Textination Newsline

Reset
7 results
Photo: TheDigitalArtist, Pixabay
31.01.2024

“Smart nanocomposites” for wearable electronics, vehicles, and buildings

  • Small, lightweight, stretchable, cost-efficient thermoelectric devices signify a breakthrough in sustainable energy development and waste heat recovery.
  • Next-gen flexible energy harvesting systems will owe their efficiency to the integration of graphene nanotubes. They offer easy processability, stable thermoelectric performance, flexibility, and robust mechanical properties.
  • Nanocomposites have high market potential in manufacturing generators for medical and smart wearables, vehicles sensors, and efficient building management.

Around half of the world’s useful energy is wasted as heat due to the limited efficiency of energy conversion devices. For example, one-third of a vehicle’s energy dissipates as waste heat in exhaust gases. At the same time, vehicles contain more and more electronic devices requiring electrical energy.

  • Small, lightweight, stretchable, cost-efficient thermoelectric devices signify a breakthrough in sustainable energy development and waste heat recovery.
  • Next-gen flexible energy harvesting systems will owe their efficiency to the integration of graphene nanotubes. They offer easy processability, stable thermoelectric performance, flexibility, and robust mechanical properties.
  • Nanocomposites have high market potential in manufacturing generators for medical and smart wearables, vehicles sensors, and efficient building management.

Around half of the world’s useful energy is wasted as heat due to the limited efficiency of energy conversion devices. For example, one-third of a vehicle’s energy dissipates as waste heat in exhaust gases. At the same time, vehicles contain more and more electronic devices requiring electrical energy. As another example, lightweight wearable sensors for health and environmental monitoring are also becoming increasingly demanding. The potential to convert waste heat or solar energy into useful electrical power has emerged as an opportunity for more sustainable energy management. Convenient thermoelectric generators (TEGs) currently have only low effectiveness and a relatively large size and weight. Based on expensive or corrosion-vulnerable materials, they are rigid and often contain toxic elements.
 
Recently developed, easy-to-process, self-supporting and flexible nonwoven nanocomposite sheets demonstrate excellent thermoelectric properties combined with good mechanical robustness. A recent paper in ACS Applied Nano Materials described how researches combined a thermoplastic polyurethane (TPU) with TUBALLTM graphene nanotubes to fabricate a nanocomposite material capable of harvesting electrical energy from sources of waste heat.

Thanks to their high aspect ratio and specific surface area, graphene nanotubes provide TPU with electrical conductivity, making it possible to achieve high thermoelectrical performance while maintaining or improving mechanical properties. “Stiffness, strength, and tensile toughness were improved by 7, 25, and 250 times compared to buckypapers, respectively. Nanocomposite sheet shows low electrical resistivity of 7.5*10-3 Ohm×cm, high Young’s modulus of 1.8 GPa, failure strength of 80 MPa, and elongation at break of 41%,” said Dr. Beate Krause, Group Leader, Leibniz-Institut für Polymerforschung Dresden e. V.

Graphene nanotubes, being a fundamentally new material, provide an opportunity to replace current TEG materials with more environmentally friendly ones. The sensors powered by such thermoelectric generators could act as a “smart skin” for vehicles and buildings, providing sensoring capabilities to monitor performance and prevent potential issues before they lead to breakdowns, ensuring optimal operational efficiency. In aircraft, no-wire nanocomposites could serve as stand-alone sensors for monitoring deicing systems, eliminating the need for an extensive network of electrical cables. The high flexibility, strength, and reliability of graphene nanotube-enabled thermoelectric materials also extend their applications into the realm of smart wearable and medical devices.

Source:

Leibniz-Institut für Polymerforschung Dresden e. V. / OCSiAl

sportswear Stocksnap, Pixabay
30.08.2023

Detecting exhaustion with smart sportswear

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

This invention, for which ETH Zurich has filed a patent, could pave the way for a new generation of smart clothing: many of the products currently on the market have electronic components such as sensors, batteries or chips retrofitted to them. In addition to pushing up prices, this makes these articles difficult to manufacture and maintain.

By way of contrast, the ETH researchers’ stretchable sensor can be integrated directly into the material fibres of stretchy, close-fitting sportswear or work clothing. This makes large-scale production both easier and cheaper. Menon highlights another benefit: “Since the sensor is located so close to the body, we can capture body movements very precisely without the wearer even noticing.”

An extraordinary yarn
When people get tired, they move differently – and running is no exception: strides shorten and become less regular. Using their new sensor, which is made of a special type of yarn, the ETH researchers can measure this effect. It’s all thanks to the yarn’s structure: the inner fibre is made of a conductive, elastic rubber. The researchers wrapped a rigid wire, which is clad in a thin layer of plastic, into a spiral around this inner fibre. “These two fibres act as electrodes and create an electric field. Together, they form a capacitor that can hold an electric charge,” says Tyler Cuthbert, a postdoc in Menon’s group, who was instrumental in the research and development that led to the invention.

Smart running leggings
Stitching this yarn into the thigh section of a pair of stretchy running leggings means that it will stretch and slacken at a certain rhythm as the wearer runs. Each movement alters the gap between the two fibres, and thus also the electric field and the capacitor’s charge.

Under normal circumstances, these charge fluctuations would be much too small to help measure the body’s movements. However, the properties of this yarn are anything but normal: “Unlike most other materials, ours actually becomes thicker when stretched,” Cuthbert says. As a result, the yarn is considerably more sensitive to minimal movements. Stretching it even a little produces distinctly measurable fluctuations in the sensor’s charge. This makes it possible to measure and analyse even subtle changes in running form.

But how can this be used to determine a person’s exhaustion level? In previous research, Cuthbert and Menon observed a series of testers, who ran while wearing athletic leggings equipped with a similar sensor. They recorded how the electric signals changed as the runners got more and more tired. Their next step was to turn this pattern into a model capable of predicting runners’ exhaustion which can now be used for their novel textile sensor.  But ensuring that the model can make accurate predictions outside the lab will require a lot of additional tests and masses of gait pattern data.

Textile antenna for wireless data transfer  
To enable the textile sensor to send electrical signals wirelessly to a smartphone, the researchers equipped it with a loop antenna made of conducting yarn, which was also sewn directly onto the leggings. “Together, the sensor and antenna form an electrical circuit that is fully integrated into the item of clothing,” says Valeria Galli, a doctoral student in Menon’s group.

The electrical signal travels from the stretchable sensor to the antenna, which transmits it at a certain frequency capable of being read by a smartphone. The wearer runs and the sensor moves, creating a signal pattern with a continuously fluctuating frequency, which a smartphone app then records and evaluates in real time. But the researchers still have quite a bit of development work to do to make this happen.

Applications include sport and workplace
At the moment, the researchers are working on turning their prototype into a market-ready product. To this end, they are applying for one of ETH Zurich’s sought-after Pioneer Fellowships. “Our goal is to make the manufacture of smart clothing cost-effective and thus make it available to a broader public,” Menon says. He sees the potential applications stretching beyond sport to the workplace – to prevent exhaustion-related injuries – as well as to rehabilitation medicine.

(c) NC State
07.08.2023

Wearable Connector Technology - Benefits to Military, Medicine and beyond

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

What comes to mind when you think about “wearable technology?” In 2023, likely a lot, at a time when smartwatches and rings measure heart rates, track exercise and even receive text messages. Your mind might even drift to that “ugly” light-up sweater or costume you saw last Halloween or holiday season.

At the Wilson College of Textiles, though, researchers are hard at work optimizing a truly new-age form of wearable technology that can be proven useful in a wide range of settings, from fashion and sports to augmented reality, the military and medicine.

Currently in its final stages, this grant-funded project could help protect users in critical situations, such as soldiers on the battlefield and patients in hospitals, while simultaneously pushing the boundaries of what textiles research can accomplish.

“The goals set for this research are quite novel to any other literature that exists on wearable connectors” says Shourya Dhatri Lingampally, Wilson College of Textiles graduate student and research assistant involved in the project alongside Wilson College Associate Professor Minyoung Suh.

Ongoing since the fall of 2021, Suh and Lingampally’s work focuses on textile-integrated wearable connectors, a unique, high-tech sort of “bridge” between flexible textiles and external electronic devices. At its essence, the project aims to improve these connectors’ Technology Readiness Level — a key rating used by NASA and the Department of Defense used to assess a particular technology’s maturity.

To do this, Lingampally and her colleagues’ research examines problems that have, in the past, affected the performance of wearable devices.

Sure, these advances may benefit fashion, leading to eccentric shirts, jackets, or accessories — “to light up or change its color based on the wearer’s biometric data,” Lingampally offers — the research has roots in a much deeper mission.

Potential benefits to military, medicine and beyond
The project is funded through more than $200,000 in grant money from Advanced Functional Fabrics of America (AFFOA), a United States Manufacturing Innovation Institute (MII) located in Cambridge, Massachusetts. The mission of AFFOA is to support domestic manufacturing capability to support new technical textile products, such as textile-based wearable technologies.

A key purpose of the research centers around improving the functionality of wearable monitoring devices with which soldiers are sometimes outfitted to monitor the health and safety of their troops remotely.

Similar devices allow doctors and other medical personnel to remotely monitor the health of patients even while away from the bedside.

Though such technology has existed for years, it’s too often required running wires and an overall logistically-unfriendly design. That could soon change.

“We have consolidated the electronic components into a small snap or buckle, making the circuits less obtrusive to the wearer,” Lingampally says, explaining the team’s innovations, which include 3D printing the connector prototypes using stereolithography technology.

“We are trying to optimize the design parameters in order to enhance the electrical and mechanical performance of these connectors,” she adds.

To accomplish their goals, the group collaborated with NC State Department of Electrical and Computer Engineering Assistant Research Professor James Dieffenderfer. The team routed a variety of electrical connections and interconnects like conductive thread, epoxy and solder through textile materials equipped with rigid electronic devices.

They also tested the components for compatibility with standard digital device connections like USB 2.0 and I2C.

Ultimately, Lingampally hopes their work will make wearable technology not only easier and more comfortable to use, but available at a lower price, too.

“I would like to see them scaled, to be mass manufactured, so they can be cost efficient for any industry to use,” she explains.

In a bigger-picture sense, though, her team’s work is reinforcing the far-reaching boundaries of what smart textile research can accomplish; a purpose that stretches far beyond fashion or comfort.

Pushing the boundaries of textiles research
Suh and Lingampally’s work is just the latest breakthrough research originating from the Wilson College of Textiles that’s aimed at solving critical problems in the textile industry and beyond.

“The constant advancements in technology and materials present immense potential for the textile industry to drive positive change across a range of fields from fashion to healthcare and beyond,” Lingampally, a graduate student in the M.S. Textiles program, says, noting the encouragement she feels in her program to pursue innovation and creativity in selecting and advancing her research.

Additionally, in the fiber and polymer science doctoral program, which Suh does research with, candidates focus their research on a seemingly endless array of STEM topics, ranging from forensics to medical textiles, nanotechnology and, indeed, smart wearable technology (just to name a few).

In this case, Suh says, the research lent itself to “unexpected challenges” that required intriguing adaptations “at every corner.” But, ultimately, it led to breakthroughs not previously seen in the wearable technology industry, attracting interest from other researchers outside the university, and private companies, too.

“This project was quite exploratory by nature as there hasn’t been any prior research aiming to the same objectives,” Suh says.

Meanwhile, the team has completed durability and reliability testing on its textile-integrated wearable connectors. Eventually, the group would like to increase the sample size for testing to strengthen and validate the findings. The team also hopes to evaluate new, innovative interconnective techniques, as well as other 3D printing techniques and materials as they work to further advance wearable technologies.

Source:

North Carolina State University, Sean Cudahy

Ultra-thin smart textiles are being refined for their use in obstetric monitoring and will enable analysis of vital data via app for pregnancies. Photo: Pixabay, Marjon Besteman
24.07.2023

Intelligent Patch for Remote Monitoring of Pregnancy

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

During pregnancy, regular medical check-ups provide information about the health and development of the pregnant person and the child. However, these examinations only provide snapshots of their state, which can be dangerous, especially in high-risk cases. To enable convenient and continuous monitoring during this sensitive phase, an international research consortium is planning to further develop the technology of smart textiles. A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.

The beginning of a pregnancy is accompanied by a period of intensive health monitoring of the baby and the pregnant person. Conventional prenatal examinations with ultrasound devices, however, only capture snapshots of the respective condition and require frequent visits to doctors, especially in high-risk pregnancies. With the help of novel wearables and smart textiles, researchers in the EU-funded project Newlife aim to enable continuous obstetric monitoring in everyday life.

One goal of the consortium, consisting of 25 partners, is the development of a biocompatible, stretchable, and flexible patch to monitor the progress of the pregnancy and the embryo. Similar to a band-aid, the patch will be applied to the pregnant person’s skin, continuously recording vital data using miniaturized sensors (e.g., ultrasound) and transmitting it via Bluetooth.

For some time now, modern medical technology has been relying on smart textiles and intelligent wearables to offer patients convenient, continuous monitoring at home instead of stationary surveillance. At the Fraunhofer Institute for Reliability and Microelectronics IZM, a team led by Christine Kallmayer is bringing this technology to application-oriented implementation, benefitting from the Fraunhofer IZM’s years of experience with integrating technologies into flexible materials. For the integrated patch, the researchers are using thermoplastic polyurethane as base materials, in which electronics and sensors are embedded. This ensures that the wearing experience is similar to that of a regular band-aid instead of a rigid film.

To ensure that the obstetric monitoring is imperceptible and comfortable for both pregnant individuals and the unborn child, the project consortium plans to integrate innovative MEMS-based ultrasound sensors directly into the PU material. The miniaturized sensors are meant to record data through direct skin contact. Stretchable conductors made of TPU material tracks will then transmit the information to the electronic evaluation unit and finally to a wireless interface, allowing doctors and midwives to view all relevant data in an app. In addition to ultrasound, the researchers are planning to integrate additional sensors such as microphones, temperature sensors, and electrodes.

Even after birth, the new integration technology can be of great benefit to medical technology: With further demonstrators, the Newlife team plans to enable the monitoring of newborns. Sensors for continuous ECG, respiration monitoring, and infrared spectroscopy to observe brain activity will be integrated into the soft textile of a baby bodysuit and a cap. "Especially for premature infants and newborns with health risks, remote monitoring is a useful alternative to hospitalization and wired monitoring. For this purpose, we must guarantee an unprecedented level of comfort provided by the ultra-thin smart textiles: no electronics should be noticeable. Additionally, the entire module has to be extremely reliable, as the smart textiles should easily withstand washing cycles," explains Christine Kallmayer, project manager at Fraunhofer IZM.

For external monitoring of the baby's well-being, the project is also researching ways to use camera data and sensor technology in the baby's bed. Once the hardware basis of the patch, the textile electronics, and the sensor bed is built and tested, the project partners will take another step forward. Through cloud-based solutions, AI and machine learning will be used to simplify the implementation for medical staff and ensure the highest level of data security.

The Newlife project is coordinated by Philips Electronics Nederland B.V. and will run until the end of 2025. It is funded by the European Union under the Horizon Europe program as part of Key Digital Technologies Joint Undertaking under grant number 101095792 with a total of 18.7 million euros.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

North Carolina State University
17.01.2023

Embroidery as Low-Cost Solution for Making Wearable Electronics

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

In the study published in Nano Energy, researchers tested multiple designs for power-generating yarns. To make them durable enough to withstand the tension and bending of the embroidery stitching process, they ultimately used five commercially available copper wires, which had a thin polyurethane coating, together. Then, they stitched them onto cotton fabric with another material called PTFE.

“This is a low-cost method for making wearable electronics using commercially available products,” Yin said. “The electrical properties of our prototypes were comparable to other designs that relied on the same power generation mechanism.”

The researchers relied on a method of generating electricity called the “triboelectric effect,” which involves harnessing electrons exchanged by two different materials, like static electricity. They found the PTFE fabric had the best performance in terms of voltage and current when in contact with the polyurethane-coated copper wires, as compared to other types of fabric that they tested, including cotton and silk. They also tested coating the embroidery samples in plasma to increase the effect.

“In our design, you have two layers – one is your conductive, polyurethane-coated copper wires, and the other is PTFE, and they have a gap between them,” Yin said. “When the two non-conductive materials come into contact with each other, one material will lose some electrons, and some will get some electrons. When you link them together, there will be a current.”
Researchers tested their yarns as motion sensors by embroidering them with the PTFE fabric on denim. They placed the embroidery patches on the palm, under the arm, at the elbow and at the knee to track electrical signals generated as a person moves. They also attached fabric with their embroidery on the insole of a shoe to test its use as a pedometer, finding their electrical signals varied depending on whether the person was walking, running or jumping.

Lastly, they tested their yarns in a textile-based numeric keypad on the arm, which they made by embroidering numbers on a piece of cotton fabric, and attaching them to a piece of PTFE fabric. Depending on the number that the person pushed on the keypad, they saw different electrical signals generated for each number.

“You can embroider our yarns onto clothes, and when you move, it generates an electrical signal, and those signals can be used as a sensor,” Yin said. “When we put the embroidery in a shoe, if you are running, it generates a higher voltage than if you were just walking. When we stitched numbers onto fabric, and press them, it generates a different voltage for each number. It could be used as an interface.”

Since textile products will inevitably be washed, they tested the durability of their embroidery design in a series of washing and rubbing tests. After hand washing and rinsing the embroidery with detergent, and drying it in an oven, they found no difference or a slight increase in voltage. For the prototype coated in plasma, they found weakened but still superior performance compared with the original sample. After an abrasion test, they found that there was no significant change in electrical output performance of their designs after 10,000 rubbing cycles.

In future work, they plan to integrate their sensors with other devices to add more functions.
“The next step is to integrate these sensors into a wearable system,” Yin said.

The study, “Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction,” was published online in Nano Energy. Co-authors included Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao and Bao Yang. Funding was provided by North Carolina State University through the NC State Faculty Research & Professional Development Fund and the NC State Summer REU program.

 

Source:

North Carolina State University, Rong Yin, Laura Oleniacz

A shirt that monitors breathing. Bild EMPA
28.12.2022

Wearables for healthcare: sensors to wear

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

The desire for a healthy lifestyle has triggered a trend towards self-tracking. Vital signs should be available at all times, for example to consistently measure training effects. At the same time, among the continuously growing group of people over 65, the desire to maintain performance into old age is stronger than ever. Preventive, health-maintaining measures must be monitored if they are to achieve the desired results. The search for measurement systems that reliably determine the corresponding health parameters is in full swing. In addition to the leisure sector, medicine needs suitable and reliable measurement systems that enable efficient and effective care for an increasing number of people in hospital and at home. After all, the increase in lifestyle diseases such as diabetes, cardiovascular problems or respiratory diseases is putting a strain on the healthcare system.

Researchers led by Simon Annaheim from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen are therefore developing sensors for monitoring health status, for example for a diagnostic belt based on flexible sensors with electrically conductive or light-conducting fibers. However, other, less technical properties can be decisive for the acceptance of continuous medical monitoring by patients. For example, the sensors must be comfortable to wear and easy to handle – and ideally also look good.

This aspect is addressed by a cooperation between the Textile and Design Alliance, or TaDA for short, in eastern Switzerland and Empa. The project showed how textile sensors can be integrated into garments. In addition to technical reliability and a high level of comfort, another focus was on the design of the garments. The interdisciplinary TaDA designer Laura Deschl worked electrically conductive fibers into a shirt that change their resistance depending on how much they are stretched. This allows the shirt to monitor how much the subjects' chest and abdomen rise and fall while they breathe, allowing conclusions to be drawn about breathing activity. Continuous monitoring of respiratory activity is of particular interest for patients during the recovery phase after surgery and for patients who are being treated with painkillers. Such a shirt could also be helpful for patients with breathing problems such as sleep apnea or asthma. Moreover, Deschl embroidered electrically conductive fibers from Empa into the shirt, which are needed to connect to the measuring device and were visually integrated into the shirt's design pattern.

The Textile and Design Alliance is a pilot program of the cultural promotion of the cantons of Appenzell Ausserrhoden, St.Gallen and Thurgau to promote cooperation between creative artists from all over the world and the textile industry. Through international calls for proposals, cultural workers from all disciplines are invited to spend three months working in the textile industry in eastern Switzerland. The TaDA network comprises 13 cooperation partners – textile companies, cultural, research and educational institutions – and thus offers the creative artists direct access to highly specialized know-how and technical means of production in order to work, research and experiment on their textile projects on site. This artistic creativity is in turn made available to the partners as innovative potential.

Image: Gaharwar Laboratory
13.12.2022

New inks for 3D-printable wearable bioelectronics

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive human tissue, much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive human tissue, much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

“The impact of this work is far-reaching in 3D printing,” said Dr. Akhilesh Gaharwar, associate professor in the Department of Biomedical Engineering and Presidential Impact Fellow. “This newly designed hydrogel ink is highly biocompatible and electrically conductive, paving the way for the next generation of wearable and implantable bioelectronics.”1 

The ink has shear-thinning properties that decrease in viscosity as force increases, so it is solid inside the tube but flows more like a liquid when squeezed, similar to ketchup or toothpaste. The team incorporated these electrically conductive nanomaterials within a modified gelatin to make a hydrogel ink with characteristics that are essential for designing ink conducive to 3D printing.

“These 3D-printed devices are extremely elastomeric and can be compressed, bent or twisted without breaking,” said Kaivalya Deo, graduate student in the biomedical engineering department and lead author of the paper. “In addition, these devices are electronically active, enabling them to monitor dynamic human motion and paving the way for continuous motion monitoring.”

In order to 3D print the ink, researchers in the Gaharwar Laboratory designed a cost-effective, open-source, multi-head 3D bioprinter that is fully functional and customizable, running on open-source tools and freeware. This also allows any researcher to build 3D bioprinters tailored to fit their own research needs.

The electrically conductive 3D-printed hydrogel ink can create complex 3D circuits and is not limited to planar designs, allowing researchers to make customizable bioelectronics tailored to patient-specific requirements.

In utilizing these 3D printers, Deo was able to print electrically active and stretchable electronic devices. These devices demonstrate extraordinary strain-sensing capabilities and can be used for engineering customizable monitoring systems. This also opens up new possibilities for designing stretchable sensors with integrated microelectronic components.

One of the potential applications of the new ink is in 3D printing electronic tattoos for patients with Parkinson’s disease. Researchers envision that this printed e-tattoo can monitor a patient’s movement, including tremors.

This project is in collaboration with Dr. Anthony Guiseppi-Elie, vice president of academic affairs and workforce development at Tri-County Technical College in South Carolina, and Dr. Limei Tian, assistant professor of biomedical engineering at Texas A&M.
This study was funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke and the Texas A&M University President’s Excellence Fund. A provisional patent on this technology has been filed in association with the Texas A&M Engineering Experiment Station.

1 This study was published in ACS Nano.

Source:

Alleynah Veatch Cofas, Texas A & M University