Aus der Branche

Zurücksetzen
40 Ergebnisse
MaruHachi/AMAC: Thermoplastische Hochtemperatur-Tapes und Laminate (c) MaruHachi
16.02.2021

MaruHachi/AMAC: Thermoplastische Hochtemperatur-Tapes und Laminate

Mit seiner kürzlich in Betrieb genommenen Hochtemperatur-Unidirektional-Tape-Linie eröffnet der japanische Composites-Hersteller MaruHachi neue Möglichkeiten für High-End-Anwendungen in anspruchsvollen Marktsegmenten wie Luft- und Raumfahrt oder im Automobilbau und erweitert damit das Spektrum herkömmlicher, auf PP- und PA- basierender Materialien.

Mit seiner kürzlich in Betrieb genommenen Hochtemperatur-Unidirektional-Tape-Linie eröffnet der japanische Composites-Hersteller MaruHachi neue Möglichkeiten für High-End-Anwendungen in anspruchsvollen Marktsegmenten wie Luft- und Raumfahrt oder im Automobilbau und erweitert damit das Spektrum herkömmlicher, auf PP- und PA- basierender Materialien.

In einer ersten Phase wird MaruHachi bis zu 40 Tonnen/Jahr produzieren und konzentriert sich speziell auf hochtemperaturbeständige thermoplastische unidirektionale (UD) Tapes sowie mehrschichtige Plattenlaminate. Das Material basiert auf Hochleistungsfasern wie Kohlenstoff, Aramid, Glas oder Naturfasern und einer Matrix, die aus Hochleistungspolymeren wie PPS, PEEK oder anderen Hochtemperaturpolymeren bestehen kann.  Diese sind wesentlich schlagzäher als Epoxidharze und einfach zu recyceln. Mit einer Breite von 500 mm, einem spezifischen Gewicht von 60 bis 350 g/m2, je nach gewähltem Material, kann die Anlage bis zu Temperaturen von 420 Grad Celsius arbeiten. Das Herstellen unter diesen extrem hohen Temperaturen führt zu besseren Materialeigenschaften in der Endanwendung wie gesteigerte Leistungsfähigkeit, erhöhte Widerstandsfähigkeit und integrierte Hochleistungsfunktionalitäten wie sie z.B. durch das sogenannte Umspritzen erreicht werden.

Seit 2017 ist die MaruHachi Group auf dem europäischen Markt in Kooperation mit Dr. Michael Effing, Geschäftsführer der AMAC GmbH in Aachen, aktiv, der das Unternehmen strategisch berät und unterstützt. Die etablierte, familiengeführte MaruHachi Group hat eine starke Historie in den Bereichen Automobil- und Medizintextilien und ist seit mehr als 15 Jahren im Bereich innovative Verbundwerkstoffe aktiv.

Toshi Sugahara, Geschäftsführer von MaruHachi: "Wir arbeiten bereits seit vielen Jahren mit in- und ausländischen Partnern an nachfragestarken Anwendungen zusammen. Daher hat sich MaruHachi nun dazu entschlossen, in Phase 1 über 1 Mio. EUR in diese neue Anlage zu investieren, wobei ein Teil der Finanzierung von der japanischen Regierung NEDO stammt. Neue Entwicklungen in Phase 2 werden bis Ende 2021 an den nachgelagerten Technologien wie dem automatisierten Preforming und der Konsolidierung vorgenommen. Mit unseren neuen Produkten wollen wir zu einer deutlichen Gewichtsreduzierung der Endprodukte beitragen, die Energieeffizienz verbessern und gleichzeitig eine kosteneffiziente und hochwertige Lösung anbieten."

Dr. Effing, Geschäftsführer der AMAC GmbH bestätigt: "Die Fokussierung auf die Nische der Hochtemperaturprodukte auf Basis von PPS und PEEK ermöglicht es MaruHachi, sehr anspruchsvolle High-End-Anwendungen wie Strukturelemente in Raum- und Flugzeugen, Flugzeugsitze oder Triebwerkskomponenten etc. anbieten zu können. Die Tapes sind vollständig recycelbar und können beispielsweise in hoher Geschwindigkeit bis zu 0.5 Metern pro Sekunde mit laserbasierten Tape-Placement-Maschinen und Robotern verarbeitet werden."

 

Quelle:

AMAC GmbH

DITF: Carbonfasern aus Laubholz - Land unterzeichnet Kooperationsvertrag (c) DITF
Holzzellstoff gelöst in ionischer Flüssigkeit
08.02.2021

DITF: Carbonfasern aus Laubholz - Land unterzeichnet Kooperationsvertrag

  • Kooperationsvertrag mit dem Landwirtschaftsministerium Baden-Württemberg unterzeichnet
  • DITF starten Forschungsprojekte im Laubholztechnikum

Stuttgart. Baden-Württembergs Minister für Ländlichen Raum und Verbraucherschutz, Peter Hauk, MdL, hat am 8. Februar 2021 einen Kooperationsvertrag mit den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) unterzeichnet. Damit fällt der Startschuss für zwei Forschungsprojekte, die die DITF im vom Land geschaffenen Technikum Laubholz bearbeiten werden.

In diesem neu eingerichteten Forschungszentrum werden innovative Produkte und Verfahren auf der Basis von Laubholz entwickelt, das aus nachhaltig bewirtschafteten Wäldern der Region stammt. Aufgabe der DITF ist es, ökonomische und ökologische Herstellungsverfahren für aus Buchenholz hergestellte Zellulose- und Ligninfasern für technische Anwendungen zu entwickeln.

  • Kooperationsvertrag mit dem Landwirtschaftsministerium Baden-Württemberg unterzeichnet
  • DITF starten Forschungsprojekte im Laubholztechnikum

Stuttgart. Baden-Württembergs Minister für Ländlichen Raum und Verbraucherschutz, Peter Hauk, MdL, hat am 8. Februar 2021 einen Kooperationsvertrag mit den Deutschen Instituten für Textil- und Faserforschung Denkendorf (DITF) unterzeichnet. Damit fällt der Startschuss für zwei Forschungsprojekte, die die DITF im vom Land geschaffenen Technikum Laubholz bearbeiten werden.

In diesem neu eingerichteten Forschungszentrum werden innovative Produkte und Verfahren auf der Basis von Laubholz entwickelt, das aus nachhaltig bewirtschafteten Wäldern der Region stammt. Aufgabe der DITF ist es, ökonomische und ökologische Herstellungsverfahren für aus Buchenholz hergestellte Zellulose- und Ligninfasern für technische Anwendungen zu entwickeln.

In energiesparenden, leichten Fahrzeugen werden Faserverbundwerkstoffe mit Carbonfasern eingesetzt, da diese hitzebeständig und belastbar sind. Mit Carbonfasern verstärkte Materialien gewinnen nicht nur im Fahrzeugbau und in der Raumfahrt, sondern auch im Bauwesen sowie in vielen anderen Branchen zunehmend an Bedeutung. Allerdings sind Carbonfasern derzeit noch sehr teuer. Bisher werden diese Fasern in erster Linie aus Polyacrylnitril hergestellt. Dieser Ausgangsstoff basiert auf Erdöl und bei der Herstellung von Carbonfasern aus diesem Präkursor entstehen giftige Nebenprodukte, die aufwendig gereinigt werden müssen. Damit spart die Carbonfaserherstellung auf Basis von Cellulose- und Ligninfasern nicht nur Kosten, sondern schont auch die Umwelt.

Das Technikum Laubholz wird acht Forschungsteams aus unterschiedlichen Instituten vernetzen und dient als Schnittstelle zur Industrie. Weitere Forschungsprojekte entwickeln unter anderem neue Verfahren zu Herstellung von Biotensiden sowie veganen Lebensmittelproteinen auf Basis von Holz.

Weitere Informationen:
DITF Laubholztechnikum Carbonfasern
Quelle:

Deutschen Instituten für Textil- und Faserforschung Denkendorf

Oliver Dawid neuer Hauptgeschäftsführer bei Südwesttextil © Südwesttextil. Oliver Dawid neuer Hauptgeschäftsführer bei Südwesttextil
14.01.2021

Oliver Dawid neuer Hauptgeschäftsführer bei Südwesttextil

Oliver Dawid wird ab März 2021 neuer Hauptgeschäftsführer des Wirtschafts- und Arbeitgeberverbands Südwesttextil. Er folgt damit Peter Haas, der den Verband nach fünf Jahren verlässt und als Hauptgeschäftsführer zum Baden-Württembergischen Handwerkstag wechselt.

Mit Dawid hat Südwesttextil einen erfahrenen Verbandsmanager gewinnen können. Der 53-jährige Rechtsanwalt und gebürtige Münchner ist direkt nach dem Jura-Studium an der Münchner Ludwig-Maximilians-Universität ins Verbandsleben eingestiegen, zunächst als Alleingeschäftsführer der Südbayerischen Zahntechnikerinnung. Danach war er drei Jahre lang Hauptgeschäftsführer der Steuerberaterkammer München sowie zuletzt in selber Funktion beim Verband Privater Brauereien Bayern. Als Gründungsberater bzw. anwaltlicher Betreuer von gemeinnützigen Organisationen, Gesellschaften und Start-ups war er auch schon in Baden-Württemberg tätig. Dawid ist verheiratet und Vater zweier erwachsener Kinder.

Oliver Dawid wird ab März 2021 neuer Hauptgeschäftsführer des Wirtschafts- und Arbeitgeberverbands Südwesttextil. Er folgt damit Peter Haas, der den Verband nach fünf Jahren verlässt und als Hauptgeschäftsführer zum Baden-Württembergischen Handwerkstag wechselt.

Mit Dawid hat Südwesttextil einen erfahrenen Verbandsmanager gewinnen können. Der 53-jährige Rechtsanwalt und gebürtige Münchner ist direkt nach dem Jura-Studium an der Münchner Ludwig-Maximilians-Universität ins Verbandsleben eingestiegen, zunächst als Alleingeschäftsführer der Südbayerischen Zahntechnikerinnung. Danach war er drei Jahre lang Hauptgeschäftsführer der Steuerberaterkammer München sowie zuletzt in selber Funktion beim Verband Privater Brauereien Bayern. Als Gründungsberater bzw. anwaltlicher Betreuer von gemeinnützigen Organisationen, Gesellschaften und Start-ups war er auch schon in Baden-Württemberg tätig. Dawid ist verheiratet und Vater zweier erwachsener Kinder.

Er übernimmt einen Verband mit gut 220 Mitgliedsunternehmen, die zusammen 24.000 Menschen beschäftigen und für 7 Milliarden Euro Umsatz stehen. Die Textil- und Bekleidungsindustrie ist Deutschlands zweitgrößte Konsumgüterindustrie und bei technischen Textilien Weltmarktführer. Südwesttextil vertritt die Interessen der Branche in Baden-Württemberg. Viele Mitglieder sind wichtige Zulieferer für die Autoindustrie, Luft- und Raumfahrt oder namhafte Hersteller von Mode oder medizinischen Textilien. Auch verhandelt Südwesttextil die Tarifverträge für seine tarifgebundenen Mitglieder, hier steigt Dawid mitten in einer laufenden Tarifrunde ein.

„Wir freuen uns, mit Herrn Dawid eine schnelle und sehr passende Nachfolgelösung gefunden zu haben, so dass der Staffelstab ohne Unterbrechung weitergegeben werden kann“, so Südwesttextil-Präsident Bodo Th. Bölzle. Dawid bringe umfangreiche Erfahrungen aus der Welt der Interessenvertretung mit.

„Ich freue mich sehr, dass das Präsidium von Südwesttextil mir diese verantwortungsvolle und spannende Aufgabe anvertraut. Als leidenschaftlicher Netzwerker bin ich neugierig auf die Menschen und Themen in der Mitgliedschaft, in der Textilindustrie insgesamt und in der politischen Szene Baden-Württembergs“, so Oliver Dawid.

Bölzle dankte dem Vorgänger Haas nochmals für dessen engagierte Arbeit und die gestemmten Projekte. „Peter Haas hat Südwesttextil spürbar nach vorne gebracht, und für die neue Aufgabe im Spitzenverband des Handwerks wünschen wir ihm jeden denkbaren Erfolg.“

VDMA: Top-Nachwuchs online geehrt (c) VDMA
Die Gewinner 2020 (von oben links nach rechts unten): Dr. Frederik Cloppenburg, Philippa Böhnke, Juan Carlos Arañó Romero, Dr. Annett Schmieder, Maximilian Speiser, Harry Lucas jun.
03.12.2020

VDMA: Top-Nachwuchs online geehrt

Der Vorsitzende der Walter Reiners-Stiftung des VDMA Fachverbands Textilmaschinen, Peter D. Dornier hat Anfang Dezember sechs erfolgreiche Nachwuchsingenieure ausgezeichnet. Die Preisverleihung fand aufgrund der Corona-Pandemie erstmals als Webkonferenz statt.

Mit Kreativitätspreisen für die cleverste Bachelor- oder Projektarbeit wurden Philippa Böhnke, ITM Dresden, und Juan Carlos Arañó Romero, ITA Aachen, geehrt. Die Preise sind mit jeweils 3.000 Euro dotiert. Die Projektarbeit von Frau Böhnke beschäftigte sich mit Verbund-Implantaten zur Reparatur und Regeneration von Knochendefekten. Gegenstand der Bachelorarbeit von Herrn Arañó Romero war eine Spinnanlage, die Fasern direkt aus auf dem Mond vorhandenen Rohstoffen gewinnen kann. So kann der Beförderungsaufwand in der Raumfahrt reduziert werden, da Materialien etwa zur Dämmung einer Mondbasis auf dem Mond selbst hergestellt werden können.

Der Vorsitzende der Walter Reiners-Stiftung des VDMA Fachverbands Textilmaschinen, Peter D. Dornier hat Anfang Dezember sechs erfolgreiche Nachwuchsingenieure ausgezeichnet. Die Preisverleihung fand aufgrund der Corona-Pandemie erstmals als Webkonferenz statt.

Mit Kreativitätspreisen für die cleverste Bachelor- oder Projektarbeit wurden Philippa Böhnke, ITM Dresden, und Juan Carlos Arañó Romero, ITA Aachen, geehrt. Die Preise sind mit jeweils 3.000 Euro dotiert. Die Projektarbeit von Frau Böhnke beschäftigte sich mit Verbund-Implantaten zur Reparatur und Regeneration von Knochendefekten. Gegenstand der Bachelorarbeit von Herrn Arañó Romero war eine Spinnanlage, die Fasern direkt aus auf dem Mond vorhandenen Rohstoffen gewinnen kann. So kann der Beförderungsaufwand in der Raumfahrt reduziert werden, da Materialien etwa zur Dämmung einer Mondbasis auf dem Mond selbst hergestellt werden können.

Zwei Förderpreise in der Kategorie Master mit einem Preisgeld in Höhe von jeweils 3.500 Euro wurden an Harry Lucas, TU Chemnitz, und Maximilian Speiser, Hochschule Reutlingen, verliehen. In der Masterarbeit von Herrn Lucas geht es um die Entwicklung eines neuen Strickkopfes für Jacquard-Gestricke, der eine breite Farbgestaltung etwa bei der Herstellung von Fan-Schals ermöglicht. Herr Speiser zeigte in seiner Arbeit konkrete Lösungen auf, wie die Energieeffizienz im Vliesprozess gesteigert werden kann.

Zwei Förderpreise des Deutschen Textilmaschinenbaus in der Kategorie Dissertation gingen dieses Jahr an Dr. Frederik Cloppenburg, ITA Aachen, und Dr. Annett Schmieder, TU Chemnitz.  Die Preise sind mit jeweils 5.000 Euro dotiert. Herr Dr. Cloppenburg entwickelte in seiner Dissertation ein Modell zur Optimierung von Vliesstoffkrempeln. Frau Dr. Schmieder stellt in ihrer Arbeit ein System der Schadenanalyse von Faserseilen vor, das erkennt, wann ein Faserseil, zum Beispiel bei Transportanwendungen, ausgewechselt werden muss.

Die Preisverleihung der Walter Reiners-Stiftung 2021 soll wieder als Präsenzveranstaltung stattfinden. Sie ist für Anfang Mai auf der Messe Techtextil in Frankfurt geplant.

Quelle:

VDMA

13.11.2020

AVK verleiht ihre Preise erstmals virtuell

Die AVK - Industrievereinigung Verstärkte Kunststoffe e.V. hat wieder die renommierten Innovationspreise vergeben. Innovative und vor allem auch nachhaltige Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden dabei von der Experten-Jury ausgezeichnet.

Übersicht aller Preisträger in den drei Kategorien:

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Direktgekühlter Elektromotor mit integralem Leichtbaugehäuse aus faserverstärktem Kunststoff - DEmiL“ – Fraunhofer-Institut für Chemische Technologie ICT, Pfinztal mit Karlsruher Institut für Technologie, Sumitomo Bakelite Co., Ltd.*

2. Platz: „Wiederaufbereitbare, reparierbare und recyclingfähige (3R) duroplastische Verbundwerkstoffe für wettbewerbsfähigere und nachhaltigere Industrien“ – cidetec, Donostia-San Sebastian, Spanien*

3. Platz: „Brandsichere Composite Metall Hybridstruktur LEO® Brandschutzsandwich mit integriertem Hyconnect Stahl-Glasshybridverbinder“ – SAERTEX GmbH & Co. KG mit Hyconnect GmbH*

Die AVK - Industrievereinigung Verstärkte Kunststoffe e.V. hat wieder die renommierten Innovationspreise vergeben. Innovative und vor allem auch nachhaltige Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden dabei von der Experten-Jury ausgezeichnet.

Übersicht aller Preisträger in den drei Kategorien:

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Direktgekühlter Elektromotor mit integralem Leichtbaugehäuse aus faserverstärktem Kunststoff - DEmiL“ – Fraunhofer-Institut für Chemische Technologie ICT, Pfinztal mit Karlsruher Institut für Technologie, Sumitomo Bakelite Co., Ltd.*

2. Platz: „Wiederaufbereitbare, reparierbare und recyclingfähige (3R) duroplastische Verbundwerkstoffe für wettbewerbsfähigere und nachhaltigere Industrien“ – cidetec, Donostia-San Sebastian, Spanien*

3. Platz: „Brandsichere Composite Metall Hybridstruktur LEO® Brandschutzsandwich mit integriertem Hyconnect Stahl-Glasshybridverbinder“ – SAERTEX GmbH & Co. KG mit Hyconnect GmbH*

Kategorie „Innovative Prozesse und Verfahren“
1. Platz: “ Robotised Injection Moulding (ROBIN)” – Robin, Dresden mit Institut für Leichtbau und Kunststofftechnik der TU Dresden*

2. Platz: „Omega Stringer völlig von der Rolle“ – Deutsches Zentrum für Luft- und Raumfahrt, Braunschweig*

3. Platz: „Hybridguss – Herstellung intrinsischer CFK-Aluminium Verbundstrukturen im Aluminiumdruckgießverfahren“ – Faserinstitut Bremen e. V. mit Fraunhofer IFAM, Bremen*

Kategorie „Forschung und Wissenschaft“
1. Platz: „Untersuchung und Zähmodifizierung neuer hochtemperaturbeständiger ungesättigter Polyesterharze und ihrer Duromere“ – FH Münster, Labor für Kunststofftechnologie und Makromolekulare Chemie, mit BASF SE Global New Business Development, Leibniz-Institut für Polymerforschung e. V., Saertex multicom GmbH*

2. Platz: „Wissenschaftliche Grundlagen zur industriellen Anwendung des thermoplastischen Resin Transfer Molding-Verfahrens (T-RTM)“ – Fraunhofer-Institut für Chemische Technologie ICT, Pfinztal*

3. Platz: „Die material- und energieeffiziente Herstellung von Turbinen Struts durch die integrative Kombination duroplastischer faserverstärkter Werkstoffe“ – Lehrstuhl für Kunststofftechnik, Uni Erlangen-Nürnberg mit Deutschem Zentrum für Luft- und Raumfahrt, Gubesch Group, Schmidt WFT, Siebenwurst, Raschig.*

Preisverleihung erstmals im Internet
Die Preisverleihung erfolgte wegen der Covid-19-Pandemie erstmals als Online-Event am 12. November 2020. Viele Innovationen der Preisträger werden dieses Jahr erneut in der AVK-Innovationspreisbroschüre präsentiert.
Diese wird online zur Verfügung gestellt: https://www.avk-tv.de/innovationaward.php

 

*Weitere Informationen finden Sie im Anhang.

 

Quelle:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V

vombaur: Composites für Aviation und Automotive  (c) vombaur
Pioneering tech tex
04.11.2020

vombaur: Composites für Aviation und Automotive

  • Composite Textiles für moderne Mobilität
  • Extrem leichte und hochfeste Bauteile von vombaur

Im Schnee, im Flugzeug, im E-Auto oder auf dem Fahrrad: Ganz gleich, wo und wie wir unterwegs sind – Composite Textiles von vombaur sorgen dafür, dass wir gut vorankommen. Mit Materialien, die beides sind: extrem leicht und extrem zuverlässig.

Leichtbauteile für moderne Mobilität
Moderne Mobilität braucht Hightech-Leichtbauteile. Die Schmaltextilien von vombaur werden aus Hochleistungsfasern gewebt. Auf Webstühlen, die eigens für besonders anspruchsvolle Composite Textiles gemacht sind: An den Spezial-Maschinen fertigt das Textil-Unternehmen Hightech-Webbänder mit geschlossenen Webkanten und elastische UD-Schläuche, die ihre 0°-Orientierung über die ganze Bauteillänge beibehalten – unabhängig von ihrem Durchmesser. Da sie keine unerwünschten Bruchstellen durch Naht- oder Schweißverläufe aufweisen, besitzen sie nicht nur besonders hohe Berstfestigkeit, sie sind auch extrem zuverlässig und langlebig.

  • Composite Textiles für moderne Mobilität
  • Extrem leichte und hochfeste Bauteile von vombaur

Im Schnee, im Flugzeug, im E-Auto oder auf dem Fahrrad: Ganz gleich, wo und wie wir unterwegs sind – Composite Textiles von vombaur sorgen dafür, dass wir gut vorankommen. Mit Materialien, die beides sind: extrem leicht und extrem zuverlässig.

Leichtbauteile für moderne Mobilität
Moderne Mobilität braucht Hightech-Leichtbauteile. Die Schmaltextilien von vombaur werden aus Hochleistungsfasern gewebt. Auf Webstühlen, die eigens für besonders anspruchsvolle Composite Textiles gemacht sind: An den Spezial-Maschinen fertigt das Textil-Unternehmen Hightech-Webbänder mit geschlossenen Webkanten und elastische UD-Schläuche, die ihre 0°-Orientierung über die ganze Bauteillänge beibehalten – unabhängig von ihrem Durchmesser. Da sie keine unerwünschten Bruchstellen durch Naht- oder Schweißverläufe aufweisen, besitzen sie nicht nur besonders hohe Berstfestigkeit, sie sind auch extrem zuverlässig und langlebig.

Anspruchsvolle Anwendungen
„Vom Snowboard bis zur Raumfahrt – die Einsatzbereiche unserer Composite Textiles sind anspruchsvoll, die mechanischen, chemischen und thermischen Anforderungen extrem“, erklärt COO Christoph Schliefer. „Als Entwicklungspartner sind wir von vombaur deshalb oft schon früh in die Produktentwicklung einbezogen. Entsprechend der jeweiligen konkreten Aufgabe spezifizieren wir unsere Webbänder und -schläuche individuell für die jeweiligen Projekte.“

Hochwertige Rohstoffe, vielfältige Geometrien
Die Formenvielfalt ist dabei nahezu grenzenlos. Aus Carbon, Aramid, Glas oder Hybriden fertigt vombaur 3D-Gewebe für Composites in individuellen Spezialformen. Rundungen, Kanten, Schläuche, Spiralgewebe – die Form der 3D-Gewebe richtet sich wie das Material ganz nach der Aufgabe. Pulver- oder Vliesbeschichtungen erzeugen zusätzliche wichtige Eigenschaften.

Pioneering tech tex
„Die Entwicklungen in Sachen moderne Mobilität vollziehen sich rasant“, betont Schliefer. „Mit unseren Composite Textiles für extrem leichte und hochfeste Bauteile treiben auch wir von vombaur diese Entwicklungen voran.“

Texoversum - Indoor © Allmann Sattler Wappner Architekten, Menges Scheffler Architekten; Jan Knippers Ingenieure
Texoversum - Indoor
20.07.2020

Südwesttextil spendet Hochschule Reutlingen Ausbildungs- und Innovationszentrum

Die Hochschule Reutlingen wird ein neues, architektonisch interessantes Gebäude am Rande des Campus bekommen: das Texoversum. Gespendet vom Arbeitgeberverband Südwesttextil soll es der europaweite Leuchtturm für textile Ausbildung und Innovation werden. Passend dazu zeigt der Bau eine erstmalig so umgesetzte transparente Textilfassade, made in Baden-Württemberg.

Die Hochschule Reutlingen wird ein neues, architektonisch interessantes Gebäude am Rande des Campus bekommen: das Texoversum. Gespendet vom Arbeitgeberverband Südwesttextil soll es der europaweite Leuchtturm für textile Ausbildung und Innovation werden. Passend dazu zeigt der Bau eine erstmalig so umgesetzte transparente Textilfassade, made in Baden-Württemberg.

Der Entwurf entstand durch drei Stuttgarter Professoren Markus Allmann, Achim Menges und Jan Knippers mit ihren Büros Allmann Sattler Wappner Architekten, Menges Scheffler Architekten und Jan Knippers Ingenieure. Letztere stehen für die einzigartige Fassade aus Carbonfasern, deren Fertigung mit Robotern bislang nur bei Tragwerksstrukturen für Pavillons zum Einsatz kam, wie etwa auf der Bundesgartenschau Heilbronn 2019. Der Neubau ist Teil eines Ensembles, welches im Rahmen des Masterplanes für den Campus Reutlingen entwickelt und umgesetzt wird. Seine Corporate Architecture erfüllt neben funktionalen Anforderungen ästhetische und repräsentative Ansprüche und schafft ein identitätsstiftendes Gebäude als Impulsgeber für die Technologie Textil. „Im Äußeren zeigt das Gebäude durch eine neuartige Fassade die Innovationskraft der Textilindustrie, im Inneren verbinden halbgeschossig versetzte Arbeitsplattformen alle Bereiche zu einem offenen, räumlichen Kontinuum“, so das Architektenteam.

Ab Herbst 2022 sollen im Texoversum auf dem Campus der Hochschule Reutlingen unterschiedliche Zielgruppen zusammenkommen: Studierende mit Unternehmen, Gründer mit Investoren, Entwickler aus der Industrie mit Forschern der Hochschule und benachbarten Instituten. Außerdem sollen Auszubildende hier in der gesamten textilen Kette trainiert werden. Dazu will Südwesttextil die bislang im Ausbildungszentrum Gatex im südbadischen Bad Säckingen untergebrachte überbetriebliche Ausbildung nach Reutlingen verlagern.

Das Texoversum umfasst fast 3.000 Quadratmeter Fläche für Werkstätten, Labore, eine neue Heimat für die international renommierte Textilsammlung, Think-Tank-Flächen und Unterrichtsräume. Nach der von Südwesttextil verantworteten und finanzierten Errichtung des Gebäudes soll es ans Land Baden-Württemberg und damit an die Hochschule übergeben werden. Südwesttextil möchte an dem über 160 Jahre alten Textilstandort Reutlingen eine moderne Plattform schaffen für alle, die an Textil Interesse haben, in diesem Bereich arbeiten, lehren oder forschen – in allen Alters- und Qualifikationsstufen und auch über Branchengrenzen hinweg. „Ich wünsche mir das Texoversum als eine hybride Zukunftswerkstatt, in der textiler Nachwuchs ausgebildet wird, neue Produkte und auch neue Unternehmen entstehen und Wirtschaft noch gezielter mit Wissenschaft zusammenkommt“, so der Verbandspräsident Bodo Th. Bölzle.

Reutlingen will mit diesem neuartigen Open Space Konzept an die Zeiten anknüpfen, als es noch „Oxford der Textilindustrie“ hieß. Auch Trendscouts und Entwickler aus anderen Technologiebranchen, wie Automotive, Luft- und Raumfahrt, Informatik oder Medizintechnik sollen dort eine Anlaufstelle finden. „Das Texoversum ist eine innovationsfördernde Umgebung und bringt Menschen mit unterschiedlichen Fähigkeiten und Ideen zusammen. Hier werden in Teams Synergien und zukunftsweisende Ideen geschaffen, die sich auch in der Industrie fortsetzen werden“, so Professor Dr. Hendrik Brumme, Präsident der Hochschule Reutlingen. Auch der Dekan der Fakultät Textil & Design, Reutlingen, Professor Dr. Jochen Strähle, freut sich auf das neue Wahrzeichen seiner traditionsreichen Ausbildungs-stätte: „Das wird inspirierend für alle Beteiligten. Das Texoversum bündelt die erstklassige textile Ausbildung und Forschung über die gesamte Wertschöpfungskette. Hier gestalten wir die Welt von morgen.“ Textil werde als Querschnittstechnologie immer wichtiger in den Bereichen Mobilität, Nachhaltigkeit, beim Bauen oder als Träger von Sensorik in der Medizin, das bestätigt auch Bodo Th. Bölzle und fasst zusammen: „Das Texoversum wird der Ort sein, an dem junge Talente und alte Hasen gemeinsam neue Ideen entwickeln.“

Wissenschaftsministerin Theresia Bauer misst dem Neubau überregionale Bedeutung bei: „Das Texoversum bringt nicht nur einen signifikanten Mehrwert in Forschung und Lehre für die Hochschule Reutlingen und die dortige Fakultät für Textil und Design. Der mit dem Neubau geschaffene ‚Think Tank‘ wird als zentraler Pfeiler im Netzwerk von Hochschulen und Textilwirtschaft Signalwirkung für das ganze Land entfalten.“

Grundlage für die bauliche Weiterentwicklung des landeseigenen Hochschulgeländes ist ein städtebaulicher Masterplan, den das Stuttgarter Architekturbüro Harris und Kurrle im Auftrag des Landesbetriebs Vermögen und Bau Baden-Württemberg im Vorfeld erstellt hatte. „Das Texoversum wird einen prominenten Bauplatz im südwestlichen Campusareal besetzen und mit seiner expressiven Fassade auf den gesamten Campus ausstrahlen“ so Andreas Hölting, der Leiter des Tübinger Amtes von Vermögen und Bau.

Quelle:

Verband der Südwestdeutschen Textil- und Bekleidungsindustrie Südwesttextil e.V.

13.05.2020

Über 3 Jahre laufende, grenzüberschreitende Interreg-Projekts AACOMA hat begonnen

  • AACOMA - Accelerate advanced composite manufacturing
  • Das Dreiländereck Euregio-Maas-Rhein (EMR) inclusive Belgien, Niederlande und Deutschland als Hot-Spot für die Zukunft von Leichtbauwerkstoffen und –technologien

Mit ihren zahlreichen hochinnovativen, führenden Unternehmen bietet die Euregio Maas-Rhein ein enormes Potenzial. Insbesondere sind hier die KMU hervorzuheben, die fortschrittliche Materialien für viele Anwendungsbereiche wie etwa Automobilbau, Luft- und Raumfahrt, Elektronik, Bauwesen und Infrastruktur usw. entwickeln und herstellen. Der Bereich der “Advanced Materials” wächst hier mit einem konsolidierten Angebot, das von Rohstoffproduzenten über Technologieentwicklung bis hin zur Produktion, Forschung und Entwicklung sowie Fertigung und industriellen OEMs reicht.

  • AACOMA - Accelerate advanced composite manufacturing
  • Das Dreiländereck Euregio-Maas-Rhein (EMR) inclusive Belgien, Niederlande und Deutschland als Hot-Spot für die Zukunft von Leichtbauwerkstoffen und –technologien

Mit ihren zahlreichen hochinnovativen, führenden Unternehmen bietet die Euregio Maas-Rhein ein enormes Potenzial. Insbesondere sind hier die KMU hervorzuheben, die fortschrittliche Materialien für viele Anwendungsbereiche wie etwa Automobilbau, Luft- und Raumfahrt, Elektronik, Bauwesen und Infrastruktur usw. entwickeln und herstellen. Der Bereich der “Advanced Materials” wächst hier mit einem konsolidierten Angebot, das von Rohstoffproduzenten über Technologieentwicklung bis hin zur Produktion, Forschung und Entwicklung sowie Fertigung und industriellen OEMs reicht.

Interreg Euregio Maas-Rhein investiert 96 Millionen Euro aus dem Europäischen Fonds für die regionale Entwicklung (EFRE) im Zeitraum von 2014 bis 2020. Durch die Investitionen in grenzüberschreitende Projekte investiert die Europäische Union in die wirtschaftliche Entwicklung, Innovation, territoriale Entwicklung sowie in die soziale Eingliederung und Bildung dieser Region.

Das Projekt

Die EMR ist ein potentieller Hot-Spot für die Weiterentwicklung fortschrittlicher Material- und Verfahrenstechnologien. Technische Zentren und Institute in Aachen/Deutschland, Lüttich/Belgien und Eindhoven/Niederlande wurden für die Zusammenarbeit in diesem neuen Interreg-Projekt AACOMA ausgewählt.

Innovatives Materialdesign und fortschrittliche Fertigungstechnologien bieten große Chancen für hier ansässige kleine und mittelständische Unternehmen (KMU). Der Startschuss für das Projekt AACOMA fiel im 1. Quartal 2020 in Aachen auf dem Campus der RWTH. Ziel des auf 3 Jahre angelegten und mit einem Budget von 3 Mio. € unterstützten Projekts ist es, KMU mit Innovations-Hot-Spots wie Instituten und anderen technischen Zentren in Verbindung zu bringen.

Sieben Partner aus allen drei Regionen werden das Projekt gemeinsam durchführen: der Projektleiter Centexbel wird unterstützt von der Universität Lüttich sowie von Sirris und Flanders Make in Belgien sowie von Fontys und AMIBM (Universität Maastricht) in den Niederlanden und AMAC in Deutschland.

Stellungnahmen

Bernard Paquet, Projektkoordinator von Centexbel/Belgien erklärt:
"Wir bei Centexbel verfügen über große Erfahrung im Textil- und Verbundwerkstoffbereich. Gemeinsam mit unseren Interreg-Partnern und einem beratenden Gremium aus internationalen Experten werden wir mehrere Demonstratoren identifizieren, die eine beschleunigte fortschrittliche Herstellung von Verbundwerkstoffteilen ermöglichen werden. Dazu könnten neue Materialien und Zwischenprodukte, Hochleistungsadditive, biobasierte Produkte und neue Verbundwerkstoffe für die additive Fertigung gehören".

Michael Effing, Geschäftsführer von AMAC/ Deutschland, sagt:
"Das Hauptziel des Projekts ist es, rund 200 innovative KMU miteinander in Verbindung zu bringen und Vernetzungen mit den Weltklasse-Instituten in der EMR-Region herzustellen. Wir werden 6 Roadshow-Veranstaltungen durchführen, die Schlüsselthemen in den Fokus nehmen, wie etwa die automatisierte Fertigung, die additive Fertigung oder biobasierte Materialsysteme in Kombination mit Matchmaking und Schulungsveranstaltungen. Die erste Roadshow soll am 24. September 2020 auf dem Campus der RWTH Aachen stattfinden".

Prof. Gunnar Seide vom AMIBM/Niederlande erläutert:
"Unser AMIBM bietet bereits einen internationalen Masterstudiengang zu biobasierten Materialien an. Das AACOMA-Projekt wird ein wichtiges Element für die grenzüberschreitende Forschung sein und neue Akteure in der Wertschöpfungskette identifizieren, die aus der EMR-Region kommen. Innovative Unternehmen finden Märkte für ihre neuen biobasierten Bausteine, Chemikalien und Polymere. Ihre Erfolgsgeschichten und bevorstehenden technologischen Durchbrüche sind für eine nachhaltige Zukunft notwendig".

Quelle:

Marketing and Communications Director AMAC GmbH

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt (c) SGL CARBON SE
SGL Carbon Large-Tow-IM-Carbonfaser Produktion am US-Standort Moses Lake
03.12.2019

SGL Carbon und Solvay schließen Kooperation

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt

Wiesbaden - SGL Carbon und Solvay haben eine gemeinsame Entwicklungsvereinbarung geschlossen, um erstmalig Faserverbundwerkstoffe auf Basis von Large-Tow-Carbonfasern auf den Markt zu bringen. Diese Materialien, die auf den Large-Tow-IM-Carbonfasern (Intermediate Modulus, IM) der SGL Carbon und den Harzsystemen der Solvay für Primärstrukturen basieren, adressieren den Bedarf der Verkehrsflugzeuge der nächsten Generation: Geringere Kosten und CO2-Emissionen sowie höhere Produktions- und Kraftstoffeffizienz.  

Die Vereinbarung umfasst Technologien mit Duroplast- und Thermoplast-Verbundwerkstoffen. Grundlage für die Zusammenarbeit sind die Expertise von SGL Carbon in der Großserienfertigung von Carbonfasern sowie die führende Rolle von Solvay als Lieferant von hochentwickelten Materialien für die Luftfahrtindustrie.

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt

Wiesbaden - SGL Carbon und Solvay haben eine gemeinsame Entwicklungsvereinbarung geschlossen, um erstmalig Faserverbundwerkstoffe auf Basis von Large-Tow-Carbonfasern auf den Markt zu bringen. Diese Materialien, die auf den Large-Tow-IM-Carbonfasern (Intermediate Modulus, IM) der SGL Carbon und den Harzsystemen der Solvay für Primärstrukturen basieren, adressieren den Bedarf der Verkehrsflugzeuge der nächsten Generation: Geringere Kosten und CO2-Emissionen sowie höhere Produktions- und Kraftstoffeffizienz.  

Die Vereinbarung umfasst Technologien mit Duroplast- und Thermoplast-Verbundwerkstoffen. Grundlage für die Zusammenarbeit sind die Expertise von SGL Carbon in der Großserienfertigung von Carbonfasern sowie die führende Rolle von Solvay als Lieferant von hochentwickelten Materialien für die Luftfahrtindustrie.

„Für Solvay ist dies eine Gelegenheit, Faserverbundwerkstoffe auf Basis von 50K-IM-Carbonfasern federführend in der Luftfahrtindustrie einzuführen. Mit diesem in hohem Maße konkurrenzfähigen Leistungsversprechen können wir unseren Kunden fortschrittlichste Lösungen kosteneffizient anbieten. Wir betrachten die Entwicklungsvereinbarung als ersten Schritt auf dem Weg zu einer langfristigen Partnerschaft“, erklärt Augusto Di Donfrancesco, Vorstandsmitglied von Solvay.

„Durch Kombination unserer Carbonfaserkompetenz in der neu entwickelten und einzigartigen 50K IM-Faser mit Solvays Expertise in Harzformulierungen und Erfahrung in der Luft- und Raumfahrtindustrie, wollen beide Partner die Entwicklung eines fortschrittlichen Materialsystems für die Luftfahrt gezielt vorantreiben. Diese Allianz unterstützt die strategische Ausrichtung der SGL Carbon und wird unser Wachstum im attraktiven Luftfahrtmarkt beschleunigen“, erklärt Dr. Michael Majerus, Sprecher des Vorstands der SGL Carbon.

Faserverbundwerkstoffe in der Luftfahrt sind ein Milliardenmarkt, der im kommenden Jahrzehnt stark wachsen wird. SGL Carbon und Solvay sind optimal aufgestellt, um passende Lösungen für die Anforderungen dieses Marktes zu entwickeln.

Weitere Informationen:
Solvay SGL Carbon Carbonfaser
Quelle:

SGL CARBON SE

Beirat SmartERZ, Foto (v.l.n.r.): Ivo Harzdorf, Bernhard Beck, Jana Dost, Dr. Michael Wegener, Sven Schulze (c) P3N MARKETING GMBH
Beirat SmartERZ, Foto (v.l.n.r.): Ivo Harzdorf, Bernhard Beck, Jana Dost, Dr. Michael Wegener, Sven Schulze
29.11.2019

SmartErz: Neue Generation von Werkstoffen und Systemkomponenten entsteht im Erzgebirge

 Ideen für erste Forschungsprojekte zum Aufbau des Technologie- und Wirtschaftsclusters Smart Composites eingereicht

Die Unternehmer des Erzgebirges sind aus Tradition visionär. Dieser Tradition verpflichtend hat sich ein Bündnis SmartERZ (Smart Composites Erzgebirge) von derzeit 160 Partnern aus Wirtschaft und Wissenschaft auf den Weg gemacht, um in den nächsten fünf Jahren einen innovationsgetriebenen Strukturwandel in der Region Erzgebirge zu initiieren. Das daraus entstehende Technologie- und Wirtschaftscluster im Rahmen des Programms "WIR! – Wandel durch Innovation in der Region" wird durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Führung des Projekts übernahm nach über zwei Jahren intensiver Vorbereitung im Sommer diesen Jahres die Wirtschaftsförderung Erzgebirge GmbH (WFE). Strategische Unterstützung erhält sie dabei vom Bündnisbeirat unter Leitung von Jana Dost, Geschäftsführerin der IHK Chemnitz, Regionalkammer Erzgebirge und der TU Chemnitz.

 Ideen für erste Forschungsprojekte zum Aufbau des Technologie- und Wirtschaftsclusters Smart Composites eingereicht

Die Unternehmer des Erzgebirges sind aus Tradition visionär. Dieser Tradition verpflichtend hat sich ein Bündnis SmartERZ (Smart Composites Erzgebirge) von derzeit 160 Partnern aus Wirtschaft und Wissenschaft auf den Weg gemacht, um in den nächsten fünf Jahren einen innovationsgetriebenen Strukturwandel in der Region Erzgebirge zu initiieren. Das daraus entstehende Technologie- und Wirtschaftscluster im Rahmen des Programms "WIR! – Wandel durch Innovation in der Region" wird durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Führung des Projekts übernahm nach über zwei Jahren intensiver Vorbereitung im Sommer diesen Jahres die Wirtschaftsförderung Erzgebirge GmbH (WFE). Strategische Unterstützung erhält sie dabei vom Bündnisbeirat unter Leitung von Jana Dost, Geschäftsführerin der IHK Chemnitz, Regionalkammer Erzgebirge und der TU Chemnitz.

Interdisziplinäre Forschung ist Prämisse
SmartERZ hat die Aufgabe, die Innovationsfähigkeit der regionalen Unternehmen im Bereich der Smart Composites nachhaltig zu formen und zu stärken. Smart Composites sind neuartige Verbundwerkstoffe wie z. B. textilverstärkte Kunststoffe mit smarten, also intelligenten, Funktionen. Diese entstehen durch das Einbringen von Sensoren, Aktoren und weiteren miniaturisierten Elektronikkomponenten in unterschiedliche Materialien. Smart Composites gelten als Schlüsseltechnologie und verzeichnen ein sehr dynamisches Wachstum. Sie gehören zu den entscheidenden Treibern bei der Entstehung neuer Produkte. Funktionsintegrierte Verbundwerkstoffe machen mit ihren multifunktionalen Eigenschaften z. B. Autos leichter, Brücken sicherer oder Prothesen flexibler. Die Einsatzfelder sind aber bei weitem noch nicht erschlossen und gehen über Massenmärkte auch in absolute High-Tech Nischen der Industrie wie z. B. der Luft- und Raumfahrt. Nach Expertenschätzungen basieren bis zu 70 Prozent aller neuen Erzeugnisse auf diesen Werkstoffen.

Airborne / AMAC GmbH (c) AMAC GmbH
28.10.2019

Airborne verstärkt zusammen mit AMAC Aktivitäten in der D-A-CH-Region

Zum 1. Oktober 2019 verstärkt Airborne, der niederländische Weltmarktführer hochleistungsstarker, vollautomatisierter Produktionsanlagen und -lösungen für Verbundwerkstoffe seine Aktivitäten in der D-A-CH-Region (Deutschland, Österreich, Schweiz) zusammen mit Dr. Michael Effing von AMAC. Das niederländische Unternehmen sucht geeignete Partner, um seine internationalen Geschäfte in den Märkten Luft- und Raumfahrt sowie Automobilbau weiter auszubauen.

Ziel ist es, anspruchsvollste Verbundwerkstoffbauteile mit hohen  Fertigungsraten herzustellen und gleichzeitig die Produktions- und Verarbeitungskosten sowie den händischen Arbeitsaufwand nachhaltig zu senken, den Materialverbrauch zu minimieren und die  Markteinführungszeit für ihre Kunden zu verkürzen. Das Unternehmen bietet automatisierte Lösungen für den Wabenguss sowie Kitting und Laminieren von Duroplasten und Thermoplasten an. Um die Suche nach neuen Geschäftsmöglichkeiten in der D-A-CH-Region für die Endmärkte Luft- und Raumfahrt und Automotive zu beschleunigen, arbeitet Airborne nun mit AMAC zusammen.

Zum 1. Oktober 2019 verstärkt Airborne, der niederländische Weltmarktführer hochleistungsstarker, vollautomatisierter Produktionsanlagen und -lösungen für Verbundwerkstoffe seine Aktivitäten in der D-A-CH-Region (Deutschland, Österreich, Schweiz) zusammen mit Dr. Michael Effing von AMAC. Das niederländische Unternehmen sucht geeignete Partner, um seine internationalen Geschäfte in den Märkten Luft- und Raumfahrt sowie Automobilbau weiter auszubauen.

Ziel ist es, anspruchsvollste Verbundwerkstoffbauteile mit hohen  Fertigungsraten herzustellen und gleichzeitig die Produktions- und Verarbeitungskosten sowie den händischen Arbeitsaufwand nachhaltig zu senken, den Materialverbrauch zu minimieren und die  Markteinführungszeit für ihre Kunden zu verkürzen. Das Unternehmen bietet automatisierte Lösungen für den Wabenguss sowie Kitting und Laminieren von Duroplasten und Thermoplasten an. Um die Suche nach neuen Geschäftsmöglichkeiten in der D-A-CH-Region für die Endmärkte Luft- und Raumfahrt und Automotive zu beschleunigen, arbeitet Airborne nun mit AMAC zusammen.

Dr. Michael Effing, Geschäftsführer der AMAC GmbH bestätigt: "Als ersten Schritt von Airbornes Etablierung auf dem deutschen Markt haben wir gerade die Mitgliedschaft beim AZL in Aachen unterzeichnet, die uns dabei helfen wird, mit über 80 Unternehmen sowie neuesten Forschungsergebnissen in Kontakt zu treten. Im Rahmen der Unternehmensstrategie hat Airborne entschieden, den Flugzeugsektor verstärkt zu unterstützen und so stellt Airborne auch auf der Aircraft Interiors Expo in Hamburg vom 31. März bis 2. April 2020 aus.

 

(c) Sabine Schmidt, das-design-plus.de
21.02.2019

Technische Textilien: In Aachen entwickeln Bauwirtschaft und Wissenschaft gemeinsam Innovationen

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Ressourceneffizientes und nachhaltiges Bauen mit technischen Textilien
Textilbeton oder Gelege aus textilen Werkstoffen weisen entscheidende Vorteile gegenüber klassischen Baustoffen wie Stahl, Glas und Beton auf. Die textile Bewehrung im Betonbau ermöglichst aufgrund ihrer Korrosionsbeständigkeit vergleichsweise schlanke Betonbauteile mit geringem Eigengewicht, die dennoch sehr tragfähig und beständig sind. Die enorme Gewichtseinsparung senkt Transportkosten und ermöglicht es, höher zu bauen. Dies spart Grundfläche. Textilbeton benötigt darüber hinaus bis zu 80 Prozent weniger Beton. Daher schont der Baustoff Ressourcen, zum Beispiel den knapp werdenden Bausand. Besonders die starke Reduktion des Zementbedarfs ermöglicht 80 Prozent weniger Kohlendioxid-Emissionen. Die Zementherstellung der globalen Bauwirtschaft verursacht höhere CO2 -Emissionen als der weltweite Luftverkehr. Somit leistet Textilbeton einen wichtigen Beitrag zum ressourceneffizienten und nachhaltigen Bauen – der Zukunft der Bauwirtschaft.
Bei der Membranbauweise spielt die Leichtigkeit der Konstruktionen eine große Rolle. Hiermit lassen sich große Flächen überdachen. Gleichzeitig wird die textile Architektur höchsten ästhetischen Ansprüchen gerecht. Bekanntes Beispiel bildet das Gerry-Weber-Stadion mit seiner etwa 6.000 m2 umfassenden Dachkonstruktion.
Tragende Komponenten beim textilen Bauen sind textile Konstruktionen aus Hochleistungsfasern. Sie zeichnen sich durch extrem hohe Festigkeiten auch bei hohen Zugkräften aus - bei gleichzeitig geringem Gewicht. Meist werden die textilen Ausgangsmaterialien vor ihrer Verwendung zusätzlich beschichtet oder imprägniert. Diese Behandlungen ermöglichen spezifische Funktionalisierungen für den jeweiligen Zweck. Dies sorgt für eine große Anwendungsbreite. Teilweise sind textile Bauteile lichtdurchlässig, gleichzeitig schützen sie vor Wärme. Auch verbessern „Hightex“-Materialien akustische Eigenschaften von Räumen. Nicht zuletzt bieten textile Architekturen nahezu unbegrenzte Möglichkeiten der Form- und Farbgebung.

Aachener Innovationsnetzwerk fördert Wissenstransfer
„Die vielfältigen Möglichkeiten des Baustoffes Textil und das hohe Potenzial von technischen Fasern und Textilien sind in der Baubranche noch viel zu wenig bekannt“, so Goar T. Werner, Geschäftsführer des AACHEN BUILDING EXPERTS e. V. (ABE). Daher führt der ABE gezielt Experten aus Wissenschaft und Wirtschaft zusammen. Unterstützt wird er dabei unter anderem vom Institut für Textiltechnik und Lehrstuhl für Textilmaschinenbau (ITA) an der RWTH Aachen University. „Bauunternehmer und Architekten fragen sich, wo sie technische Textilien anwenden können und welche Vorteile diese Bauprodukte haben. Die Anbieter technischer Textilien wiederum überlegen: Wo können wir unsere innovativen Produkte unterbringen?“, weiß Prof. Dr.-Ing. Thomas Gries, Leiter des ITA. Zur Beantwortung eben dieser Fragen auf beiden Marktseiten und der Vernetzung dieser beiden „Welten“ will der ABE, das interdisziplinäre Kompetenznetzwerk für innovatives Bauen, beitragen. Dabei kooperiert der ABE ebenfalls eng mit den Instituten für Baustoffforschung (ibac) der RWTH Aachen University sowie dem TFI - Institut für Bodensysteme an der RWTH Aachen e.V. „Gemeinsam sorgen wir für den entsprechenden Wissenstransfer und bieten mit unserem `Innovationsnetzwerk Textiles Bauen´ ein Forum dafür, dass Innovationen eng am Bedarf der Bauwirtschaft entstehen“, erläutert Goar T. Werner.

Weitere Informationen:
Bauwirtschaft
Quelle:

AACHEN BUILDING EXPERTS e. V.

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum (c) TU Dresden
05.11.2018

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

„Sachsen verfügt in der Schlüsseltechnologie Werkstoff-, Material- und Nanowissenschaft über hervorragende Rahmenbedingungen und hoch motivierte Wissenschaftler an Hochschulen und Forschungseinrichtungen, die in dieser Spezialisierung weltweit ihresgleichen suchen“, erklärt dazu Staatsministerin Dr. Stange. „Beinahe alle Materialklassen von Metallen, Polymeren, Keramiken bis hin zu Verbund- und Naturwerkstoffen werden auf international hohem Niveau bearbeitet. Dabei greifen Grundlagen- und Angewandte Forschung in zahlreichen Feldern eng ineinander und bilden geschlossene Entwicklungsketten bis zu einem Transfer in die Wirtschaft – regional, national und international.“

Der Prorektor für Forschung der TU Dresden, Prof. Gerhard Rödel, ergänzt: „Mit dem Carbonfaser-Technikum ist im Research Center Carbon Fibers eine weltweit einzigartige Anlage entstanden, die völlig neue Möglichkeiten eröffnet. Es geht darum, Fasern mit einem möglichst hohen Individualisierungsgrad zu designen – je nach Bedarf und Einsatzbereich.“

Auf der derzeit installierten, einzigartigen Anlage erforschen Wissenschaftler des RCCF unter Reinraum-Bedingungen die Grundlagen für maßgeschneiderte Kohlenstofffasern und erschließen deren hohes Innovationspotential. Dabei greifen die Forscher auf einzelne Anlagenmodule zur Stabilisierung und Carbonisierung mit industrienahem Ofendesign und individuell einstellbaren Parameterkombinationen zurück. Durch den außerordentlichen Reinheitsgrad sind die Carbonfasern für die Anforderungen der Luft-/Raumfahrt- und der Automobilindustrie maßgeschneidert.

„Die Carbonfaser ist der Stahl des 21. Jahrhunderts“, führt Prof. Hubert Jäger, Sprecher des Instituts für Leichtbau und Kunststofftechnik (ILK), aus. „Ganze Branchen erfinden sich derzeit durch diesen Werkstoff neu und erreichen mit ihren Produkten nie gedachte Dimensionen. Das Problem ist jedoch die Verfügbarkeit. Wir werden mit dem Carbonfaser-Technikum einen Beitrag dazu leisten, dass aus Sachsen heraus dieser Werkstoff nicht nur leichter verfügbar, sondern auch besser und maßgeschneidert einsetzbar wird für Anwendungen in der Luft- und Raumfahrt, Fahrzeugbau, Architektur und Hochleistungselektronik.“

„Mit der Inbetriebnahme des Carbonfaser-Technikums unter Reinraumbedingungen am RCCF gelingt es uns, die Prozesskette zur Fertigung maßgeschneiderter Kohlenstofffasern signifikant zu erweitern. Die notwendigen Maschinentechniken des ITM einschließlich der bereits gewonnenen Erfahrungen bei Prozessoptimierungen zur Herstellung von Precursorfasern, dem Ausgangsmaterial für die neuen Stabilisierungs- und Carbonisierungslinien, stehen in künftigen Forschungsvorhaben den Wissenschaftlern des RCCF zur Verfügung. Somit geben wir am exzellenten Forschungsstandort Dresden die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern“, ergänzt Prof. Chokri Cherif, Direktor des ITM und Inhaber der Professur für Textiltechnik.

Das Carbonfaser-Technikum umfasst einen mehr als 300 m² großen Reinraum der Klasse ISO 8. Neben den beiden auf etwa 30 Metern aufgestellten Stabilisierungs- und Carbonisierungslinien sind weitere Flächen für künftige Erweiterungen der Gesamtanlage vorgesehen, zum Beispiel ein weiterer Hochtemperaturofen, in dem Carbonfasern bis zu Temperaturen über 2000°C graphitierbar sind oder unikale Beschichtungsanlagen zur Oberflächenaktivierung.

Die RCCF-Wissenschaftler ergründen die Wechselwirkungen zwischen Prozessparametern, Faserstruktur und weiteren mechanischen, thermischen und elektrischen Eigenschaften bei der Herstellung von Carbonfasern, um die Fähigkeiten des Hightech-Werkstoffes weiter zu steigern. Zusätzlich nehmen die Forscher die Entwicklung multifunktionaler Fasern mit neuartigen Eigenschaftsprofilen wie hohe Leitfähigkeit bei hoher Festigkeit oder ausgeprägter Verformbarkeit sowie die Nutzung erneuerbarer Ausgangsstoffe in den Fokus ihrer Arbeiten.

Ein weiterer Schwerpunkt der RCCF-Aktivitäten ist die tiefgreifende studentische Ausbildung im Bereich der Carbonfaser-Herstellung. Den Studierenden werden dabei fundierte Kenntnisse in Herstellung und Weiterverarbeitung von Carbonfasern vermittelt, damit sie in diesem Bereich der Zukunftstechnologien dem sächsischen und deutschen Arbeitsmarkt zur Verfügung stehen. Etwa 15 Studierende werden pro Jahr in Forschungsbereiche wie die Prozessführung, -modellierung und -überwachung sowie die Entwicklung, Fertigung und Charakterisierung neuer Carbonfasern und Verbundwerkstoffe einbezogen.

Weitere Informationen:
TU Dresden Carbonfaser
Quelle:

Technische Universität Dresden  - Fakultät Maschinenwesen   
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

 

© ITM/TU Dresden
Erste Ausführung eines multimodalen eGloves: Maßgeschneidertes Musikinstrument mit integrierter Sensorik zur Gestenerkennung und drahtlos angekoppeltem Tonwiedergabesystem sowie integrierter Leuchtfunktion für visuelles Feed-Back.
12.10.2018

ITM in einem Exzellenzcluster der TU Dresden maßgeblich involviert

Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden in einem der drei bewilligten Exzellenzcluster der TU Dresden maßgeblich involviert   
 
Ende September erfolgte die Bekanntgabe der Förderentscheidung über Exzellenzcluster durch die Deutschen Forschungsgemeinschaft (DFG) im Exzellenz-Wettbewerb. Drei der insgesamt sechs beantragten Exzellenzcluster der TUD wurden im Rahmen der Exzellenzstrategie des Bundes und der Länder bewilligt. Das ITM war im Vorfeld bei der Beantragung der Exzellenzcluster-Vollanträge mehrere Monate sehr stark eingebunden, so dass die Freude bei den Wissenschaftlern am ITM ausgesprochen groß ist, dass das Cluster „Centre for Tactile Internet with Human-in-the-Loop” (CeTI) bewilligt wurde.   
 

Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden in einem der drei bewilligten Exzellenzcluster der TU Dresden maßgeblich involviert   
 
Ende September erfolgte die Bekanntgabe der Förderentscheidung über Exzellenzcluster durch die Deutschen Forschungsgemeinschaft (DFG) im Exzellenz-Wettbewerb. Drei der insgesamt sechs beantragten Exzellenzcluster der TUD wurden im Rahmen der Exzellenzstrategie des Bundes und der Länder bewilligt. Das ITM war im Vorfeld bei der Beantragung der Exzellenzcluster-Vollanträge mehrere Monate sehr stark eingebunden, so dass die Freude bei den Wissenschaftlern am ITM ausgesprochen groß ist, dass das Cluster „Centre for Tactile Internet with Human-in-the-Loop” (CeTI) bewilligt wurde.   
 
Das „Zentrum für taktiles Internet mit Mensch-Maschine-Interaktion“ der TU Dresden will die Zusammenarbeit zwischen Mensch und Maschine auf eine neue Stufe heben. Menschen sollen künftig in der Lage sein, in Echtzeit mit vernetzten automatisierten Systemen in der realen oder virtuellen Welt zu interagieren. Ab Anfang 2019 arbeiten für dieses Ziel im Exzellenzcluster CeTI Wissenschaftler der TU Dresden aus den Fachgebieten Elektro- und Kommunikationstechnik, Informatik, Maschinenwesen, Psychologie, Neurowissenschaften und Medizin mit Forschern der TU München, des Deutschen Zentrums für Luft- und Raumfahrt und der Fraunhofer-Gesellschaft sowie internationalen Wissenschaftseinrichtungen zusammen. Interdisziplinär erforschen sie Schlüsselbereiche der menschlichen Kontrolle in der Mensch-Maschine-Kooperation, im Soft- und Hardware-Design, bei Sensor- und Aktuatortechnologien sowie bei den Kommunikationsnetzen. Die Forschungen sind Grundlage für neuartige Anwendungen in der Medizin, der Industrie (Industrie 4.0, Co-working) und dem ‘Internet der Kompetenzen‘ (Bildung, Rehabilitation).   
 
Sprecher von CeTI ist Herr Professor Frank Fitzek, Inhaber der Deutschen Telekom Professur für Kommunikationsnetze am Institut für Nachrichtentechnik der TU Dresden.
 
Das ITM wird innerhalb von CeTI seine umfassenden Expertisen auf dem Gebiet der Entwicklung maßgeschneiderter Funktionsmaterialien und -textilien einbringen. Hierbei werden sogenannte eGloves und eBodySuits, also elektronische Handschuhe und Anzüge, entwickelt, die strukturintegrierte faserbasierte Sensor-, Aktor- und Leitungssysteme sowie Verbindungselemente zu weiteren elektronischen Komponenten beinhalten. Derartige eGloves und eBodySuits bilden dabei eine neuartige multimodale Schnittstelle zwischen Mensch und Maschine, indem sie visuelle, akustische und haptische Informationen aufnehmen, interpretieren und zurückgegeben können.  

 

Weitere Informationen:
ITM
Quelle:

Technische Universität Dresden
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

(c) PrimaLoft
PrimaLoft Aerogel Thermal Barrier Diagram
02.08.2018

PrimaLoft setzt Weltraumtechnologie in Outdoor-Produkten ein

  • PrimaLoft® Gold Insulation Aerogel sorgt für exzellenten Wärme- und Kälteschutz

PrimaLoft, Inc. wird seiner Rolle als Innovationsführer im Bereich Performance-Textilien einmal mehr gerecht: Den Produktentwicklern des Spezialisten für Komfortlösungen ist mit PrimaLoft® Gold Insulation Aerogel eine weitere bahnbrechende Neuheit gelungen. Sie konnten das aus der Raumfahrt bekannte, ultraleichte, jedoch extrem poröse Aerogel mit bewährten PrimaLoft®-Technologien kombinieren und so für die Textilindustrie nutzbar machen. Das Ergebnis ist eine besonders wirksame Isolation, die selbst im komprimierten Zustand zuverlässig vor extremer Kälte oder Hitze schützt. Momentan kommt diese Innovation vor allem bei Fußsohlen-Applikationen und in Handschuhen zum Einsatz.

  • PrimaLoft® Gold Insulation Aerogel sorgt für exzellenten Wärme- und Kälteschutz

PrimaLoft, Inc. wird seiner Rolle als Innovationsführer im Bereich Performance-Textilien einmal mehr gerecht: Den Produktentwicklern des Spezialisten für Komfortlösungen ist mit PrimaLoft® Gold Insulation Aerogel eine weitere bahnbrechende Neuheit gelungen. Sie konnten das aus der Raumfahrt bekannte, ultraleichte, jedoch extrem poröse Aerogel mit bewährten PrimaLoft®-Technologien kombinieren und so für die Textilindustrie nutzbar machen. Das Ergebnis ist eine besonders wirksame Isolation, die selbst im komprimierten Zustand zuverlässig vor extremer Kälte oder Hitze schützt. Momentan kommt diese Innovation vor allem bei Fußsohlen-Applikationen und in Handschuhen zum Einsatz.

PrimaLoft® Gold Insulation Aerogel schützt vor eisigen Temperaturen genauso wie vor brütender Hitze und bietet dadurch noch mehr Komfort bei extremer Witterung. Möglich machen das Millionen kleiner Luftkammern, die eine Barriere sowohl gegen Kälte, als auch Hitze bilden. In Schuhe und Handschuhe integriert, entfaltet PrimaLoft® Gold Insulation Aerogel seine Wirkung auch unter Druck optimal. Während flauschige Isolierungen ihre Leistungsfähigkeit unter ständiger Druckbelastung verlieren können, brilliert PrimaLoft® Gold Insulation Aerogel selbst wenn es durch die Bewegung der Hände und Füße komprimiert wird. Gerade bei Schuhen, wo jeder zusätzliche Millimeter über den optimalen Sitz und Tragekomfort entscheidet, ist diese Eigenschaft essenziell. Gleichzeitig bewahrt die Isolation im komprimierten Zustand 98 Prozent seiner ursprünglichen thermischen Leistung. Labortests ergaben, dass Einlegesohlen mit PrimaLoft® Gold Insulation Aerogel den Fuß bei extremer Kälte (-78°C) um 14°C wärmer und bei starker Hitze (60°C) um 10°C kühler halten als die bisherigen PrimaLoft® Sohlen. In Kombination mit PrimaLoft® Isolationsprodukten entsteht eine optimale Symbiose aus Wetter- und Wärmeschutz mit idealem Tragekomfort für Outdoor-Aktivitäten, Arbeit oder Freizeit. Das langlebige PrimaLoft® Gold Insulation Aerogel ist außerdem sehr flexibel, wasserabweisend und extrem leicht.

Aerogel besteht zu 95 Prozent aus Luft und ist damit der leichteste bisher bekannte Feststoff sowie eins der effektivsten Isolationsmaterialien. Eine hoch poröse Struktur mit geringer Dichte bildet eine Barriere, die unbehagliche Kälte oder Hitze aussperrt. PrimaLoft® bietet diese in Verbindung mit einem Trägermaterial als flexible, verkapselte Fußbetten, Einlegesohlen, Schuhkappen und Handschuheinlagen an. Diese können für jeden Markenpartner individuell angepasst werden.

In der Wintersaison 2018/19 kommt PrimaLoft® Gold Insulation Aerogel unter anderem im extrem warmen Skihandschuh Reusch Volcano Pro GTX® Mitten, in insgesamt 42 Jacken von Helly Hansen, dort als Life pocket™ zum Schutz technischer Geräte vor Kälte, sowie im prämierten Wanderschuh Merrell Thermo Rogue zum Einsatz. Weiter Partner sind unter anderem Outdoor Research, Viking und Viking Footwear.

Dr. Jan Beringer, Leiter des Projekts Spacetex2. © Hohenstein
Dr. Jan Beringer, Leiter des Projekts Spacetex2. © Hohenstein
06.06.2018

Auf zu neuen Horizonten: „Spacetex2“ erforscht Funktionstextilien in Schwerelosigkeit

Wenn der deutsche ESA-Astronaut Dr. Alexander Gerst am 6. Juni 2018 zu seiner „Horizons“ Mission zur Internationalen Raumstation ISS startet, erwarten ihn dort zahlreiche Experimente. Beim Projekt  Spacetex2 finden bekleidungsphysiologische Untersuchungen statt, die erstmals das Zusammenwirken von Körper, Bekleidung und Klima unter Schwerelosigkeit im Hinblick auf den Tragekomfort erforschen. Die Ergebnisse von Spacetex2 helfen, die Kleidung von Astronauten (sog. IVA-Kleidung „intra vehicular activity“, also Bekleidung, die innerhalb der ISS getragen wird) auch im Hinblick auf Langzeitmissionen wie  beispielsweise den geplanten bemannten Flug zum Mars in den 2030ern zu optimieren. Gemäß dem Missionsziel „Wissen für morgen“ liefert das Projekt zudem wichtige Erkenntnisse für die Entwicklung neuer Funktionstextilien, die unter extremen klimatischen und physiologischen Bedingungen auch auf der Erde eingesetzt werden können. Unter dem Gesichtspunkt der globalen Erwärmung und des Klimawandels  erlangt dieser Aspekt immer mehr an Bedeutung.

Wenn der deutsche ESA-Astronaut Dr. Alexander Gerst am 6. Juni 2018 zu seiner „Horizons“ Mission zur Internationalen Raumstation ISS startet, erwarten ihn dort zahlreiche Experimente. Beim Projekt  Spacetex2 finden bekleidungsphysiologische Untersuchungen statt, die erstmals das Zusammenwirken von Körper, Bekleidung und Klima unter Schwerelosigkeit im Hinblick auf den Tragekomfort erforschen. Die Ergebnisse von Spacetex2 helfen, die Kleidung von Astronauten (sog. IVA-Kleidung „intra vehicular activity“, also Bekleidung, die innerhalb der ISS getragen wird) auch im Hinblick auf Langzeitmissionen wie  beispielsweise den geplanten bemannten Flug zum Mars in den 2030ern zu optimieren. Gemäß dem Missionsziel „Wissen für morgen“ liefert das Projekt zudem wichtige Erkenntnisse für die Entwicklung neuer Funktionstextilien, die unter extremen klimatischen und physiologischen Bedingungen auch auf der Erde eingesetzt werden können. Unter dem Gesichtspunkt der globalen Erwärmung und des Klimawandels  erlangt dieser Aspekt immer mehr an Bedeutung.

„Alexander Gerst muss im All ganz schön schwitzen, um die Kühlleistung der Funktionsshirts zu aktivieren,“ schildert Projektleiter Dr. Jan Beringer von Hohenstein. Dass das Schwitzen in Schwerelosigkeit komplett anders als auf der Erde funktioniert, wurde 2014 beim Vorgängerprojekt Spacetex herausgefunden und ist eine für die Experimente günstige  Rahmenbedingung. Jan Beringer erklärt: „Der menschliche Körper gibt unter Belastung wie auf der Erde Wärme ab und versucht so, sich herunterzukühlen. Jedoch ist der Wärmeaustausch an der Körperoberfläche durch die Schwerelosigkeit verändert – der Wärmeverlust durch Konvektion ist im All nicht vorhanden. Bei körperlicher Aktivität kommt es daher schneller zu einem Hitzestau als auf der Erde. Die Folge davon ist, dass die Körperkerntemperatur schneller auf für die Gesundheit zu hohe Werte steigt. Es ist daher sehr wichtig, den Wärmeaustausch über die Verdunstungskühlung von Schweiß durch Kleidung aus entsprechenden Materialien zu optimieren.“

Für Alexander Gerst sind schweißtreibende Experimente für die Wissenschaft nichts Neues. Bereits bei der Mission „Blue Dot“ im Jahr 2014 lieferte er durch seinen Einsatz im All für das Vorgängerprojekt Spacetex wertvolle Erkenntnisse, die in die Weiterentwicklung der nun eigens für die ISS angefertigten Funktionsshirts eingeflossen sind. „Nun schlägt die  Stunde der Wahrheit – die Untersuchung der drei in ihrer Kühlleistung unterschiedlichen Shirts im Weltall. Wir sind schon sehr gespannt auf die Ergebnisse.“, freut sich Jan Beringer.

Lange müssen die  Projektpartner Hohenstein, Charité Universitätsmedizin Berlin, das Deutsche Zentrum für Luft- und Raumfahrt (DLR) und die Europäische Raumfahrt- Organisation (ESA) nicht auf neue Erkenntnisse warten: Bereits im Juni 2018 sind die Experimente im Rahmen von Spacetex2 anberaumt. Für Alexander Gerst bedeutet das, zusätzlich zu seinen ohnehin regelmäßig notwendigen Trainingseinheiten auf der ISS noch  sechs spezielle Trainings-Sessions mit den unterschiedlichen Funktionsshirts auf dem Ergometer oder dem Laufband zu absolvieren. Spezielle Sensoren des parallel dazu durchgeführten Experiments  „MetabolicSpace“ des Instituts für Luft und Raumfahrttechnik der TU Dresden, ein am Körper tragbares Analysesystem für Körper- und Stoffwechselfunktionen, liefern dabei Daten über Atemfluss, Herzfrequenz und Sauerstoffsättigung. Auf diese Weise kann die Auswirkung der verschiedenen Funktionsshirts auf die Körpertemperatur, den Tragekomfort und die Leistungsfähigkeit im Einzelnen untersucht werden. Die Ergebnisse stehen den Wissenschaftlern schon kurze Zeit später per Daten-Downlink zur Erde zur Verfügung und können in die weitere Forschungsarbeit einfließen.

Quelle:

Hohenstein

14.03.2018

JEC WORLD 2018 in Paris Treffpunkt für die gesamte Verbundwerkstoffindustrie

Nach drei Tagen dynamischen Networkings und Know-how-Austausches schloss die JEC World 2018 ihre Tore am 8. März mit einem neuen Besucherrekord.

Mit dieser Messe konnte JEC-Gruppe, Spitzenreiter im Bereich der Förderung und Entwicklung der Verbundwerkstoffindustrie, erneut ihre führende Position unter Beweis stellen. So begrüßte die JEC WORLD 2018 mehr als 1.300 Aussteller aus allen Kontinenten und zählte 42.445 Fachbesucher aus 115 Ländern.

„Dass die JEC-Gruppe in der Lage ist, die gesamte Verbundwerkstoffindustrie drei Tage lang unter einem Dach zu versammeln, hat sicherlich damit zu tun, dass wir immer wieder neue Vorreiterprogramme im Dienste der Composite-Industrie auf den Weg bringen“, erklärt Frédérique MUTEL, Präsidentin und CEO der JEC-Gruppe.

Nach drei Tagen dynamischen Networkings und Know-how-Austausches schloss die JEC World 2018 ihre Tore am 8. März mit einem neuen Besucherrekord.

Mit dieser Messe konnte JEC-Gruppe, Spitzenreiter im Bereich der Förderung und Entwicklung der Verbundwerkstoffindustrie, erneut ihre führende Position unter Beweis stellen. So begrüßte die JEC WORLD 2018 mehr als 1.300 Aussteller aus allen Kontinenten und zählte 42.445 Fachbesucher aus 115 Ländern.

„Dass die JEC-Gruppe in der Lage ist, die gesamte Verbundwerkstoffindustrie drei Tage lang unter einem Dach zu versammeln, hat sicherlich damit zu tun, dass wir immer wieder neue Vorreiterprogramme im Dienste der Composite-Industrie auf den Weg bringen“, erklärt Frédérique MUTEL, Präsidentin und CEO der JEC-Gruppe.
„In diesem Jahr haben wir beispielsweise neue Programme wie die „Composite Challenge“ eingeführt, die 10 Doktoranden die Möglichkeit bot, ihre Doktorarbeit den Teilnehmern aus der Industrie in großen Zügen zu präsentieren. So wird gleichzeitig die Kontaktaufnahme zwischen Studierenden und der Industrie gefördert. In diesem Sinne haben wir auch unser „Startup Booster“-Programm und die Innovation Awards noch weiter ausgebaut, um die Beziehungen zwischen jungen oder innovativen Unternehmen und Investoren oder etablierten Unternehmen zu intensivieren. Darüber hinaus haben wir neben den Planeten Luft- und Raumfahrt, Automobil und Bauwesen einen neuen Planeten namens „Make it Real” eingeführt. Hier wurden ganz erstaunliche futuristische Produkte vorgestellt, wie zum Beispiel das Aeromobil, ein fliegendes Auto, das in naher Zukunft den Stadtverkehr revolutionieren könnte“, fügt sie hinzu. „Zudem haben wir unser neues Buch zum Thema Naturfasern herausgebracht: „Flax und Hemp“ (Flachs und Hanf). Wir haben intensiv zu den Themen Composites unter ökologischen Gesichtspunkten und Recycling kommuniziert.“

Die Messe wurde darüber hinaus zur ersten Plattform für die Förderung der neuen Initiative „French Fab“, ein Programm der französischen Regierung, mit dem die französische Industrie und Produktion international gefördert werden sollen. Auch begrüßte die JEC World die französische Staatssekretärin im Wirtschafts- und Finanzministerium, Delphine GÉNY-STEPHANN; ein Besuch, der die zunehmende Bedeutung der Verbundwerkstoffe in der Industrie deutlich zum Ausdruck bringt.

Beeindruckende Vorträge zur Förderung des Composite-Durchbruchs
Dirk AHLBORN, CEO von Hyperloop, eröffnete die Startup-Booster-Zeremonie und hob den Einfallsreichtum in der Industrie hervor. Dayton HORVATH, Branchenexperte und Consultant im Bereich Additive Fertigung, stellte seine Vision davon vor, wie künstliche Intelligenz bei Verbundwerkstoffmate-rialien und herstellung zum Einsatz kommen könnten. Yves ROSSY, auch bekannt als Jetman, der die neuesten Flugzeug-Tragflächen aus Kohlefaser einsetzt, eröffnete schließlich die Verleihung der JEC Innovation Awards. Er ermutigte das Publikum an, die eigenen Träume nicht aufzugeben, und erklärte, wie Verbundwerkstoffe ihm die Verwirklichung seiner Träume ermöglichten.

Die Gewinner der Publikumswahl
Ein Novum auf der diesjährigen Ausgabe der Messe war die Publikumswahl, bei der die Teilnehmer ihren Favoriten unter den beiden JEC-Programmen zur Innovationsförderung wählen konnten. „Mit der Einführung des Publikumspreises wollten wir die gesamte Branche ansprechen und mit einbeziehen, um deren Innovationen eine Plattform zu verschaffen. Unsere Vision bei JEC ist es, die große Bandbreite an Möglichkeiten, die Verbundwerkstoffe bietet, einem breiteren Publikum gegenüber deutlich und verständlich zu machen“, so Anne-Manuèle HÉBERT, Direktorin der JEC World und Europäischen Veranstaltungen der JEC-Gruppe.

Publikumspreis für Startup Booster:
Inca-Fiber (Deutschland) mit 62,36% von 2.221 Stimmen

Publikumspreis für die JEC Innovation Awards:
Infusionstechnik für einen Tragflügel von AeroComposit JSC (Russland) mit 20,96 % von 4.126 Stimmen

Weitere Informationen:
JEC World 2018 JEC-Gruppe
Quelle:

AGENCE APOCOPE

Mittelstand 4.0-Kompetenzzentrum eStandards Mittelstand 4.0-Kompetenzzentrum eStandards
Mittelstand 4.0-Kompetenzzentrum eStandards
12.09.2017

Offene Werkstatt für den Mittelstand in Köln offiziell eröffnet

• Mit eStandards in die digitale Transformation starten
• Offene Werkstätten zeigen, wie eStandards auch im Mittelstand für bessere Wettbewerbsfähigkeit sorgen
• 40 Umsetzungsprojekte mit mittelständischen Unternehmen geplant


Köln, 12. September 2017. Für den digitalen Wandel sind Normen und Standards unverzichtbar – nicht nur in Großkonzernen, sondern auch im Mittelstand. Er ist das Herz der deutschen Wirtschaft und muss mit der Digitalisierung und der Nutzung neuer Technologien die Wettbewerbsfähigkeit Deutschlands vorantreiben. Das neue „Mittelstand-4.0 Kompetenzzentrum eStandards“ unterstützt kleine und mittlere Unternehmen nicht nur im GS1 Germany Knowledge Center, dass die Offene Werkstatt Köln beheimatet, sondern auch an den Standorten Hagen und Leipzig bei der digitalen Transformation.

• Mit eStandards in die digitale Transformation starten
• Offene Werkstätten zeigen, wie eStandards auch im Mittelstand für bessere Wettbewerbsfähigkeit sorgen
• 40 Umsetzungsprojekte mit mittelständischen Unternehmen geplant


Köln, 12. September 2017. Für den digitalen Wandel sind Normen und Standards unverzichtbar – nicht nur in Großkonzernen, sondern auch im Mittelstand. Er ist das Herz der deutschen Wirtschaft und muss mit der Digitalisierung und der Nutzung neuer Technologien die Wettbewerbsfähigkeit Deutschlands vorantreiben. Das neue „Mittelstand-4.0 Kompetenzzentrum eStandards“ unterstützt kleine und mittlere Unternehmen nicht nur im GS1 Germany Knowledge Center, dass die Offene Werkstatt Köln beheimatet, sondern auch an den Standorten Hagen und Leipzig bei der digitalen Transformation.

Heute erfolgte der offizielle Projekt-Kickoff gemeinsam mit Unternehmen, Vertretern des Fördergebers BMWi (Bundesministerium für Wirtschaft und Energie) und des Projektträgers DLR (Deutschen Zentrums für Luft- und Raumfahrt) sowie Vertretern aus Kammern und Verbänden. Erörtert wurde in diesem Rahmen auch, wie eStandards zu einer nachhaltigen Digitalisierung im Mittelstand beitragen.

„ Mit dem Zentrum für eStandards eröffnen wir das erste thematische Mittelstand 4.0-Kompetenzzentrum. Standards und Normen sind elementar für eine erfolgreiche Digitalisierung, denn sie definieren eine gemeinsame Sprache. Vernetzte Produktion, IT-Sicherheit, einheitliche Nutzererfahrung bis hin zum Datenaustausch brauchen klare Regeln und bewährte allgemein gültige Lösungen über Branchen hinweg“, sagt Dirk Wiese MdB und Parlamentarischer Staatssekretär bei der Bundesministerin für Wirtschaft und Energie. „Das Mittelstand 4.0-Kompetenzzentrum eStandards steht allen Unternehmen zur Verfügung, die sich vor Ort in Köln, Hagen oder Leipzig informieren und einbringen möchten, um die Digitalisierung mitzugestalten“, so der Parlamentarische Staatssekretär Dirk Wiese weiter.

Geschäftsstellenleiterin Bettina Bartz ergänzt: „Während der dreijährigen Projektlaufzeit wollen wir den Einsatz der verschiedensten Standards in zahlreichen Umsetzungsprojekten demonstrieren. Hierfür laden wir kleine und mittlere Unternehmen ein, sich bei uns zu melden, um in die Digitalisierung zu starten, Prozesse zu optimieren oder sich unverbindlich zu informieren.“

Grundsätzlich sollen herstellerunabhängige und offene Standardisierungslösungen für die Digitalisierung demonstriert und erprobt werden. Kompetente Ansprechpartner aus Forschung, Normung und Standardisierung sowie aus gemeinnützigen Instituten vermitteln Grundlagen, Praxiserfahrungen und aktuelles Wissen. Im Fokus steht die inner- und überbetriebliche Standardisierung einschließlich Usability, Nachhaltigkeit und neuer Geschäftsmodelle. Mit umfangreichen Transferhilfen, Vernetzungs- und Dialogformaten, Qualifizierungsangeboten sowie spezifischen webbasierten Tools entstehen zahlreiche Angebote, die im Rahmen regionaler und bundesweiter Öffentlichkeitsarbeit kommuniziert werden.

Getragen wird das Mittelstand 4.0-Kompetenzzentrum eStandards von einem Zusammenschluss der Partner der HAGENagentur Ges. für Wirtschaftsförderung, Stadtentwicklung, Tourismus mbH, des Collaborating Centre on Sustainable Consumption and Production gGmbH, des Fraunhofer-Instituts für Angewandte Informationstechnik (FIT) Sankt Augustin und des Fraunhofer-Zentrums für Internationales Management und Wissensökonomie IMW unter der Konsortialführerschaft von GS1 Germany.

Das Mittelstand 4.0-Kompetenzzentrum eStandards gehört zu Mittelstand-Digital. Mit Mittelstand-Digital unterstützt das Bundesministerium für Wirtschaft und Energie die Digitalisierung in kleinen und mittleren Unternehmen und dem Handwerk.

Quelle:

Mittelstand 4.0-Kompetenzzentrum eStandards

ITM TU Dresden Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden
ITM TU Dresden
31.05.2017

Leichtbau leicht gemacht – Neuartiges Verfahren ermöglicht die Herstellung superstabiler Metallzellen auf Webmaschinen

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“


Die noch junge Werkstoffklasse der sogenannten zellularen metallischen Materialien besitzt außerordentliches Potenzial – wobei bislang das Problem bestand, diese Zellen kostengünstig und in industriellem Maßstab zu produzieren. Sennewald gelang es im Rahmen ihrer Doktorarbeit an der Technischen Universität Dresden, ein neuartiges Verfahren zu entwickeln und diese komplexen 3D-Strukturen auf handelsüblichen Webmaschinen herzustellen. „Dank des neuen Verfahrens konnte ich Metallfäden und -drähte statt in den üblichen 2D-Strukturen auch zu 3D-Strukturen verbinden, und zwar in ganz unterschiedlichen Größen und Formen“, erläutert Sennewald. „Außerdem gelang es mir – das war ein zweiter großer Schritt nach vorn –, andere Leichtbaustoffe wie Carbon-Fasern mit zu verweben, was ganz neue Einsatzmöglichkeiten eröffnet.“ Die hybride Verbindung von Metallen und Kunststoffen bietet ein weiteres breites Spektrum ableitbarer Anwendungen. „Wir denken an Crash-Elemente, die eine extrem hohe Steifigkeit besitzen und zudem hohe Temperaturen aushalten. Wir könnten auf diese Weise beispielsweise die Betonstrukturen von Gebäuden verstärken, um sie widerstandsfähiger gegen Erdbeben zu machen. Oder sie besser gegen Explosionen schützen. Bei bestehenden Gebäuden könnte hier ein entsprechender Materialauftrag infrage kommen, bei Neubauten könnten die von uns entwickelten zellularen Webstrukturen gleich mit in den Bau einbezogen werden.“

Quelle:

 Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden