Textination Newsline

Reset
6 results
Co-friendly textiles without PFAS Image: Empa
22.04.2024

Co-friendly textiles without PFAS

Rain jackets, swimming trunks or upholstery fabrics: Textiles with water-repellent properties require chemical impregnation. Although fluorine-containing PFAS chemicals are effective, they are also harmful to human health and accumulate in the environment. Empa researchers are now developing a process with alternative substances that can be used to produce environmentally friendly water-repellent textile fibers. Initial analyses show: The "good" fibers repel water more effectively and dry faster than those of conventional products.

Rain jackets, swimming trunks or upholstery fabrics: Textiles with water-repellent properties require chemical impregnation. Although fluorine-containing PFAS chemicals are effective, they are also harmful to human health and accumulate in the environment. Empa researchers are now developing a process with alternative substances that can be used to produce environmentally friendly water-repellent textile fibers. Initial analyses show: The "good" fibers repel water more effectively and dry faster than those of conventional products.

If swimming trunks are to retain their shape after swimming and to dry quickly, they must combine two properties: They must be elastic and must not soak up water. Such a water-repellent effect can be achieved by treating the textiles with chemicals that give the elastic garment so-called hydrophobic properties. In the 1970s, new synthetic fluorine compounds began to be used for this purpose – compounds that seemed to offer countless application possibilities, but later turned out to be highly problematic. This is because these fluorocarbon compounds, PFAS for short, accumulate in the environment and are harmful to our health (see box). Empa researchers are therefore working with Swiss textile companies to develop alternative environmentally friendly processes that can be used to give fibers a water-repellent finish. Dirk Hegemann from Empa's Advanced Fibers laboratory in St. Gallen explains the Innosuisse-funded project: "We use so-called highly cross-linked siloxanes, which create silicone-like layers and – unlike fluorine-containing PFAS – are harmless."

Empa's plasma coating facilities range from handy table-top models to room-filling devices. For the coating of textile fibers, the siloxanes are atomized and activated in a reactive gas. They thereby retain their functional properties and enclose the textile fibers in a water-repellent coating that is only 30 nanometers thin. Fibers coated this way can then be processed into water-repellent textiles of all kinds, for example garments or technical textiles such as upholstery fabrics.

The advantage over conventional wet-chemical processes: Even with complex structured textiles, the seamless distribution of the hydrophobic substances is guaranteed right into all turns of the intertwined fibers. This is crucial, because even a tiny wettable spot would be enough for water to penetrate into the depths of a pair of swimming trunks, preventing the garment from drying quickly. "We have even succeeded in permanently impregnating more demanding, elastic fibers with the new process, which was previously not possible," says Hegemann.

Great interest from industry
In initial laboratory analyses, textiles made from the new fibers with an environmentally friendly coating are already performing slightly better than conventional PFAS-coated fabrics. They absorb less water and dry faster. However, the miraculous properties of the fluorine-free coating only really come into their own after the textiles have been washed several times: While the performance of conventional PFAS coatings in stretchy textiles declines considerably after repeated wash cycles, the fluorine-free fibers retain their water-repellent properties.

Hegemann and his team are now working on scaling up the fluorine-free laboratory process into efficient and economically viable industrial processes. "The industry is very interested in finding sustainable alternatives to PFAS," says Hegemann. The Swiss textile companies Lothos KLG, beag Bäumlin & Ernst AG and AG Cilander are already on board when it comes to developing environmentally friendly fluorine-free textiles. "This is a successful collaboration that combines materials, fiber technology and plasma coating and leads to an innovative, sustainable and effective solution," says Dominik Pregger from Lothos. And Bernd Schäfer, CEO of beag, adds: "The technology is environmentally friendly and also has interesting economic potential."

More information:
Empa PFAS Plasma Fibers
Source:

Dr. Andrea Six, EMPA

The plasma atmosphere is clearly visible in the reactor through the characteristic glow and flashes of light. © Fraunhofer IGB The plasma atmosphere is clearly visible in the reactor through the characteristic glow and flashes of light.
16.05.2023

Wastewater treatment: Plasma against toxic PFAS chemicals

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project. Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e. plasma. This reduces the PFAS molecular chains, allowing the toxic substance to be removed at a low cost.

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project. Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e. plasma. This reduces the PFAS molecular chains, allowing the toxic substance to be removed at a low cost.

Per- and polyfluoroalkyl substances (PFAS) have many special properties. As they are thermally and chemically stable as well as resistant to water, grease and dirt, they can be found in a large number of everyday products: Pizza boxes and baking paper are coated with them, for example, and shampoos and creams also contain PFAS. In industry they serve as extinguishing and wetting agents, and in agriculture they are used in plant protection products. However, traces of PFAS are now also being detected where they should not be found: in soil, rivers and groundwater, in food and in drinking water. This is how the harmful substances end up in the human body. Due to their chemical stability, eliminating these so-called “forever chemicals” has been almost impossible up to now without considerable effort and expense.

The AtWaPlas joint research project aims to change that. The acronym stands for Atmospheric Water Plasma Treatment. The innovative project is currently being run at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart in cooperation with the industrial partner HYDR.O. Geologen und Ingenieure GbR from Aachen. The aim is to treat and recover PFAS-contaminated water using plasma treatment.

The research team led by Dr. Georg Umlauf, an expert in functional surfaces and materials, utilizes plasma’s ability to attack the molecular chains of substances. The electrically conductive gas consisting of electrons and ions is generated when high voltage is applied. “Our experiments with plasma have been successful in shortening the PFAS molecule chains in water. This is a significant step towards efficiently removing these stubborn pollutants,” Umlauf is happy to report.

Water cycle in a stainless steel cylinder
Fraunhofer researchers are using a cylindrical construction for this plasma process. Inside is a stainless steel tube, which serves as the ground electrode of the electrical circuit. The outer copper mesh then acts as a high-voltage electrode and is protected on the inside by a glass dielectric. A very small gap is left between the two, which is filled with an air mixture. This air mixture is converted into plasma when a voltage of several kilovolts is applied. It is visible to the human eye by its characteristic glow and discharge as flashes of light.

During the purification process, the PFAS-contaminated water is introduced at the bottom of the stainless steel tank and pumped upwards. It then travels down through the gap between the electrodes, passing through the electrically active plasma atmosphere. The plasma breaks up and shortens the PFAS molecule chains as it discharges. The water is repeatedly pumped through both the steel reactor and the plasma discharge zone in a closed circuit, reducing the PFAS molecule chains further each time until they are completely mineralized. “Ideally, the harmful PFAS substances are eliminated to the point that they can no longer be detected in mass spectrometric measurements. This also complies with the strict German Drinking Water Ordinance (TrinkwV) regulations regarding PFAS concentrations,” says Umlauf.

The technology developed at the Fraunhofer Institute has a key advantage over conventional methods such as active carbon filtering: “Active carbon filters can bind the harmful substances, but they are unable to eliminate them. This means that the filters must be replaced and disposed of regularly. The AtWaPlas technology, on the other hand, is capable of completely eliminating the harmful substances without any residue and is very efficient and low-maintenance,” explains Fraunhofer expert Umlauf.

Real water samples instead of synthetic laboratory samples
In order to ensure true feasibility, the Fraunhofer researchers are testing the plasma purification under more challenging conditions. Conventional test methods involve using perfectly clean water and PFAS solutions that have been synthetically mixed in the laboratory. However, the research team in Stuttgart is using “real” water samples that come from PFAS-contaminated areas. The samples are collected by the project partner HYDR.O. Geologen und Ingenieure GbR from Aachen. The company specializes in cleaning up contaminated sites and also carries out hydrodynamic simulations.

The real water samples that Umlauf and his team work with therefore contain PFAS as well as other particles, suspended solids and organic turbidity. “This is how we verify the purification efficiency of AtWaPlas, not only using synthetic laboratory samples, but also under real conditions with changing water qualities. The process parameters can be adapted and further developed at the same time,” explains Umlauf.

This plasma method can also be used to break down other harmful substances, including pharmaceutical residues in wastewater, pesticides and herbicides, but also industrial chemicals such as cyanides. AtWaPlas can also be used to treat drinking water in mobile applications in an environmentally friendly and cost-effective way.

The AtWaPlas joint research project launched in JuIy 2021. After a successful series of pilot-scale tests with a 5 liter reactor, the Fraunhofer team is now working with the joint research partner to further optimize the process. Georg Umlauf states: “Our current objective is to completely eliminate toxic PFAS by extending process times and increasing the number of circulations in the tank. We also want to make the AtWaPlas technology available for practical application on a larger scale.” The future could see corresponding plants set up as standalone purification stages in sewage treatment plants or used in portable containers on contaminated open-air sites.

Source:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

North Carolina State University
17.01.2023

Embroidery as Low-Cost Solution for Making Wearable Electronics

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

In the study published in Nano Energy, researchers tested multiple designs for power-generating yarns. To make them durable enough to withstand the tension and bending of the embroidery stitching process, they ultimately used five commercially available copper wires, which had a thin polyurethane coating, together. Then, they stitched them onto cotton fabric with another material called PTFE.

“This is a low-cost method for making wearable electronics using commercially available products,” Yin said. “The electrical properties of our prototypes were comparable to other designs that relied on the same power generation mechanism.”

The researchers relied on a method of generating electricity called the “triboelectric effect,” which involves harnessing electrons exchanged by two different materials, like static electricity. They found the PTFE fabric had the best performance in terms of voltage and current when in contact with the polyurethane-coated copper wires, as compared to other types of fabric that they tested, including cotton and silk. They also tested coating the embroidery samples in plasma to increase the effect.

“In our design, you have two layers – one is your conductive, polyurethane-coated copper wires, and the other is PTFE, and they have a gap between them,” Yin said. “When the two non-conductive materials come into contact with each other, one material will lose some electrons, and some will get some electrons. When you link them together, there will be a current.”
Researchers tested their yarns as motion sensors by embroidering them with the PTFE fabric on denim. They placed the embroidery patches on the palm, under the arm, at the elbow and at the knee to track electrical signals generated as a person moves. They also attached fabric with their embroidery on the insole of a shoe to test its use as a pedometer, finding their electrical signals varied depending on whether the person was walking, running or jumping.

Lastly, they tested their yarns in a textile-based numeric keypad on the arm, which they made by embroidering numbers on a piece of cotton fabric, and attaching them to a piece of PTFE fabric. Depending on the number that the person pushed on the keypad, they saw different electrical signals generated for each number.

“You can embroider our yarns onto clothes, and when you move, it generates an electrical signal, and those signals can be used as a sensor,” Yin said. “When we put the embroidery in a shoe, if you are running, it generates a higher voltage than if you were just walking. When we stitched numbers onto fabric, and press them, it generates a different voltage for each number. It could be used as an interface.”

Since textile products will inevitably be washed, they tested the durability of their embroidery design in a series of washing and rubbing tests. After hand washing and rinsing the embroidery with detergent, and drying it in an oven, they found no difference or a slight increase in voltage. For the prototype coated in plasma, they found weakened but still superior performance compared with the original sample. After an abrasion test, they found that there was no significant change in electrical output performance of their designs after 10,000 rubbing cycles.

In future work, they plan to integrate their sensors with other devices to add more functions.
“The next step is to integrate these sensors into a wearable system,” Yin said.

The study, “Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction,” was published online in Nano Energy. Co-authors included Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao and Bao Yang. Funding was provided by North Carolina State University through the NC State Faculty Research & Professional Development Fund and the NC State Summer REU program.

 

Source:

North Carolina State University, Rong Yin, Laura Oleniacz

(c) Pixabay
15.12.2020

Protection against Corona: Materials research provides findings at institutes of the Zuse Community

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

As the year draws to a close, expectations are growing that protection against COVID-19 will soon be available. Until this is the case for large sections of the population, the successes achieved in research and industry to protect against the virus in 2020 offer a good starting point in the fight against corona and beyond. At institutes in the Zuse community, progress have been made not only in medical but also in materials research.

These successes in materials research include innovations in the coating of surfaces. "In the wake of the pandemic, the demand for antiviral and antimicrobial surfaces has risen sharply, and we have successfully intensified our research in this area," explains Dr. Sebastian Spange, Head of Surface Technology at the Jena research institute INNOVENT. He expects to see an increasing number of products with antiviral surfaces in the future. "Our tests with model organisms show that an appropriate coating of surfaces works", emphasizes Spange. The spectrum of techniques used by INNOVENT includes flame treatment, plasma coating and the so-called Sol-Gel process, in which organic and inorganic substances can be combined in one layer at relatively low temperatures. According to Spange, materials for the coatings can be antibacterial metal compounds as well as natural substances with antiviral potential.

Nonwovens produced for mask manufacturers
In 2020, the textile expertise of numerous institutes in the Zuse community ensured that application-oriented research could prove its worth in the practical fight against pandemics. After the shortage of mask supplies in Germany at the beginning of the pandemic, textile research institutes reacted to the shortage by jumping into the breach. The Saxon Textile Research Institute (STFI), for example, converted its research facilities to the production of nonwovens to supply German and European manufacturers of particle filtering protective masks. "From March to November 2020, we supplied nonwovens to various manufacturers in order to provide the best possible support for mask production and thus help contain the pandemic. At a critical time for industry and the population, we were able to help relieve critical production capacity - an unaccustomed role for a research institute, but one we would assume again in similar situations," explains Andreas Berthel, Managing Commercial Director of STFI.

Development of reusable medical face masks
For the improvement of everyday as well as medical face masks the German Institutes for Textile and Fiber Research (DITF) are working on this project. In cooperation with an industrial partner, they are currently developing in Denkendorf, among other things, reusable medical face masks made of high-performance precision fabric using Jacquard weaving technology. The multiple use avoids waste and possible supply bottlenecks.

There are regulations for all types of masks, now also for everyday masks. At Hohenstein, compliance with standards for masks is checked. A new European guideline defines minimum requirements for the design, performance evaluation, labelling and packaging of everyday masks. "As a testing laboratory for medical products, we test the functionality of medical masks from microbiological-hygienic and physical aspects", explains Hohenstein's Managing Director Prof. Dr. Stefan Mecheels. In this way, Hohenstein supports manufacturers, among other things, with technical documentation to prove the effectiveness and safety. Respiratory protection masks (FFP 1, FFP 2 and FFP 3) have been tested at the Plastics Centre (SKZ) in Würzburg since the middle of this year. Among other things, inhalation and exhalation resistance and the passage of particles are tested. In addition, SKZ itself has entered into mask research. In cooperation with a medical technology specialist, SKZ is developing an innovative mask consisting of a cleanable and sterilizable mask carrier and replaceable filter elements.

ILK tests for mouth-nose protection
The fight against Corona is won by the contributions of humans: Of researchers in laboratories, of developers and manufacturers in the Industry as well as from the citizens on the street.
Against this background, the Institute for Air and Refrigeration Technology (ILK) in Dresden has carried out investigations into the permeability of the mouth and nose protection (MNS), namely on possible impairments when breathing through the mask as well as the protective function of everyday masks. Result: Although the materials used for the mouth-nose protection are able to retain about 95 percent of the exhaled droplets, "under practical aspects and consideration of leakages" it can be assumed that about 50 percent to 70 percent of the droplets enter the room, according to the ILK. If the mask is worn below the nose only, it can even be assumed that about 90 percent of the exhaled particles will enter the room due to the large proportion of nasal breathing. This illustrates the importance of tight-fitting and correctly worn mouth and nose protection. "On the other hand, from a physical point of view there are no reasons against wearing a mask", ILK managing director Prof. Dr. Uwe Franzke emphasizes. The researchers examined the CO2 content in the air we breathe as well as the higher effort required for breathing and based this on the criterion of overcoming the pressure loss. "The investigations on pressure loss showed a small, but practically irrelevant increase," explains Franzke.

The complete ILK report "Investigations on the effect of mouth and nose protection (MNS)" is available here.

08.12.2020

Fraunhofer FEP: Boosting Innovations for COVID-19 Diagnostic, Prevention and Surveillance

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

Officially starting on October 1, the virtual kick-off took place on October 6 – 7, counting with the support of two European Commission officers.

The 11-partner consortium led by INL – International Iberian Nanotechnology Laboratory, is looking for efficient and fast solutions that can help in the fight against COVID-19 jointly with the other actively involved industrial and RTO partners.

The mission of INNO4COV-19 is to create a “lab-to-fab” platform and a collaboration resource where companies and reference laboratories will find the tools for developing and implementing innovative technologies – from idea assessment to market exploitation. This work will be carried out as part the European Union Coronavirus initiative and in strong collaboration with all the funded projects where to accelerate the time to market for any promising product.

INNO4COV-19 is set to assist up to 30 test cases and applications from several areas spanning from Medical technologies, Environmental Surveillance systems, Sensors, Protection of Healthcare workers and Artificial Intelligence and Data mining. To achieve this, INNO4COV-19 is awarding half of the budget to support 30 enterprises selected through a set number of open calls during the first year of the project.

The first call will be launched in November 2020 across several platforms. Awardees will receive up to €100,000 each and benefit from the INNO4COV-19 consortium's technical, regulatory, and business expertise.

Roll-to-Roll Equipment and Electron Beam Technology for Large Area Sterilization of textile materials
During pandemic events like COVID-19, MERS, SARS or Ebola a substantial shortage of sterile materials for medical uses was observed due to peak demands. Fraunhofer FEP will contribute their roll-to-roll equipment and electron beam technology for the purpose of large area sterilization of textile materials to the INNO4COV-19 project.

Usually the textile material is produced in non-sterile conditions and therefore must be sterilized before being delivered to the consumers (e. g. hospitals); Sterilization at product level (sterilizing the final manufactured masks) is limited in throughput, due to a high number of individual small pieces, that must be sterilized.

Project manager Dr. Steffen Günther of Fraunhofer FEP explains the role and aims of the institute in more detail: “INNO4COV-19 will establish and verify a process chain for high throughput (4500 m²/h) electron beam sterilization of fabric material in roll-form in a single TRL 7 pilot machine to allow efficient manufacturing of sterile face masks and other fabric based sterile products without the need to sterilize the final product.”

OLED Microdisplays for Detecting Infected People
Another topic of Fraunhofer FEP within INNO4COV-19 deals with the earliest possible detection of infected people. A widely used strategy to early identify individuals with disease symptoms is body temperature screening using thermal cameras.

One possibility to allow continuous body temperature monitoring, is the integration of a thermal camera into a smart wearable device. Therefore, Fraunhofer FEP is using their OLED microdisplay technology. This allows small (< 3 × 2 cm²), ultrathin (< 5 mm including control circuitry) and ultra-low power (< 5 mW) devices to show visual information. In combination with an infrared sensor a thermal imager will be realized to both measure body temperature and directly displays the result via near-to-eye visualization. The system can be embedded within smart glasses, hats, caps or personal face shields.

About INNO4COV-19 project:
Website: www.inno4cov19.eu
Please contact: info@inno4cov19.eu

 

Source:

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP

Texprocess 2017 © Messe Frankfurt Exhibition GmbH
18.04.2017

DIGITAL TEXTILE PRINTING A FOCAL-POINT THEME AT TEXPROCESS

  • First European Digital Textile Conference at Texprocess
  • Exhibitors present the latest digital-printing Technologies

Colour and function: digital textile printing is one of the focal-point themes at this year’s Texprocess. For the first time, the World Textile Information Network (WTiN) is holding the European Digital Textile Conference at Texprocess. And there will be a separate lecture block on digital printing in the programme of the Texprocess Forum. Moreover, the Digital Textile Microfactory in Hall 6.0 will present a textile production chain in action – from design, via digital printing and cutting, to making up. As well, numerous exhibitors, including Brother, Epson, Ergosoft and Mimaki, will be showing digital printing technologies.

  • First European Digital Textile Conference at Texprocess
  • Exhibitors present the latest digital-printing Technologies

Colour and function: digital textile printing is one of the focal-point themes at this year’s Texprocess. For the first time, the World Textile Information Network (WTiN) is holding the European Digital Textile Conference at Texprocess. And there will be a separate lecture block on digital printing in the programme of the Texprocess Forum. Moreover, the Digital Textile Microfactory in Hall 6.0 will present a textile production chain in action – from design, via digital printing and cutting, to making up. As well, numerous exhibitors, including Brother, Epson, Ergosoft and Mimaki, will be showing digital printing technologies.

„“We are expanding our programme on the subject of digital printing in response to the growing demand for digitalised technologies for processing garments, technical textiles and flexible materials. This programme is of particular interest to manufacturers of technical textiles and companies that process textiles”, says Michael Jänecke, Head of Brand Management, Textiles and Textile Technologies, Messe Frankfurt.

Elgar Straub, Managing Director, VDMA Textile Care, Fabric and Leather Technologies: “Thanks to digital textile printing, it is now possible to print apparel, shoes and technical textiles directly. Given the general trend towards individualisation, demand for individualised products is increasing in the apparel industry. This is turning digital textile printing into one of the future-oriented technologies for companies that process garments and textiles.”

European Digital Textile Conference at Texprocess

In cooperation with Texprocess and Techtextil, the World Textile Information Network (WTiN) will hold the European Digital Textile Conference at Texprocess for the first time. The focus of the conference will be on digital textile printing for adding functional and decorative features to technical textiles. The WTiN European Digital Textile Conference will take place in ‘Saal Europa’ of Hall 4.0 from 09.00 to 16.30 hrs on
10 May. Tickets for the conference can be obtained from WTiN under
https://www.digitaltextileconference.com/edtc2017/

The subjects to be covered in the lectures include direct yarn colouring in the embroidery plants (Coloreel, Sweden), plasma pre-treatment for textiles before digital printing (GRINP, Italy) and chemical finishing for textiles using inkjet printing technology (EFI-REGGIANI, USA).

Texprocess Forum to spotlight digital printing technology

Digital printing technology will also be the subject of a separate lecture block at Texprocess Forum. At this international conference, experts from science and industry will focus on the latest findings relating to subjects of major importance to the sector in over 30 lectures and panel discussions on all four days of the fair. Texprocess Forum is free of charge for visitors of Texprocess and Techtextil and will be held in Hall 6.0. For the first time, three partner organisations are organising the lecture blocks: DTB – Dialogue Textile Apparel, the International Apparel Federation (IAF) and the World Textile Information Network (WTiN).

Digital Textile Microfactory

In cooperation with the German Institutes of Textile and Fibre Research Denkendorf (DITF) and renowned textile companies, Texprocess presents the complete interlinked textile production chain – the Digital Textile Microfactory – live in Hall 6.0. The digital-printing station shows large-scale inkjet printing in the form of sublimation printing on polyester and pigment printing on cotton and blended fabrics. Production orders can be combined flexibly and printed colour consistently with a variety of printing parameters. Ensuring optimum printing results at this station are hardware and software partners, Mimaki and Ergosoft, and Coldenhove and Monti Antonio. In addition to the Microfactory partners, other renowned companies, including Brother and Epson, will be showing state-of-the-art printing processes for textiles and apparel at Texprocess.

Digital-printing Outlook

Originally developed for fashion fabrics, digital textile printing is also used for printing technical textiles, such as sports clothing, and textiles for the automobile industry whereby the primary focus is on functionalising textiles. For example, swimwear can be made more colour fast to resist frequent contact with water and chlorine, and exposure to the sun. Also, textiles can be finished by applying chemicals via an inkjet printer and thus be given dirt-repellent, antimicrobial and fire-retardant properties. Additionally, using an inkjet printer in the finishing process is advantageous in terms of sustainability and efficiency.