

Technological: technology and technical solutions transforming textiles
Technology can support the transformation of textiles through the use of different methods: upcycling and recycling of textiles, textile construction, and textile design. Due to decades of production, textiles are now a material available in abundance. Developing technologies for recycling textile waste and methods for upcycling textiles increases the circular usage of existing textiles. Furthermore, old textile construction techniques also offer pathways to sustainable solutions: For instance, using knitting technology for furniture upholstery produces less fabric waste; alternatively, weaving technique allows the creation of several colours using only a few coloured yarns. Textile Design Thinking is another method that addresses critical issues such as energy usage and durability of natural fibres and enhances these through technological textile advancement.

Bio-engineered: engineered to enhance bio-degrading
To a certain degree, bio-engineered textiles represent a fusion of plant-based and technological textiles. Bio-engineering bridges nature and technology and transforms the way textiles are made. They can be divided into two directions: fully bio-engineered and bio-degradable textiles. In the production of fully bio-engineered textiles nature-inspired strategies are adopted. Instead of growing plants and extracting their fibres, textiles are made from the protein, carbohydrates, or bacteria in corn, grass, and cane sugar. Manufacturing involves a bio-molecular process that creates filaments which are made into yarn. The sustainable advantage of bio-engineered textiles is that they can have some of the same functionalities as synthetically produced textiles, while still being biodegradable because of their natural origin. Biodegradable fibres can be added to conventional textiles like polyester to enhance the conventional textiles’ ability to revert to materials found in nature and hence biodegrade in natural environments such as water or soil. Although not biodegrading completely, these bio-enhanced textiles will biodegrade up to 93 % compared to conventional textiles.

Heimtextil Trends 24/25: new colourways
A sensitive approach to colouring methods is expressed by a dynamic yet subtle colour palette created through natural pigments deriving from the earth, as traditional colouring processes are brought to the next level through innovative bioengineering technology. In pursuit of creating colours that evoke emotions in our senses while at the same time respecting our values in protecting the environment, we see colour bacteria growing pigments generating hues with great richness and depth.
               
This New Sensitivity includes acceptance of natural colour flows, as colours may fade with time or morph into new colourways. The colourways for Heimtextil Trends 24/25 were inspired by natural colours deriving from avocado seeds, algae, living bacteria, antique pigments such as raw sienna, and bio-engineered indigo and cochineal. The high black component in most colours allows for widespread application and a greater variety of combinations. The punchy saturated accents enhance our senses as they lift our spirits. In contrast, the grounding neutrals in different shades of grey, terra and even dark purple allow for calmness and tranquillity.

Future Materials: regenerative design
How are regenerative textiles and materials defined? Regenerative design is dedicated to developing holistic creative practices that restore or renew resources, have a positive impact on the environment, and encourage communities to thrive. For Heimtextil 2024, design futures consultancy FranklinTill is curating a global showcase of cutting-edge textiles and materials to illustrate the principles of regenerative design and recognize pioneering designers, producers and manufacturers who are at the forefront of regenerative design.
The Trend Space at Heimtextil in Frankfurt, Germany, January 9-12, 2023, will showcase these pioneering solutions in an inspiring way. In addition, Heimtextil Trends will offer visitors orientation and insights into the future of home and contract textiles in the form of workshops, lectures and other interactive formats.

Source:

Heimtextil, Messe Frankfurt

Photo unsplash.com
05.09.2023

Ananas Anam and TENCEL™ collaborate with Calvin Klein

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

As the fashion sector has begun to realize the negative environmental effects of synthetic materials, a lot of brands have turned towards plant-based materials such as PIÑAYARN®. Using a low-impact manufacturing process, PIÑAYARN® is derived from pineapple leaf waste and involves a water-free spinning process. The addition of TENCEL™ Lyocell, a fiber made from wood pulp obtained from responsibly managed forests and produced using a solvent spinning process that recycles both the solvent and water at a recovery rate of more than 99%, offers full traceability of the TENCEL™ fiber in the final blended yarn.

Melissa Braithwaite, PIÑAYARN® Product Development Manager at Ananas Anam said “The inspiration for PIÑAYARN® came from the need to provide the textile industry with an alternative to overused, often polluting, conventional fibers, such as cotton or polyester. We have an abundance of available raw material within our business, and broadening our product offering means we can valorize more waste, increasing our positive impact on the environment and society.”

Indeed, as the consumer demand for more eco-responsible textile products and footwear grows, so too has the popularity of wood-based fibers as a material alternative. Ananas Anam and TENCEL™’s collaboration with Calvin Klein has been a success in that the physical characteristics and planet-conscious benefits of both PIÑAYARN® and TENCEL™ fibers complement each other perfectly, creating a blended material that is soft and usable for various woven and knitted applications.

For material developers like Ananas Anam seeking the ideal fiber blend partner to create PIÑAYARN®, TENCEL™ Lyocellfibers are celebrated for their versatility and ability to be blended with a wide range of textiles such as hemp, linen and of course Anam PALF™ pineapple leaf fiber, to enhance the aesthetics, performance and functionality of fabrics. Additionally, beyond being used in shoe uppers, TENCEL™ Lyocell fibers can be used in every part of the shoe including the upper fabric, lining, insoles, padding, laces, zipper and sewing thread. TENCEL™ Lyocell can also be used in powder form for use in the outsoles of shoes.

“We are extremely excited about this collaboration with Ananas Anam for the launch of The Sustainable Knit Trainer by Calvin Klein, an eco-responsible and planet-friendly shoe for conscious consumers. This partnership is the perfect example of our commitment to provide education and expertise to support anyone who chooses to improve the environmental and social credentials of their products by using more responsible materials,” said Nicole Schram, Global Business Development Manager at Lenzing.

Source:

Lenzing AG

chemical protective suits Photo: Pixabay, Alexander Lesnitsky
31.07.2023

DITF: Newly developed concept for chemical protective suits

A newly developed concept for chemical protective suits is designed to make use more comfortable and safer for the user. New materials and an improved design increase wearer comfort. The integration of sensor technology enables the monitoring of vital functions.

In the event of hazards from chemical, biological or radioactive substances, chemical protective suits (CSA) protect people from physical contact. CSAs consist of breathing apparatus, head protection, carrying frames and the suit itself. This adds up to a weight of around 25 kg. The construction of a multi-coated fabric makes the CSA stiff and provides for considerable restrictions in freedom of movement. As a result, the emergency forces are exposed to significant physical stress. For this reason, the total deployment time when using a CSA is limited to 30 minutes.

A newly developed concept for chemical protective suits is designed to make use more comfortable and safer for the user. New materials and an improved design increase wearer comfort. The integration of sensor technology enables the monitoring of vital functions.

In the event of hazards from chemical, biological or radioactive substances, chemical protective suits (CSA) protect people from physical contact. CSAs consist of breathing apparatus, head protection, carrying frames and the suit itself. This adds up to a weight of around 25 kg. The construction of a multi-coated fabric makes the CSA stiff and provides for considerable restrictions in freedom of movement. As a result, the emergency forces are exposed to significant physical stress. For this reason, the total deployment time when using a CSA is limited to 30 minutes.

In a joint project with various companies, institutes and professional fire departments, work is currently underway to completely redesign both the textile material composite and the hard components and connecting elements between the two. The goal is a so-called "AgiCSA", which offers significantly more comfort for the emergency forces due to its lighter and more flexible construction. The DITF subproject focuses on the development of a more individually adaptable, body-hugging suit on the one hand, and on the integration of sensors that serve the online monitoring of important body functions of the emergency personnel on the other.

At the beginning of the project, the DITF received support from the Esslingen Fire Department. They provided a complete CSA that is used as standard today. This could be tested at the DITF for its wearing properties. The researchers in Denkendorf are investigating where there is a need for optimization to improve ergonomic wearing comfort.

The aim is to construct a chemical- and gas-tight suit that fits relatively closely to the body. It quickly became clear that it was necessary to move away from the previous concept of using woven fabrics as the basic textile material and think in terms of elastic knitted fabrics. In implementing this idea, the researchers were helped by recent developments in the field of knitted fabric technology in the form of spacer fabrics. By using spacer textiles, many of the requirements placed on the base substrate can be met very well.

Spacer textiles have a voluminous, elastic structure. From a wide range of usable fiber types and three-dimensional design features, a 3 mm thick spacer textile made of a polyester pile yarn and a flame-retardant fiber blend of aramid and viscose was selected for the new CSA. This textile is coated on both sides with fluorinated or butyl rubber. This gives the textile a barrier function that prevents the penetration of toxic liquids and gases. The coating is applied to the finished suit by a newly developed spraying process. The advantage of this process over the conventional coating process is that the desired elasticity of the suit is retained.

Another innovation is the integration of a diagonal zipper. This makes it easier to put on and take off the suit. Whereas this was previously only possible with the help of another person, the new suit can in principle be put on by the emergency responder alone. The new design is modeled on modern dry suits with diagonal, gas-tight zippers.
The new AgiSCA also features integrated sensors that allow the transmission and monitoring of the vital and environmental data of the emergency worker as well as their location via GPS data. These additional functions significantly enhance operational safety.

For the hard components, i.e. the helmet and the backpack for the compressed air supply, lightweight carbon fiber-reinforced composite materials from Wings and More GmbH & Co. KG are used.
The first demonstrators are available and are available to the project partners for testing purposes. The combination of current textile technology, lightweight construction concepts and IT integration in textiles has led to a comprehensive improvement of a high-tech product in this project.
 
BMBF project "Development of a chemical protection suit with increased mobility for more efficient operational concepts through increased autonomy of the emergency forces (AgiCSA)".
The project addresses the objectives of the Federal Government's framework program "Research for Civil Security 2018-2023 and the funding measure "SME-innovative: Research for Civil Security" of July 3, 2018.

 

Source:

DITF Deutsche Institute für Textil- und Faserforschung

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

‘Smart’ Coating Could Make Fabrics into Protective Gear

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

The findings hinge on a conductive metal-organic technology, or framework, developed in the laboratory of corresponding author Katherine Mirica, an associate professor of chemistry. First reported in JACS in 2017, the framework was a simple coating that could be layered onto cotton and polyester to create smart fabrics the researchers named SOFT—Self-Organized Framework on Textiles. Their paper demonstrated that SOFT smart fabrics could detect and capture toxic substances in the surrounding environment.

For the newest study, the researchers found that—instead of the simple coating reported in 2017—they can precisely embed the framework into fabrics using a copper precursor that allows them to create specific patterns and more effectively fill in the tiny gaps and holes between threads.

The researchers found that the framework technology effectively converted the toxin nitric oxide into nitrite and nitrate, and transformed the poisonous, flammable gas hydrogen sulfide into copper sulfide. They also report that the framework’s ability to capture and convert toxic materials withstood wear and tear, as well as standard washing.
 
The versatility and durability the new method provides would allow the framework to be applied for specific uses and in more precise locations, such as a sensor on protective clothing, or as a filter in a particular environment, Mirica said.

“This new method of deposition means that the electronic textiles could potentially interface with a broader range of systems because they’re so robust,” she said. “This technological advance paves the way for other applications of the framework’s combined filtration and sensing abilities that could be valuable in biomedical settings and environmental remediation.”
The technique also could eventually be a low-cost alternative to technologies that are cost prohibitive and limited in where they can be deployed by needing an energy source, or—such as catalytic converters in automobiles—rare metals, Mirica said.
 
“Here we’re relying on an Earth-abundant matter to detoxify toxic chemicals, and we’re doing it without any input of outside energy, so we don’t need high temperature or electric current to achieve that function,” Mirica said.

Co-first author Michael Ko, initially observed the new process in 2018 as he attempted to deposit the metal-organic framework onto thin-film copper-based electrodes, Mirica said. But the copper electrodes would be replaced by the framework.

“He wanted it on top of the electrodes, not to replace them,” Mirica said. “It took us four years to figure out what was happening and how it was beneficial. It’s a very straightforward process, but the chemistry behind it is not and it took us some time and additional involvement of students and collaborators to understand that.”

The team discovered that the metal-organic framework “grows” over copper, replacing it with a material with the ability to filter and convert toxic gases, Mirica said. Ko and co-author Lukasz Mendecki, a postdoctoral scholar in the Mirica Group from 2017-18, investigated methods for applying the framework material to fabric in specific designs and patterns.

Co-first author Aileen Eagleton, who is also in the Mirica Group, finalized the technique by optimizing the process for imprinting the metal-organic framework onto fabric, as well as identifying how its structure and properties are influenced by chemical exposure and reaction conditions.

Future work will focus on developing new multifunctional framework materials and scaling up the process of embedding the metal-organic coatings into fabric, Mirica said.

Source:

Dartmouth / Textination

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers. (c) Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering. In the future, one will be able to use their phone to read the clothing woven-in labels made with inexpensive photonic fibers.
15.02.2023

The new butterfly effect: A ‘game changer’ for clothing recycling?

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Photonic fibers borrow from butterfly wings to enable invisible, indelible sorting labels

Less than 15% of the 92 million tons of clothing and other textiles discarded annually are recycled—in part because they are so difficult to sort. Woven-in labels made with inexpensive photonic fibers, developed by a University of Michigan-led team, could change that.
 
“It’s like a barcode that’s woven directly into the fabric of a garment,” said Max Shtein, U-M professor of materials science and engineering and corresponding author of the study in Advanced Materials Technologies. “We can customize the photonic properties of the fibers to make them visible to the naked eye, readable only under near-infrared light or any combination.”

Ordinary tags often don’t make it to the end of a garment’s life—they may be cut away or washed until illegible, and tagless information can wear off. Recycling could be more effective if a tag was woven into the fabric, invisible until it needs to be read. This is what the new fiber could do.
 
Recyclers already use near-infrared sorting systems that identify different materials according to their naturally occurring optical signatures—the PET plastic in a water bottle, for example, looks different under near-infrared light than the HDPE plastic in a milk jug. Different fabrics also have different optical signatures, but Brian Iezzi, a postdoctoral researcher in Shtein’s lab and lead author of the study, explains that those signatures are of limited use to recyclers because of the prevalence of blended fabrics.

“For a truly circular recycling system to work, it’s important to know the precise composition of a fabric—a cotton recycler doesn’t want to pay for a garment that’s made of 70% polyester,” Iezzi said. “Natural optical signatures can’t provide that level of precision, but our photonic fibers can.”

The team developed the technology by combining Iezzi and Shtein’s photonic expertise—usually applied to products like displays, solar cells and optical filters—with the advanced textile capabilities at MIT’s Lincoln Lab. The lab worked to incorporate the photonic properties into a process that would be compatible with large-scale production.
 
They accomplished the task by starting with a preform—a plastic feedstock that comprises dozens of alternating layers. In this case, they used acrylic and polycarbonate. While each individual layer is clear, the combination of two materials bends and refracts light to create optical effects that can look like color. It’s the same basic phenomenon that gives butterfly wings their shimmer.

The preform is heated and then mechanically pulled—a bit like taffy—into a hair-thin strand of fiber. While the manufacturing process method differs from the extrusion technique used to make conventional synthetic fibers like polyester, it can produce the same miles-long strands of fiber. Those strands can then be processed with the same equipment already used by textile makers.

By adjusting the mix of materials and the speed at which the preform is pulled, the researchers tuned the fiber to create the desired optical properties and ensure recyclability. While the photonic fiber is more expensive than traditional textiles, the researchers estimate that it will only result in a small increase in the cost of finished goods.

“The photonic fibers only need to make up a small percentage—as little as 1% of a finished garment,” Iezzi said. “That might increase the cost of the finished product by around 25 cents—similar to the cost of those use-and-care tags we’re all familiar with.”

Shtein says that in addition to making recycling easier, the photonic labeling could be used to tell consumers where and how goods are made, and even to verify the authenticity of brand-name products. It could be a way to add important value for customers.

“As electronic devices like cell phones become more sophisticated, they could potentially have the ability to read this kind of photonic labeling,” Shtein said. “So I could imagine a future where woven-in labels are a useful feature for consumers as well as recyclers.”

The team has applied for patent protection and is evaluating ways to move forward with the commercialization of the technology.
The research was supported by the National Science Foundation and the Under Secretary of Defense for Research and Engineering.

Source:

Gabe Cherry, College of Engineering, University of Michigan / Textination

04.01.2023

Circular Economy: It could all be so simple... or not

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

I'm a very curious guy by nature. That's why I offered to help out at a well-known hot dog station in Münster (Germany) this year, to draw attention to the shortage of staff in the gastronomy. I wrote an article about it on LinkedIn, which was in turn reacted to by Ines Chucholowius.
From her profile, I could see that she is a consultant for strategic marketing and communication in the textile industry. Not entirely serious, she offered me a job in her office. Like pushing a button, the pictures in my mind set in: Textile industry, exciting! Merchandising, contacts in the industry, collaborations, and I agreed to a short chat, at the end of which we spoke on the phone and arranged to meet.
 
She told me about her website TEXTINATION.de. And we were already involved in an exciting, heated exchange about perception and truth in the textile industry. Without further ado, we left it at that and I went home with a chunk of new information about an exciting field. Our dialogue on social media continued and eventually Ines offered me the chance to feed my die-hard curiosity with the support of TEXTINATION.de. I could write a blog on the site, about people, products, service providers, producers, startups or trends that interest me, to add to my half-knowledge about the textile industry.

Textile waste into the front ... new T-shirt out the back
During this exchange and a long brainstorming session, certain terms kept tickling my attention:
Circular economy, recycling, recyclable material loops. Circular Economy, Recycling, Recyclables. Even though there are many different definitions and some even distinguishing between different aspects: the former thought from waste that flows back into production as a secondary raw material, a more modern approach avoiding waste already in production - the general consensus is really only that circular economy is a cycle in which waste is used as a source for something new.

Sounds like useful additions for all areas of the manufacturing real economy to me. Ines introduced me to Robert Kapferer: He runs a startup called Circularity Germany in Hamburg. His company, founded in 2021 and consisting of Robert and another partner, is an offshoot of the Dutch-based company Circularity B.V. Its founder Han Hamers, with a degree in child psychology and a professional background in the textile dyeing industry, had the idea five years ago for a production facility that spins new yarn exclusively from textile production waste and old textiles turning it into T-shirts, polo shirts and sweatshirts.
Whether this works, and if so, how, is what I wanted to find out, and Ines and I arranged to meet Robert for a 90-minute online conference.

Robert, originally an industrial engineer, comes from a less sustainable industry. He worked for 11 years as managing director for AVECO Material und Service GmbH, where he was responsible for the workwear of more than 50,000 employees.

At the beginning of our conversation, he emphasizes that a moment in January 2021 changed his life and from then on, he wanted to dedicate himself to the topic of circular economy with all his might. That was when he met Han Hamers, who inspired him to found Circularity Germany. His enthusiasm and passion for the subject sound credible, and he begins to describe the differences between chemical and mechanical recycling methods. In summary, the mechanical process of shredding and the subsequent spinning shortens the fibers and thus restricts their properties for further processing. The advantage lies primarily in the comparatively uncomplicated, fast and more cost-efficient process. In the chemical variant, chemical waste remains, but the processed materials are broken down again into their basic building blocks in such a way that they have almost all the same properties as a so-called virgin raw material. Circularity Germany stands for the mechanical process.

And then comes the sentence that gets all our attention: "We've advanced a spinning technology so much that it relies exclusively on waste-based raw materials."
This sentence almost doesn't stand out because Robert still talks - quite excitingly - about the fact that they are planning a production and manufacturing facility where everything from knitting yarn to relatively fine thread can be spun and then further processed into fabric. And here Ines and I ask intensively: Essential requirements for industrial production still seem to be unresolved, and necessary processes are still in the planning stage. For example, the question of whether to work with pre-consumer or post-consumer waste. Pre-consumer waste is cutting waste from the production of clothes, which corresponds to about 10% of the processed material. Post-consumer waste we know as used textiles.

As long as production still takes place in India, Circularity currently uses mainly pre-consumer waste. These come exclusively from sewing factories in the Tirupur region in the south of India. When using used textiles, which exist in large quantities in Germany (according to a study, 28-40% of all garments produced are thrown away unworn), Circularity produces blended yarns of cotton and polyester. The company does not offer pure cotton yarns.

Textiles are treated with chemicals to varying degrees - workwear in particular cannot do without them. The fact that Han Hemers is also collecting used textile stocks from the Dutch army in order to reintroduce them renewed into the consumer cycle is therefore not reassuring. Military clothing has to be finished with all kinds of additives.

Therefor I ask how he can dispel doubts in a consumer’s mind like mine, with a healthy half-knowledge of mask deals and greenwashing, that a well-intentioned vision will be followed by a dark awakening. This concern cannot yet be resolved after the conversation.

We limit ourselves to what is planned: Robert has the dream of reversing the globalized process of textile production. He wants to end the decoupling of cotton growing regions and far-flung production such as Asia with subsequent shipping of ready-made goods to Europe. In the future, existing used textiles and/or cutting wastes are to be collected on site, recycled and processed locally into new textiles.

I believe him in having this dream. However, some of my questions about sustainability remain unanswered - which is why I have my doubts about whether the idea is currently capable of performing and competing.
What are the reasons for this? For one thing, I think it's always difficult to do necessary pioneering work. Especially when listening to smart comments at the regulars' table that large companies are already working intensively on the principle of circular economy. But sometimes, apart from the term "circular economy" and a vague commitment to it, not much remains.

Circularity Germany is committed to developing a technology based exclusively on waste. The interview points out that this also includes making production more environmentally friendly and eliminating transport routes, which further reduces the burden on the environment. When all the requirements for realizing this dream have been met and a product that is competitive in terms of both quality and price can be launched on the market, it is up to the consumer to decide. Here one would have the credible argument of sustainability and a socially and environmentally fair process. Circularity would then not have to worry about PR.

It needs to be given time and, above all, attention. But perhaps the industry should get involved right here and now, and invest in startups like this and make sure that problems are cleared out of the way. Because one thing has become clear to us in this conversation:

It could all be so simple. Circular economy is achievable, but the road there is still costly and rocky. That's why we wish Robert and his team every success and, above all, perseverance. Thank you for the interview.

Short and sweet: the profile of the company in the attached factsheet for download.

 

 

Photo: Pim Top for FranklinTill
29.11.2022

Heimtextil Trends 23/24: Textiles Matter

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Council – consisting of FranklinTill Studio (London), Stijlinstituut Amsterdam and Denmark’s SPOTT Trends & Business agency – offers insights into the future of the national and international market. The focus is more than ever before on sustainability and the circular economy, the main factors in setting the trends for the season 23/24.

Textiles Matter: bear responsibility
Textiles are an integral part of modern life. The material applications and the manufacturing processes are no less multifarious than user expectations. And this represents a great challenge for the international textile industry, which obtains its raw materials from a broad spectrum of sources and uses numerous processes to make a huge variety of products. This offers a great potential for the sustainable development of the textile industry in the future. The Heimtextil Trends show ways in which this potential can be utilized and sustainable developments promoted. Under the motto ‘Textiles Matter’, visitors can explore concepts for increased circularity, which will generate new impulses for the sustainable market of the future.

"Considering the state of environmental emergency we are currently living through, the textile industry has a responsibility to examine its processes, and change for the better. That is why for this edition of the Heimtextil Trends we are taking a material’s first approach, and focusing on the sourcing, design, and sustainability of materials. Textiles Matter showcases the potential of circularity and celebrates design initiatives that are beautiful, relevant and importantly sustainable”, explains Marta Giralt Dunjó of FranklinTill.

Change via circularity
The Trend Space at the coming Heimtextil 2023 will revolve around ideas and solutions for circularity in the textile sector. How can textiles be produced in a sustainable way? What recycling options are there? What does the optimum recycling of textile products look like? Within the framework of the circular economy, materials are continuously reused. On the one hand, this reduces the need for new raw materials and, on the other hand, cuts the amount of waste generated. In the technical cycle, inorganic materials, such as nylon, polyester, plastic and metal, can be recycled with no loss of quality. In the biological cycle, organic materials, such as linen and bast fibres, are returned to nature at the end of their useful life. This is the basis of the four trend themes: ‘Make and Remake’, ‘Continuous’, ‘From Earth’ and ‘Nature Engineered’.

Make and Remake
Pre-used materials, deadstock and remnant textiles are given a new lease of life with the focus shifting to the aesthetics of repair and taking the form of a specific design element of the recycled product. Bright and joyful colours and techniques, such as overprinting, overdyeing, bricolage, collage and patchwork, result in new and creative products. Layered colour patterns and graphics lead to bold and maximalist, yet conscious, designs.

Continuous
The Continuous trend theme describes closed-loop systems in which materials are recycled into new, waste-free products again and again. Putative waste materials are separated out and reprocessed as new fibres, composites and textiles. Thus, synthetic and cellulose yarns can be produced zero-waste. Thanks to technically advanced reclamation processes, the materials retain their original quality and aesthetic. Practicality, essentialism and longevity determine the design of Continuous products.

From Earth
This theme focuses on the natural world and harmony with the nature of organic materials. Natural colours communicate warmth and softness. Imperfect textures, signs of wear and irregularities create ecological and earth-born aesthetics. Earthen and botanic shades, natural variation and tactile richness dominate the From Earth segment. Unrefined and raw surfaces, unbleached textiles and natural dyes celebrate materials in their original states.

Nature Engineered
Nature Engineered uses mechanical means to elevate and perfect organic materials, such as bast fibres, hemp, linen and nettles. Cutting-edge techniques process natural textiles into sophisticated and smart products. Combined with shades of beige and brown, clean lines and shapes are the distinguishing features of this theme.

More information:
Heimtextil Trends FranklinTill
Source:

Heimtextil, Messe Frankfurt

Photo: Performance Days
18.10.2022

Eco Award & Performance Award for innovative winter fabrics 24/25

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

Sustainable & innovative: the award winners of the Winter 2024/25 season
As part of the winter edition of the sourcing fairs, the fabric highlights plus accessory trends in the individ-ual categories for the winter season 2024/25 will be on display at the PERFORMANCE FORUM.
 
Particularly striking this year was the high levels of innovation and quality of many submitted fabrics on the one hand, but on the other hand – also as a result of this year’s Focus Topic – the sustainable component. “We wish to enable our visitors to make the best decision in terms of material selection, also in terms of CO2 neutrality and ultimately also in terms of textile recyclability,” states Marco Weichert, CEO of PERFORMANCE DAYS.  

Nevertheless, the road to CO2 neutrality remains a long one, yet the approaches adopted with the Focus Topic ongoing until the coming spring can be seen in a positive light. In general, manufacturers are increasingly relying on the use of natural fibers when possible, such as Tencel™ or other plant fibers – most of them also prove a low CO2 balance during production. The issue of recycling comes with many new facets and wide spanning trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining in importance, as is the return of fabrics to the textile cycle.

In the Marketplace, visitors have the opportunity to view over 19,000 products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order for visitors to experience the fabrics in terms of haptics, design and structure in as realistic a form as possible, the PERFORMANCE FORUM has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3MA data for download.

The jury has also presented two awards for outstanding fabrics for the Winter Season 2024/25 – with the PERFORMANCE AWARD going to Long Advance Int. Co Ltd., and the ECO PERFORMANCE AWARD to PontetortoSpa.

The ECO PERFORMANCE AWARD goes to “9203/M/RC” from PontetortoSpa: High Performance despite maximum sustainability
The fabric is a blend of 23 % hemp, 69 % recycled polyester and 9 % recycled elastane. Moreover, the material boasts a low CO2 footprint during production and focuses on low release levels of microplastics into the environment. “9203/M/RC” belongs to Pontetorto's Techno Stretch organic series, which boast an excellent 4-way stretch with great elasticity. In addition, it guarantees fast drying and optimal breathability. The polyester yarn is manufactured by the mechanical recycling of plastic bottles. Hemp, the most water–repellent among natural fibers, allows for quick drying and provides optimal comfort. Hemp is considered an extremely sustainable natural fiber due to its origin from an anti–bacterial plant that requires neither pesticides nor chemical fertilizers during its growth and consumes extremely little water.

PERFORMANCE AWARD for “LPD-22015-Y4E” from Long Advanced Int. Co. Ltd.: Perfect recycling for top performance
The monocomponent 2layer fabric is a mixture of 45 % polyester mechanical stretch and 55 % recycled polyester from recycled textiles, laminated with a PET Membrane, with a weight of 147 grams.
The special feature of the “LPD 22015-Y4E” is the recycling of fabric and cutting waste. Waste is thus returned to the textile cycle and used to spin new yarn. In the future, manufacturers will have to ensure that all fabric can be recycled. Accordingly, the production of waste is then reduced by 30 % compared to conventional processes. Furthermore, the jury praised the feel and the extraordinary look of the material.

The entire PERFORMANCE FORUM including both awards can be experienced live at the fair on October 26-27, 2022 in Portland, Oregon, and in Munich at the PERFORMANCE DAYS fair on November 03-04, 2022. As of now, all innovative materials can also be found online in the Marketplace of the PERFORMANCE DAYS Loop, with the option to order free samples directly from the exhibitor.

Nicolas Meletiou, Pixabay
01.03.2022

Textiles and the environment: the role of design in Europe’s circular economy

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

  • In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people across 160,000 companies. As was the case in many sectors, between 2019 and 2020, the COVID-19 crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing.
  • In 2020, textile consumption in Europe had on average the fourth highest impact on the environment and climate change from a global life cycle perspective. It was the consumption area with the third highest impact on water and land use, and the fifth highest in terms of raw material use and greenhouse gas emissions.
  • To reduce the environmental impacts of textiles, a shift towards circular business models, including circular design, is crucial. This will need technical, social and business model innovation, as well as behavioural change and policy support.
  • Circular design is an important enabler of the transition towards sustainable production and consumption of textiles through circular business models. The design phase plays a critical role in each of the four pathways to achieving a circular textile sector: longevity and durability; optimised resource use; collection and reuse; and recycling and material use.

Textiles are identified as a key value chain in the EU circular economy action plan and will be addressed in the forthcoming European Commission’s 2022 EU strategy for sustainable and circular textiles and EU sustainable products initiative. This briefing aims to improve our understanding of the environmental and climate impacts of textiles from a European perspective and to identify design principles and measures to increase circularity in textiles. It is underpinned by a report from the EEA’s European Topic Centre on Circular Economy and Resource Use available here.

1. Production, trade and consumption of textiles
Textiles is an important sector for the EU economy. In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people in 160,000 companies. As was the case for many sectors, between 2019 and 2020, the COVID-19 health and economic crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing (Euratex, 2021).

In 2020, 6.9 million tonnes of finished textile products were produced in the EU-27. EU production specialises in carpets, household textiles and other textiles (including non-woven textiles, technical and industrial textiles, ropes and fabrics). In addition to finished products, the EU produces intermediate products for textiles, such as fibres, yarns and fabrics (Köhler et al., 2021).

The textiles sector is labour intensive compared with others. Almost 13 million full-time equivalent workers were employed worldwide in the supply chain to produce the amount of clothing, textiles and footwear consumed in the EU-27 in 2020. This makes the textiles sector the third largest employer worldwide, after food and housing. Most production takes place in Asia, where low production costs come at the expense of workers’ health and safety.
 
Textiles are highly globalised, with Europe being a significant importer and exporter. In 2020, 8.7 million tonnes of finished textile products, with a value of EUR125 billion, were imported into the EU-27. Clothing accounts for 45% of imports in terms of volume, followed by household textiles, other textiles and footwear (Eurostat, 2021a). The EU imports mainly from China, Bangladesh and Turkey, and exports mainly to the United Kingdom, Switzerland and the United States (Euratex, 2020).

Consumption
European households consume large amounts of textile products. In 2019, as in 2018, Europeans spent on average EUR600 on clothing, EUR150 on footwear and EUR70 on household textiles (Köhler et al., 2021; Eurostat, 2021b).

The response to the COVID-19 pandemic, involving stay-at-home measures and the closure of companies and shops, decreased textile production and demand overall (Euratex, 2021). As a result, the consumption of clothing and footwear per person decreased in 2020, relative to 2019, while the consumption of household textiles slightly increased. Average textile consumption per person amounted to 6.0kg of clothing, 6.1kg of household textiles and 2.7kg of shoes in 2020 (see Figure 1).

Apart from this COVID-related drop in consumption in 2020, the estimated consumption of clothing and footwear stayed relatively constant over the last decade, with slight fluctuations between years (see Figure 2). Similarly, the consumption of household textiles was also relatively steady, with a slight increase over the decade.

When calculating the ‘estimated consumption’ based on production and trade data from 2020, and excluding industrial/technical textiles and carpets, total textile consumption is 15kg per person per year, consisting of, on average:

  • 6.0kg of clothing
  • 6.1kg of household textiles
  • 2.7kg footwear.

For 2020, this amounts to a total consumption of 6.6 million tonnes of textile products in Europe. Textile consumption estimates are uncertain, as they vary by study, often using different scopes and calculation methods.

2. Environmental and climate impacts of textiles
The production and consumption of textiles has significant impacts on the environment and climate change. Environmental impacts in the production phase result from the cultivation and production of natural fibres such as cotton, hemp and linen (e.g. use of land and water, fertilisers and pesticides) and from the production of synthetic fibres such as polyester and elastane (e.g. energy use, chemical feedstock) (ETC/WMGE, 2021b). Manufacturing textiles requires large amounts of energy and water and uses a variety of chemicals across various production processes. Distribution and retail are responsible for transport emissions and packaging waste.

During use and maintenance — washing, drying and ironing — electricity, water and detergents are used. Chemicals and microfibres are also emitted into the waste water. Meanwhile, textiles contribute to significant amounts of textile waste. At the end of their life, textiles often end up in general waste and are incinerated or landfilled. When textile waste is collected separately, textiles are sorted and reused, recycled or disposed of, depending on their quality and material composition. In 2017, it was estimated that less than 1% of all textiles worldwide are recycled into new products (Ellen MacArthur Foundation, 2017).

To illustrate the magnitude of the impacts of textile consumption on raw material use, water and land use and greenhouse gas emissions compared with other consumption categories, we have updated our calculations of the life cycle environmental and climate impacts in the EU. We used input-output modelling based on data from the Exiobase database and Eurostat. In line with the reduced textile consumption level in 2020 because of the COVID-19 pandemic, the environmental impacts decreased from 2019 to 2020.

Raw material use
Large amounts of raw materials are used for textile production. To produce all clothing, footwear and household textiles purchased by EU households in 2020, an estimated 175 million tonnes of primary raw materials were used, amounting to 391kg per person. Roughly 40% of this is attributable to clothes, 30% to household textiles and 30% to footwear. This ranks textiles as the fifth highest consumption category in Europe in terms of primary raw material use (see Figure 3).

The raw materials used include all types of materials used in producing natural and synthetic fibres, such as fossil fuels, chemicals and fertilisers. It also includes all building materials, minerals and metals used in the construction of production facilities. Transport and retail of the textile products are included as well. Only 20% of these primary raw materials are produced or extracted in Europe, with the remainder extracted outside Europe. This shows the global nature of the textiles value chain and the high dependency of European consumption on imports. This implies that 80% of environmental impacts generated by Europe’s textile consumption takes place outside Europe. For example, cotton farming, fibre production and garment construction mostly take place in Asia (ETC/WMGE, 2019).

Water use
Producing and handling textiles requires large quantities of water. Water use distinguishes between ‘blue’ water (surface water or groundwater consumed or evaporated during irrigation, industry processes or household use) and ‘green’ water (rain water stored in the soil, typically used to grow crops) (Hoekstra et al., 2012).

To produce all clothing, footwear and household textiles purchased by EU households in 2020, about 4,000 million m³ of blue water were required, amounting to 9m³ per person, ranking textiles’ water consumption in third place, after food and recreation and culture (see Figure 4).

Additionally, about 20,000 million m³ of green water was used, mainly for producing cotton, which amounts to 44m³ per person. Blue water is used fairly equally in producing clothing (40%), footwear (30%) and household and other textiles (30%). Green water is mainly consumed in producing clothing (almost 50%) and household textiles (30%), of which cotton production consumes the most.

Water consumption for textiles consumed in Europe mostly takes place outside Europe. It is estimated that producing 1kg of cotton requires about 10m³ of water, typically outside Europe (Chapagain et al., 2006).

Land use
Producing textiles, in particular natural textiles, requires large amounts of land. The land used in the supply chain of textiles purchased by European households in 2020 is estimated at 180,000 km², or 400m² per person. Only 8% of the land used is in Europe. Over 90% of the land use impact occurs outside Europe, mostly related to (cotton) fibre production in China and India (ETC/WMGE, 2019). Animal-based fibres, such as wool, also have a significant land use impact (Lehmann et al., 2018). This makes textiles the sector with the third highest impact on land use, after food and housing (see Figure 5). Of this, 43% is attributable to clothes, 35% to footwear (including leather shoes, which have a high land use impact because of the need for cattle pasture) and 23% to household and other textiles.

Greenhouse gas emissions
The production and consumption of textiles generate greenhouse gas emissions, in particular from resource extraction, production, washing and drying, and waste incineration. In 2020, producing textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes carbon dioxide equivalent (CO2e) in total, or 270kg CO2e per person. This makes textiles the household consumption domain responsible for the fifth largest impact on climate change, after housing, food, transport and mobility, and recreation and culture (see Figure 6). Of this, 50% is attributable to clothes, 30% to household and other textiles, and 20% to footwear. While greenhouse gas emissions have a global effect, almost 75% are released outside Europe, mainly in the important textile-producing regions in Asia (ETC/WMGE, 2019).

About 80% of the total climate change impact of textiles occurs in the production phase. A further 3% occurs in distribution and retail, 14% in the use phase (washing, drying and ironing), and 3% during end of life (collection, sorting, recycling, incineration and disposal) (ECOS, 2021; Östlund et al., 2020).

Textiles made from natural fibres, such as cotton, generally have the lowest climate impact. Those made from synthetic fibres (especially nylon and acrylic) generally have a higher climate impact because of their fossil fuel origin and the energy consumed during production (ETC/WMGE, 2021b; Beton et al., 2014).

3. Design as an enabler of circular business models for textiles
To reduce the environmental and climate change impacts of textiles, shifting towards circular business models is crucial to save on raw materials, energy, water and land use, emissions and waste (ETC/WMGE, 2019). Implementing and scaling circular business models requires technical, social and business model innovation; as well as enablers from policy, consumption and education (EEA, 2021).

Circular design is an important component of circular business models for textiles. It can ensure higher quality, longer lifetimes, better use of materials, and better options for reuse and recycling. While it is important to enable the recycling and reuse of materials, life-extending strategies, such as design for durability, ease of reuse, repair and remanufacturing, should be prioritised. Preventing the use of hazardous chemicals and limiting toxic emissions and release of microplastics at all life cycle stages should be incorporated into product design.

Designing for circularity is the most recent development in design for sustainability. Expanding a technical and product-centric focus to a focus on large-scale system-level changes (considering both production and consumption systems) shows that this latest development requires many more disciplines than traditional engineering design. Product design as a component of a circular business model depends on consumer behaviour and policy to realise its potential and enable implementation. Figure 7 shows the linkages between the circular business model, product design, consumer behaviour and policy. All are needed to slow down and close the loop, making it circular.

(c) Ligne Roset
22.02.2022

Home textile trends for 2022: A craving for constancy

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Sometimes loud, sometimes very gentle – but always on the move: the world of textiles has real expertise in the art of the quick change. The home textile trends for 2022 see nature quietly and discreetly settling inside our homes, making a clear statement – it’s time to take a fresh look at familiar things.

Home textile trends for 2022: back to basics
Before the pandemic, our homes were just one part of our lives. We spent much of the day out and about. The coronavirus pandemic changed all that. Many people spent more time within their own four walls than ever before – our homes took on a central role in our lives. “Home living” became an inescapable theme last year. In times when instability seems to be everywhere, many people switch their focus to the essentials and crave security and peace, turning their homes into a natural refuge where they can recharge their batteries. This trend is also influencing the interiors and lifestyle sector.

Pure nature in colour and form
The connection between nature and home living is becoming increasingly important when it comes to textile design. It’s a matter of creating a symbiosis between natural materials, colours and textiles to infuse rooms with a warm atmosphere. Soft textures, amorphous shapes and muted earthy tones define the home textile trends for 2022.

Rediscovering the classics: bouclé & corduroy
When most people think of bouclé, the first image that springs to mind is probably the world-famous and timeless Coco Chanel suit from the 1950s. In the 1980s and 1990s, the fabric disappeared from the trend radar. But this year it’s celebrating a fantastic comeback in interior design. Bouclé hits just the right spot between soft and hard-wearing. The upholstery is typically made of cotton and is especially durable. Whether on a sofa, armchair, cushion or as curtains, bouclé fabric is a real all-rounder and gives any room a cosy vibe. Paired with wood or metal, it softens the more hard-edged elements.

Another tactile highlight from days gone by is enjoying a revival, too – corduroy. A timeless classic that is quite rightly settling back in to our homes. Its soft structure means the fabric is well-suited for sofas and seating furniture of various kinds, with its characteristic vertical furrows making the material particularly exciting. And best of all, corduroy fits into any interior design style with ease – contrary to its stereotype of being stuffy.

A mix & match of natural materials and shapes
Natural materials like linen, wool and wood immediately lend an organic, vibrant quality to any home. The natural connection is especially apparent from last year’s DIY boom, with many walls now adorned by macramé – decorative art made by knotting wool. Cushions and blankets made of woven and braided wool in muted cream tones also create a natural and cosy look. Organic patterns and structures inspired by nature are now a must in every home.

Catapulted straight into the 2022 textile trends from the fashion world, “organic camouflage” gives camo patterns a makeover. In warm earth and pastel shades, this on-trend motif calls to mind soft, sandy beaches, the sea or the forest. On a rug or a cushion, “organic camouflage” creates a vibrant look when paired with a low-key couch.

Take the plunge with bold patterns
Whether on wallpaper, rugs or accessories, floral prints in sumptuous colour combinations are still in fashion when it comes to fabric design. In dark shades of green, they forge an elegant connection to nature, and dramatic floral prints on wallpaper make a statement in any room. But even small accessories and decorative elements like floral cushions or blankets on a monochrome sofa or armchair can have a big impact. Combined with light hues and patterns, the overall result is a harmonious interplay of colours and textures. Alongside floral textiles, upholstered furniture with geometric prints is a trend that demands the courage to be different. Large and small geometric patterns add depth to any material and are an artful way of bringing life into the home.

Sustainable materials and textiles
The global sustainability trend also raises questions concerning textile production. Where does the product come from? Is the manufacturing process environmentally friendly? The textile industry has responded with fabrics made from recycled polyester or resource-friendly hemp, cork as a substitute for wood, or fair-trade organic cotton. Alternatives to animal-derived fabrics are also becoming more common in the textile industry. Vegetarian or vegan leather can be produced from many natural resources, from apples and pineapples to mushrooms and cacti. The range of sustainable and environmentally friendly textiles has expanded in recent years and is expected to continue to grow.

Source:

imm cologne / Koelnmesse

Photo: pixabay
15.02.2022

Advanced Fibers: When damaged ropes change color

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

And up to now there has been no way of noticing this damage to the rope. 2021 a team of researchers from Empa and ETH Zurich has developed a coating which changes color due to the physical reaction with heat, thus clearly indicating whether a rope will continue to provide the safety it promises in the future.

Researchers from ETH Zurich and Empa developed a coating system in 2018 as part of a Master's thesis, which the Empa team was now able to apply to fibers. "It was a process involving several steps," says Dirk Hegemann from Empa's Advances Fibers lab. The first coatings only worked on smooth surfaces, so the method first had to be adapted so that it would also work on curved surfaces. Empa has extensive know-how in the coating of fibers - Hegemann and his team have already developed electrically conductive fibers in the past. The so-called sputtering process has now also been successfully applied to the latest coating.

Three layers are required to ensure that the fiber actually changes color when heated. The researchers apply silver to the fibre itself, in this case PET (i.e. polyester) and VectranTM, a high-tech fibre. This serves as a reflector - in other words, as a metallic base layer. This is followed by an intermediate layer of titanium nitrogen oxide, which ensures that the silver remains stable. And only then follows the amorphous layer that causes the color change: Germanium-antimony tellurium (GST), which is just 20 nanometers thick. When this layer is exposed to elevated temperatures, it crystallizes, changing the color from blue to white. The colour change is based on a physical phenomenon known as interference. Two different waves (e.g. light) meet and amplify or weaken each other. Depending on the chemical composition of the temperature-sensitive layer, this color change can be adjusted to a temperature range between 100 and 400 degrees and thus adapted to the mechanical properties of the fiber type.

Tailor-made solutions
The possible areas of application for the colour-changing fibres are still open, and Hegemann is currently looking for possible project partners. In addition to safety equipment for firefighters or mountaineers, the fibres can also be used for load ropes in production facilities, on construction sites, etc. In any case, research on the subject is far from complete. At present, it is not yet possible to store the fibers for long periods of time without losing their functionality. "Unfortunately, the phase-change materials oxidize over the course of a few months," says Hegemann. This means that the corresponding phase change - crystallization - no longer takes place, even with heat, and the rope thus loses its "warning signal". In any case, it has been proven that the principle works, and durability is a topic for future research, says Hegemann. "As soon as the first partners from industry register their interest in our own products, the fibers can be further optimized according to their needs".

Information:
Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

More information:
Empa Fibers Ropes temperature
Source:

EMPA, Andrea Six