Aus der Branche

Zurücksetzen
9 Ergebnisse
Schaffung einer neuen Werkstoffklasse „Interaktive Faser-Elastomer-Verbunde“ © ITM/TUD
08.05.2018

Bewilligung des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden.

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 11 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.
Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für sogenannte autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. So werden die Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos. Zu diesem Themenbereich wird an der TU Dresden und insbesondere auch am ITM seit Jahren intensiv geforscht.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Der innovative Ansatz besteht darin, die heute nicht verfügbare Werkstoffklasse der interaktiven Faser-Elastomer-Verbunde (I-FEV) mit strukturintegrierter Aktorik und Sensorik zu schaffen und wissenschaftlich zu durchdringen. Die Entwicklung von I-FEV erlaubt beispielsweise die geometrischen Verformungsfreiheitsgrade von mechanischen Bauteilen reversibel und berührungslos einzustellen und so sehr schnell und präzise auf variable Anforderungen der Umwelt zu reagieren.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Weitere Informationen:
TU Dresden Graduiertenkolleg ITM
Quelle:

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

Bundespräsident Frank-Walter Steinmeier und Ehefrau Elke Büdenbender überzeugen sich vom innovativen Carbonbeton bei ihrem Besuch an der TU Dresden © Sven Hofmann
Bundespräsident Steinmeier zu Gast an der TU Dresden
17.11.2017

Bundespräsident Steinmeier zu Gast an der TU Dresden

Dresden - Bundespräsident Frank-Walter Steinmeier besuchte die Preisträger des Zukunftspreises 2016 und den Standort des Carbonbeton in Dresden

Im Rahmen seines zweitägigen Antrittsbesuchs in Sachsen war Bundespräsident Frank-Walter Steinmeier am 14. November 2017 an der TU Dresden zu Gast. Gemeinsam mit seiner Frau Elke Büdenbender informierte er sich vor Ort über den prämierten Zukunftswerkstoff Carbonbeton.

Dresden - Bundespräsident Frank-Walter Steinmeier besuchte die Preisträger des Zukunftspreises 2016 und den Standort des Carbonbeton in Dresden

Im Rahmen seines zweitägigen Antrittsbesuchs in Sachsen war Bundespräsident Frank-Walter Steinmeier am 14. November 2017 an der TU Dresden zu Gast. Gemeinsam mit seiner Frau Elke Büdenbender informierte er sich vor Ort über den prämierten Zukunftswerkstoff Carbonbeton.

In einer anschaulichen Präsentation informierten die Preisträger des Zukunftspreises 2016 – der Preis des Bundespräsidenten für Technik und Innovation, Professor Chokri Cherif, Direktor des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden, der emeritierte Professor Peter Offermann, Vorstandsvorsitzender des Verbandes Tudalit und Beirat im Deutschen Zentrum Textilbeton und Professor Manfred Curbach, Direktor des Institutes für Massivbau der TU Dresden, über das zukunftsträchtige Material Carbonbeton und das dazugehörige Großforschungsprojekt C³ – Carbon Concrete Composite.

Dabei überzeugte sich das Bundespräsidentenpaar in vertiefenden Gesprächen mit Dresdner Wissenschaftlern von den ökologischen, ökonomischen und gesellschaftlichen Vorteilen des innovativen Verbundwerkstoffes. Mithilfe der zahlreichen Demonstratoren, die das Material von der Entstehung bis zum fertigen Produkt darstellen, konnten die besondere Leichtigkeit und Formbarkeit von Carbonbeton eindrucksvoll veranschaulicht werden.

Die Weichen für den Erfolg des Carbonbetons wurden bereits 1993 von Professor Offermann an der TU Dresden als Erfinder des Textilbetons gestellt. Aus dieser Vision entstand der erste Sonderforschungsbereich, welcher maßgeblich von der Innovation des ITM geprägt war. Gemeinsam haben die drei prämierten Carbonbetonforscher Cherif, Offermann und Curbach die Forschungsaktivitäten zum Einsatz von Carbon als textile Bewehrung im Beton in zahlreichen weiteren interdisziplinären Forschungsprojekten stetig vorangetrieben. Schon seit 2006 werden deutschland- sowie weltweit alte Bauwerke, oder auch riesige Silos mit Carbonbeton verstärkt.

Der Baustoff Carbonbeton stellt also nicht nur eine Innovation für den Standort Dresden dar, sondern wird weltweit immer wichtiger. Darüber hinaus fördert seit 2014 das Bundeministerium für Bildung und Forschung den gegründeten Verein C³ – Carbon Concrete Composite e. V. mit einem Gesamtprojektvolumen von ca. 80 Millionen Euro. Der C³ e. V. ist ein interdisziplinäres Netzwerk aus mehr als 150 Partnern aus den Bereichen Wirtschaft, Wissenschaft und Verbänden, die gemeinsam die Einführung des Materials auf dem Markt vorantreiben. Wissenschaftler des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden bearbeiten mehrere Teilvorhaben federführend und sind in weiteren Teilvorhaben maßgeblich als Projektpartner integriert.

Quelle:

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden

Externer Doktorand des ITM mit dem handling award 2017 ausgezeichnet © Daimler AG
Betriebsmittelmodulbaukasten FibreTEC3D
12.10.2017

Externer Doktorand des ITM mit dem handling award 2017 ausgezeichnet

M. Sc. Niklas Minsch von der Daimler AG und externer Doktorand am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde für seine Entwicklungen zum Thema "Ultra-Leichtbau-Betriebsmittel aus generischen Faserverbundstrukturen - FibreTEC3D" am 10. Oktober 2017 mit dem handling award 2017 in der Kategorie "Handhabung und Montage" (1. Preisträger) im Rahmen der Messe "Motek" in Stuttgart ausgezeichnet.

M. Sc. Niklas Minsch von der Daimler AG und externer Doktorand am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde für seine Entwicklungen zum Thema "Ultra-Leichtbau-Betriebsmittel aus generischen Faserverbundstrukturen - FibreTEC3D" am 10. Oktober 2017 mit dem handling award 2017 in der Kategorie "Handhabung und Montage" (1. Preisträger) im Rahmen der Messe "Motek" in Stuttgart ausgezeichnet.

Mit FibreTEC3D stellt Herr Niklas Minsch einen Greifer-/Betriebsmittelmodulbaukasten vor und errang in der Kategorie „Handhabung und Montage“ den ersten Platz. FibreTEC3D ist ein komplett neu entwickeltes Herstellungsverfahren für Kohlefaserkunststoffverbunde.

Essenziell dafür ist die dreidimensionale kernlose Wickeltechnik, welche in der Tec-Fabrik von Daimler in Kooperation mit dem ITM der TU Dresden im Rahmen der Promotion von Herrn Minsch entwickelt wurde. Dieses generative Fertigungsverfahren ermöglicht eine werkzeugfreie, flexible Ablage von Kohlefasersträngen im Raum, wodurch ein maximaler Leichtbaugrad bei minimalen Kosten und höchster Flexibilität erreicht werden kann.

Mit dem handling award wurden herausragende Produkte und Systemlösungen im Bereich der Fertigungs- und Montageautomatisierung sowie Neuerungen in den Fachgebieten Handhabungstechnik, Robotik, Materialfluss- und Fördertechnik prämiert. Während der Feierstunde übergab Prof. Dr.-Ing. Jörg Franke vom Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik der Friedrich-Alexander-Universität Erlangen-Nürnberg sowie Vorstandsmitglied der Wissenschaftlichen Gesellschaft für Montage, Handhabung und Industrierobotik (MHI) als Laudator die Preise gemeinsam mit Herrn René Khestel, Geschäftsführer der WEKA BUSINESS MEDIEN GmbH, Herausgeber der Fachzeitschrift handling.

Quelle:

Technische Universität Dresden
 

Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
Logo TextileMission
18.09.2017

Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung

Der Plastikmüll in den Weltmeeren ist ein stetig wachsendes Problem. Das Forschungsinstitut für Textil und Bekleidung (FTB) der Hochschule Niederrhein ist jetzt an einem Verbundprojekt beteiligt, das Lösungsansätze im Bereich der Sport- und Outdoortextilien verfolgt. Konkret geht es um die Verschmutzung durch winzige textile Fasern, die sich beim Waschen lösen und mit dem Abwasser letztlich in die Weltmeere gelangen können. Sie sind mit dem bloßen Auge nicht erkennbar, schädigen marine Lebewesen und reichern sich in der Nahrungskette an.

Der Plastikmüll in den Weltmeeren ist ein stetig wachsendes Problem. Das Forschungsinstitut für Textil und Bekleidung (FTB) der Hochschule Niederrhein ist jetzt an einem Verbundprojekt beteiligt, das Lösungsansätze im Bereich der Sport- und Outdoortextilien verfolgt. Konkret geht es um die Verschmutzung durch winzige textile Fasern, die sich beim Waschen lösen und mit dem Abwasser letztlich in die Weltmeere gelangen können. Sie sind mit dem bloßen Auge nicht erkennbar, schädigen marine Lebewesen und reichern sich in der Nahrungskette an.

Am 1. September 2017 fiel der Startschuss für das Verbundprojekt „TextileMission“. Das Projekt läuft über einen Zeitraum von drei Jahren und wird vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Förderschwerpunktes „Plastik in der Umwelt – Quellen, Senken, Lösungsansätze“ mit rund 1,7 Millionen Euro gefördert. Als Projektpartner bringen neben der Hochschule Niederrhein folgende sieben Organisationen aus der Sportartikel-Industrie, der Waschmaschinen- und der Waschmittelbranche, der Forschung und dem Umweltschutz ihr jeweiliges Know-how ein: die adidas AG, der Bundesverband der Deutschen Sportartikel-Industrie e.V. (BSI) als Projektkoordinator, die Henkel AG & Co. KG aA, die Miele & Cie. KG, Polartec LLC, die TU Dresden, die VAUDE Sport GmbH & Co. KG und der WWF Deutschland.

An der Hochschule Niederrhein leiten die Professorinnen Dr. Maike Rabe und Ellen Bendt das Teilvorhaben „Entwicklung textiler Strukturen für den Sport- und Outdoor-Bereich mit reduzierter Partikelemission in der Textilwäsche und auf der Basis biologisch abbaubarer Polymere“.

Drei Jahre lang wird das Team am Forschungsinstitut für Textil und Bekleidung daran forschen, Materialien für Textilien zu entwickeln, die möglichst wenig Mikroplastik abgeben. Die Ergebnisse werden gemeinsam mit verschiedenen textilen Forschungspartnern, der chemischen Industrie und der Waschmaschinenindustrie erarbeitet, um Produkte zu erhalten, die die Gebrauchsfunktionen für den anspruchsvollen Sport- und Outdoorsektor erfüllen können. Darüber hinaus werden sich Experten der Abwassertechnik an der TU Dresden unter anderem mit dem Abbauverhalten der Kleinstfasern durch Mikroorganismen befassen. „Wir versuchen, neue Konstruktionen für Textilien zu entwickeln, bei denen Material verwendet wird, das biologisch abbaubar ist, dennoch hohe technische Funktionalität aufweist und damit erst für die Sport- und Outdoormode geeignet ist“, verdeutlichen Prof. Dr. Maike Rabe, Leiterin des Forschungsinstituts für Textil und Bekleidung, und Projektleiterin Prof. Ellen Bendt.

Auf dem Campus Mönchengladbach wird dafür ein Wasch- und Filterlabor aufgebaut, um das Verhalten der ebenfalls an der Hochschule neu entwickelten Textilien beim Waschen zu beobachten. Geben die Stoffe beim Waschvorgang Partikel ab und hinterlassen Rückstände? Wie kann man synthetische Stoffe so entwickeln, dass sie natürlich abbaubar sind? Fragen wie diese werden in den nächsten drei Jahren in
Mönchengladbach erforscht. Um dafür zu sorgen, dass in die Betrachtung alternativer Materialien über die Mikroplastik-Problematik hinausgehende Nachhaltigkeitsfaktoren einfließen, wird es einen engen Austausch mit dem Projektpartner WWF geben. Bis September 2020 fließen 500.000 Euro Fördergelder an das Institut, das damit zweieinhalb wissenschaftliche Mitarbeiter beschäftigt. Ziel ist es, einen Beitrag zu einer saubereren Umwelt zu leisten. Wobei Rabe klarstellt: „Viel schlimmer bei der Mikroplastik-Problematik als die Textilindustrie sind die Verpackungen, der Abrieb von Autoreifen, der ins Abwasser gespült wird, sowie der Müll, der bei der Isolierung von Häusern anfällt.“

Weitere Informationen:
Outdoor Umwelt
Quelle:

Hochschule Niederrhein, University of Applied Sciences

 

Professor Cherif Technische Universität Dresden
Professor Cherif
14.08.2017

Professor Chokri Cherif mit dem Verdienstkreuz ausgezeichnet

Unter der Schirmherrschaft des Staatspräsidenten der Tunesischen Republik, Herrn Beji Caid Essebsi, wurde der Tag der Wissenschaft am 21. Juli 2017 in Karthago (Tunis) gefeiert. Zu diesem Anlass wurde der renommierte Dresdner Wissenschaftler Herr Professor Dr.-Ing. habil. Dipl.-Wirt. Ing. Chokri Cherif mit dem Verdienstkreuz der Tunesischen Republik vom Staatspräsidenten Tunesiens für seine besonderen Verdienste und Erfolge im Ausland ausgezeichnet. Dieser Preis wurde erstmalig überreicht – für im Ausland lebende Tunesier.

Unter der Schirmherrschaft des Staatspräsidenten der Tunesischen Republik, Herrn Beji Caid Essebsi, wurde der Tag der Wissenschaft am 21. Juli 2017 in Karthago (Tunis) gefeiert. Zu diesem Anlass wurde der renommierte Dresdner Wissenschaftler Herr Professor Dr.-Ing. habil. Dipl.-Wirt. Ing. Chokri Cherif mit dem Verdienstkreuz der Tunesischen Republik vom Staatspräsidenten Tunesiens für seine besonderen Verdienste und Erfolge im Ausland ausgezeichnet. Dieser Preis wurde erstmalig überreicht – für im Ausland lebende Tunesier.


Professor Cherif kam 1985 mit einem Regierungsstipendium für ein Maschinenbaustudium an die RWTH Aachen. 1993 wurde Herr Cherif als bester tunesischer Absolvent im gesamten Ausland vom damaligen Staatspräsidenten Zine El-Abidine Ben Ali ausgezeichnet und konnte sich gegen exzellente Mitbewerber u. a. aus den USA, Kanada und Frankreich durchsetzen. 1995 schloss Chokri Cherif zusätzlich ein Wirtschaftsstudium ab, promovierte 1998 und habilitierte 2001. In der Zeit von 2001 bis 2005 war Herr Cherif bei einem Schweizer Konzern im Standort Ingolstadt in leitenden Funktionen tätig. 2005 folgte Herr Professor Cherif dem Ruf an die Technische Universität Dresden und übernahm die Professur Textiltechnik sowie die Leitung des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM). Innerhalb der letzten 12 Jahre ist es Professor Cherif gelungen, das ITM zu einem besonders erfolgreichen Institut mit aktuell 240 Mitarbeitern zu entwickeln.Zu seinem Verantwortungsbereich gehören u. a. über 1500 Publikationen, 230 Patente sowie 72 nationale und internationale Auszeichnungen. Ein besonderes Highlight war der Erhalt des Zukunftspreises des Bundespräsidenten für Innovation und Technik am 30. November 2016 in Berlin. Professor Cherif ist u. a. Fachkollegiat bei der DFG, Vorsitzender der AiF-Gutachergruppe 5, Mitglied des Wissenschaftlichen Rates der DFG etc.. Herr Professor Cherif ist weltweit in der Wissenschaft und Wirtschaft bestens vernetzt und in zahlreichen Gremien aktiv.

Weitere Informationen:
TU Dresden Professor Cherif Verdienstkreuz
Quelle:

Technische Universität Dresden

ESF ESF
ESF
28.06.2017

Spitzenforschung in Sachsen: Symbiose der Hochtechnologiefelder „Leichtbau mit Carbon“ und „Energiespeicherung“

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.
Wissenschaftlern der TU Dresden (TUD) ist es gelungen, eine interdisziplinäre Nachwuchsforschergruppe „e -Carbon“ (ESF-SAB 100310387), bestehend aus Chemikern, Textilern und Kunststofftechnikern ins Leben zu rufen, die in den nächsten 3 Jahren, beginnend ab 1. Juli 2017, maßgeschneiderte und multifunktionale Kohlenstofffasern für die Speicherung hoher Energiedichten gemeinsam entwickeln wird. Dieses zukunftsträchtige Projekt wurde von der TU Dresden und der Sächsischen Aufbaubank SAB-ESF aus mehr als 40 Anträgen als zukunftsweisendes Projekt ausgewählt.
Die komplexe Themenstellung wird durch Nachwuchswissenschaftler der TUD vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), Institut für Leichtbau und Kunststofftechnik (ILK) sowie von der Professur für Anorganische Chemie I (AC1) bearbeitet. Durch die interdisziplinäre Ausrichtung des Konsortiums werden die besten Voraussetzungen mit weltweitem Alleinstellungsmerkmal für eine intensive wissenschaftliche und industrielle Vernetzung der Nachwuchsforscher in neuen Forschungsgebieten mit hoher praktischer Relevanz auf regionaler, nationaler und internationaler Ebene geschaffen. Das Hauptaugenmerk liegt dabei auf der Qualifizierung und Weiterbildung von Fachkräften für den sächsischen Arbeitsmarkt sowie auf der Ausgründung von Start-Ups und der Übernahme unternehmerischer Verantwortung in der Hochtechnologiebranche.
Professor Chokri Cherif, Koordinator der Nachwuchsforschergruppe und Direktor des ITM: „Die Arbeiten der Nachwuchsforschergruppe geben die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern. Wir werden einen neuen Maßstab in der Kohlenstofffaserentwicklung setzen und besondere Impulse weltweit ausstrahlen.“

 

Quelle:

Technische Universität Dresden

ITM TU Dresden Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden
ITM TU Dresden
31.05.2017

Leichtbau leicht gemacht – Neuartiges Verfahren ermöglicht die Herstellung superstabiler Metallzellen auf Webmaschinen

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden.

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“


Die noch junge Werkstoffklasse der sogenannten zellularen metallischen Materialien besitzt außerordentliches Potenzial – wobei bislang das Problem bestand, diese Zellen kostengünstig und in industriellem Maßstab zu produzieren. Sennewald gelang es im Rahmen ihrer Doktorarbeit an der Technischen Universität Dresden, ein neuartiges Verfahren zu entwickeln und diese komplexen 3D-Strukturen auf handelsüblichen Webmaschinen herzustellen. „Dank des neuen Verfahrens konnte ich Metallfäden und -drähte statt in den üblichen 2D-Strukturen auch zu 3D-Strukturen verbinden, und zwar in ganz unterschiedlichen Größen und Formen“, erläutert Sennewald. „Außerdem gelang es mir – das war ein zweiter großer Schritt nach vorn –, andere Leichtbaustoffe wie Carbon-Fasern mit zu verweben, was ganz neue Einsatzmöglichkeiten eröffnet.“ Die hybride Verbindung von Metallen und Kunststoffen bietet ein weiteres breites Spektrum ableitbarer Anwendungen. „Wir denken an Crash-Elemente, die eine extrem hohe Steifigkeit besitzen und zudem hohe Temperaturen aushalten. Wir könnten auf diese Weise beispielsweise die Betonstrukturen von Gebäuden verstärken, um sie widerstandsfähiger gegen Erdbeben zu machen. Oder sie besser gegen Explosionen schützen. Bei bestehenden Gebäuden könnte hier ein entsprechender Materialauftrag infrage kommen, bei Neubauten könnten die von uns entwickelten zellularen Webstrukturen gleich mit in den Bau einbezogen werden.“

Quelle:

 Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden

VDMA 2017 Technische Universität Dresden
VDMA 2017
22.05.2017

Neue Webtechnologien für die Fertigung zellularer 3D-Drahtstrukturen und für hochkomplexe 3D-Gewebe gewinnen zwei VDMA-Preise 2017

Am 11. Mai 2017 wurden wieder zwei von insgesamt fünf Förder- und Kreativitätspreisen 2017 des VDMA Fachverbandes Textilmaschinen an Nachwuchswissenschaftler des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden verliehen. Die Preise sind mit 8.000 Euro dotiert und gingen an Frau Dr.-Ing.

Am 11. Mai 2017 wurden wieder zwei von insgesamt fünf Förder- und Kreativitätspreisen 2017 des VDMA Fachverbandes Textilmaschinen an Nachwuchswissenschaftler des Institutes für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden verliehen. Die Preise sind mit 8.000 Euro dotiert und gingen an Frau Dr.-Ing. Cornelia Sennewald für ihre Dissertation zum Thema „Generative Struktur-, Technologie- und Webmaschinenentwicklung für unikale zellulare 3D Strukturen in Leichtbauweise “ und an Herrn Philipp Kempert für seine Studienarbeit „Entwicklung eines Schützenwechselsystems für Spulenschützen-Bandwebmaschinen zur Herstellung hochkomplexer 3D-Gewebe“.


Im Rahmen der prämierten Dissertation entwickelte Frau Dr.-Ing. Cornelia Sennewald eine neue Webtechnologie für die Fertigung völlig neuer zellularer 3D Drahtstrukturen. Die besondere Leistung besteht in der Entwicklung von Lösungen für die Verarbeitung von steifen Drahtmaterialien nach einem äußerst effizienten textilen Fertigungsverfahren. Die einzigartigen Strukturen zeichnen sich bei geringem Gewicht durch exzellente Werkstoffkennwerte aus. Sie bieten eine hervorragende Basis für neue Lösungen im Metallleichtbau, für crashsichere Leichtbauteile, aber auch für Hochleistungsbeton.
Herr Kempert leistete mit seiner ausgezeichneten Studienarbeit in Zusammenarbeit mit dem deutschen Maschinenbauer MAGEBA Textilmaschinen GmbH & Co KG einen wesentlichen Beitrag zur Automatisierung von Spezial-Webmaschinen für die Verarbeitung von Hochleistungsfaserstoffen, insbesondere von Carbon-Fäden. Mit diesen Spezial-Webmaschinen können komplexe 3D-Strukturen für Faserkunststoffverbunde gefertigt werden, die bisher in aufwändigen manuellen Arbeitsschritten gefertigt werden. Die vollständige Automatisierung ist eine wesentliche Grundlage für die Überführung der Forschungsergebnisse in die Industrie, wie die Automobilindustrie, der Maschinenbau und Sportgerätehersteller.

Quelle:

Technische Universität Dresden

ITM auf der Techtextil Technische Universität Dresden
ITM auf der Techtextil
05.05.2017

ITM auf der TECHTEXTIL und TEXPROCESS 2017

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.


Auf Basis einer neuen Spulenschützenbandwebtechnik mit einer integrierten Schützenwechseleinrichtung ist es gelungen, Carbongarne schädigungsarm zu verarbeiten sowie Profilbandgewebe mit über die Bauteillänge unterschiedlichem Querschnitt und vor allem in einem einzigen Fertigungsschritt gewebte komplexe rohrförmige Knotenelemente zu entwickeln. Das entwickelte Schützenwechselsystem demonstriert das ITM auf seinem Stand auf der Messe TECHTEXTIL an einem elektronisch gesteuerten Spulenschützen-Bandwebautomaten . Die Kombination der Spulenschützen-Bandwebtechnik mit der Jacquardtechnik ermöglicht eine ausgesprochen hohe Strukturvielfalt, die für die Entwicklung von gewebten rohrförmigen Knotenelementen in unterschiedlichster Geometrie genutzt wird. Die Rohrknotenelemente werden vor allem für die Eckverbinder von Leichtbaurahmen, z. B. in Fahrzeug- oder Fahrradrahmen, in Sportgeräten oder Roboterwerkzeugrahmen oder in der Architektur, benötigt. Am ITM wird in enger Zusammenarbeit mit der Firma MAGEBA Textilmaschinen GmbH & Co KG und durch die finanzielle Förderung von Forschungsprojekten durch das BMWi die gesamte Prozesskette vom CAD-Entwurf, über die strukturelle Entwicklung, die Erstellung der Maschinensteuerprogramme, die textiltechnische Umsetzung und die Bauteilkonsolidierung erfolgreich erarbeitet.


Als weiteres Highlight präsentiert das ITM der TU Dresden auf der TECHTEXTIL die vielfältigen Möglichkeiten, die die Struktur- und Prozesssimulation textiler Hochleistungswerkstoffe und textiler Fertigungsprozesse bietet und somit fester Bestandteil in allen Entwicklungen entlang der gesamten textilen Wertschöpfungskette vom Atom bis zum Produkt am ITM ist. Darüber hinaus offeriert das ITM als weiteren besonderen Blickfang ein 2,5 Meter hohes Rotorblatt aus einem Faserkunststoffverbund mit integrierten textilen Dehnungssensoren aus Carbonfasern zur In-Situ Strukturüberwachung.

Quelle:

 Technische Universität Dresden