Textination Newsline

Zurücksetzen
Foto: Pim Top for FranklinTill
29.11.2022

Heimtextil Trends 23/24: Textiles Matter

Die Heimtextil Trend Preview 23/24 präsentierte im Herbst richtungsweisende Designkonzepte und Inspirationen für die textile Einrichtungsbranche. Mit „Textiles Matter“ will die Heimtextil 2023 Maßstäbe für die zukunftsorientierte und nachhaltige textile Einrichtung von morgen setzen. Dabei steht Kreislaufwirtschaft im Mittelpunkt. Marta Giralt Dunjó von der Zukunftsforschungsagentur FranklinTill (Großbritannien) stellte die Design-Prognose 23/24 vor. Auf der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt am Main, werden die Neuheiten im Trend Space Impulse inszeniert.

Der Trend Council der Heimtextil, bestehend aus dem Studio FranklinTill (London), dem Stijlinstituut Amsterdam und der dänischen Agentur SPOTT Trends & Business, analysierte die Zukunft für den nationalen und internationalen Markt. Nachhaltigkeit und Kreislaufwirtschaft stehen dabei so stark wie nie zuvor im Fokus.

Die Heimtextil Trend Preview 23/24 präsentierte im Herbst richtungsweisende Designkonzepte und Inspirationen für die textile Einrichtungsbranche. Mit „Textiles Matter“ will die Heimtextil 2023 Maßstäbe für die zukunftsorientierte und nachhaltige textile Einrichtung von morgen setzen. Dabei steht Kreislaufwirtschaft im Mittelpunkt. Marta Giralt Dunjó von der Zukunftsforschungsagentur FranklinTill (Großbritannien) stellte die Design-Prognose 23/24 vor. Auf der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt am Main, werden die Neuheiten im Trend Space Impulse inszeniert.

Der Trend Council der Heimtextil, bestehend aus dem Studio FranklinTill (London), dem Stijlinstituut Amsterdam und der dänischen Agentur SPOTT Trends & Business, analysierte die Zukunft für den nationalen und internationalen Markt. Nachhaltigkeit und Kreislaufwirtschaft stehen dabei so stark wie nie zuvor im Fokus.

Textiles Matter: Verantwortung tragen
Textilien sind aus dem Alltag nicht mehr wegzudenken. So vielfältig die Ansprüche der Nutzer*innen sind, so vielfältige sind auch die Einsatzzwecke der Materialien und ihre Herstellung. Dies stellt die internationale Industrie vor eine große Herausforderung. Die Textilindustrie bezieht ihre Rohstoffe aus einer Vielzahl von Quellen und nutzt zahlreiche Verfahren zur Herstellung der Vielfalt ihrer Produkten. Dies bietet großes Potenzial für eine nachhaltige Weiterentwicklung der Branche. Die Heimtextil Trends zeigen Möglichkeiten auf, dieses Potenzial zu nutzen und nachhaltige Entwicklung zu fördern. Unter dem Motto „Textiles Matter“ werden Ansätze der Kreislaufwirtschaft vorgestellt, die dem Markt Impulse für eine nachhaltige Entwicklung liefern.

"In Anbetracht des ökologischen Notstands, in dem wir uns derzeit befinden, steht die Textilindustrie in der Verantwortung, ihre Prozesse zu überprüfen und zum Besseren zu verändern. Aus diesem Grund verfolgen wir bei dieser Ausgabe der Heimtextil Trends einen materialorientierten Ansatz und konzentrieren uns auf die Beschaffung, das Design und die Nachhaltigkeit von Materialien. Textiles Matter zeigt das Potenzial der Kreislaufwirtschaft auf und würdigt Designinitiativen, die schön, relevant und vor allem nachhaltig sind", erklärt Marta Giralt Dunjó von FranklinTill.

Wandel durch Kreislaufwirtschaft
Die nachhaltigen und zukunftsweisenden Trends werden im Trend Space der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt, systemisch inszeniert und bilden das Herzstück der Fachmesse. Für Besucher*innen aus aller Welt bieten die Trends eine Orientierung und ermöglichen den Blick in die Zukunft der Wohn- und Objekttextilien. Auf der Messe geht es um Ideen und Lösungsansätze der textilen Kreislaufwirtschaft: Wie werden Textilien nachhaltig produziert? Welche Möglichkeiten der Wiederverwertung gibt es? Wie sieht optimales Recycling textiler Produkte aus? Im Rahmen der Kreislaufwirtschaft werden Materialien immer wieder einem Nutzungskreislauf hinzugefügt. Somit verringert sich auf der einen Seite der Bedarf an neuen Rohstoffen und auf der anderen Seite die Produktion von Abfall. Anorganische Materialien wie Nylon, Polyester, Kunststoffe oder Metalle können im technischen Kreislauf ohne Qualitätsverlust recycelt und wiederverwendet werden. Organische Materialien wie Leinen oder Bast werden im biologischen Kreislauf wieder in die Natur zurückgeführt. Die vier Trend-Themen „Make and Remake“, „Continuous“, „From Earth“ und „Nature Engineered“ leiten sich daraus ab.

Make and Remake
Gebrauchte Materialien, Altbestände oder Stoffreste erhalten ein neues Leben. Dabei rückt die Ästhetik des Reparierens in den Fokus und wird als gezieltes Designelement des recycelten Produkts eingesetzt. Mit hellen und fröhlichen Farben und Techniken wie Überdrucken, Überfärben, Bricolage, Collage oder Patchwork entstehen neue und kreative Produkte. Überlagerte Farbmuster und Grafiken führen zu gewagten und maximalistischen, zugleich bewussten Designs.

Continuous
Das Trend-Thema Continuous beschreibt geschlossene Kreisläufe, in denen Materialien immer wieder zu neuen, abfallfreien Produkten recycelt werden. Vermeintliche Abfallstoffe werden getrennt und zu neuen Fasern, Verbundwerkstoffen und Textilien wiederaufbereitet. Synthetische sowie zellulosehaltige Garne werden somit abfallfrei produziert. Dank technisch fortgeschrittener Rückgewinnungsverfahren behalten die Materialien ihre ursprüngliche Qualität und Ästhetik. Zweckmäßigkeit, Minimalismus und Langlebigkeit bestimmen das Design der Continuous Produkte.

From Earth
Hier stehen die Natürlichkeit und der Einklang mit der Natur der organischen Materialien im Mittelpunkt. Natürliche Färbungen vermitteln Wärme und Weichheit. Unvollkommene Texturen, Abnutzungen und Unregelmäßigkeiten präsentieren eine ökologische und erdverbundene Ästhetik. Erdige und botanische Farbtöne, natürliche Variationen und haptischer Reichtum dominieren den Bereich From Earth. Unbearbeitete und rohe Oberflächen sowie ungebleichte Textilien, natürliche Farbstoffe betonen die Materialien in ihrem ursprünglichen Zustand.

Nature Engineered
Natürlichkeit wird neu interpretiert. Nature Engineered wertet organische Materialien wie Bast, Hanf, Leinen und Nesseln mit mechanischen Mitteln auf und perfektioniert diese. Modernste Techniken bereiten natürliche Textilien zu anspruchsvollen und intelligenten Produkten auf. Klare Linien und Formen, kombiniert mit weichen Beige- und Brauntönen kennzeichnen dieses Thema.

Weitere Informationen:
Heimtextil Trends FranklinTill
Quelle:

Heimtextil, Messe Frankfurt

Foto: Bcomp
22.11.2022

Made in Switzerland: Ist Flachs das neue Carbon?

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

„Innovationen sind der Schlüssel zum Erfolg unserer Transformation hin zu Elektromobilität, Digitalisierung und Nachhaltigkeit. Mit unserer Preisverleihung würdigen wir Innovation und partnerschaftliche Zusammenarbeit mit unseren Lieferanten - gerade in herausfordernden Zeiten“, sagte Joachim Post, Mitglied des Vorstands der BMW AG, verantwortlich für Einkauf und Lieferantennetzwerk, bei der Preisverleihung in der BMW Welt in München.

BMW begann 2019 erstmals mit den Materialien von Bcomp zu arbeiten, als sie Hochleistungs-Naturfaserverbundwerkstoffe im BMW iFE.20 Formel-E-Auto einsetzten. Aus dem mit Flachsfasern verstärkten Kühlschacht entwickelte sich die Zusammenarbeit, und bald darauf wurden die proprietären ampliTex™- und powerRibs™-Naturfaserlösungen erfolgreich als Ersatz für ausgewählte Kohlefaserkomponenten in DTM-Tourenwagen von BMW M Motorsport eingesetzt. Solche Entwicklungen, die auch in andere Fahrzeugprogramme einfließen, unterstreichen die wichtige Rolle, die BMW M Motorsport als Technologielabor für die gesamte BMW Group spielt. Die jüngste Zusammenarbeit mit Bcomp zur Erhöhung des Anteils nachwachsender Rohstoffe beim Nachfolger des BMW M4 GT4 setzt dies fort.

Mit der Markteinführung des neuen BMW M4 GT4 wird er das Serien-GT-Fahrzeug mit dem höchsten Anteil an Naturfaser-Komponenten sein. Die Flachsfaserlösungen ampliTex™ und powerRibs™ von Bcomp finden sich im gesamten Innenraum auf dem Armaturenbrett und der Mittelkonsole sowie auf Karosserieteilen wie Motorhaube, Frontsplitter, Türen, Kofferraum und Heckflügel. Abgesehen vom Dach gibt es fast keine Bauteile aus kohlenstofffaserverstärktem Kunststoff (CFK), die nicht durch die nachwachsenden Hochleistungsflachsmaterialien ersetzt wurden. "Produktnachhaltigkeit gewinnt auch im Motorsport zunehmend an Bedeutung", sagt Franciscus van Meel, Vorsitzender der Geschäftsführung der BMW M GmbH.

Bcomp ist ein führender Anbieter von Lösungen für Naturfaser-Verstärkungen in Hochleistungsanwendungen vom Rennsport bis zur Raumfahrt.

Das Unternehmen begann 2011 als Garagenprojekt mit dem Ziel, leichte und dennoch leistungsstarke Skier zu entwickeln. Die bCores™ wurden eingeführt und erfolgreich von einigen der größten Namen im Freeride-Skisport übernommen. Die Gründer, promovierte Materialwissenschaftler der École Polytechnique Fédérale de Lausanne (EPFL), verwendeten Flachsfasern zur Verstärkung des Balsakerns und zur Verbesserung der Schersteifigkeit. Beeindruckt von den hervorragenden mechanischen Eigenschaften der Flachsfasern begann die Entwicklung nachhaltiger Leichtbaulösungen für den breiteren Mobilitätsmarkt.

Flachs ist eine einheimische Pflanze, die in Europa natürlich wächst und seit Jahrhunderten Teil der Agrargeschichte ist. Sie benötigt sehr wenig Wasser und Nährstoffe, um erfolgreich zu wachsen. Zudem fungiert sie als Fruchtfolgepflanze und verbessert so die Ernteerträge auf bestehenden Anbauflächen. Weder beim Anbau noch bei der Verarbeitung der Flachspflanzen werden Chemikalien eingesetzt, die das Grundwasser verunreinigen könnten, die Ernte ist ein rein mechanischer Prozess. Nach der Ernte kann die gesamte Flachspflanze als Futtermittel oder zur Ölherstellung verwendet werden, und ihre Fasern werden vor allem für Heimtextilien und Kleidung genutzt. Die langen Fasern der Flachspflanze besitzen sehr gute mechanische Eigenschaften und ein hervorragendes Dämpfungsverhalten im Verhältnis zu ihrer Dichte, wodurch sie sich besonders gut als natürliche Faserverstärkung für alle Arten von Polymeren eignen.

Die Ernte und Verarbeitung des Flachses erfolgen lokal in den ländlichen Gebieten, in denen er angebaut wurde. Die Verwendung von europäischem Flachs, den Bcomp über seine gut etablierte und transparente Lieferkette bezieht, ermöglicht es, die wirtschaftliche und soziale Struktur in den ländlichen Gebieten zu unterstützen, da für die Aufrechterhaltung der Flachsproduktion zahlreiche qualifizierte Arbeitskräfte erforderlich sind. Bei der Herstellung der technischen Produkte wie dem powerRibs™-Bewehrungsnetz investiert Bcomp in lokale Produktionskapazitäten in der Nähe seines Hauptsitzes in Freiburg, Schweiz, schafft so neue Arbeitsplätze und erhält das technische Know-how in der Region. Die Produktion ist so effizient wie möglich und mit minimalen Umweltauswirkungen und Abfällen aufgebaut.

Zur weiteren Stärkung der lokalen Wirtschaft ist Bcomp bestrebt, regionale Unternehmen für Aufträge zu engagieren. Da sich der Hauptsitz im Freiburger Stadtviertel "Blaue Fabrik" befindet, kann Bcomp sowohl von der Entwicklung eines nachhaltigen und vielfältigen Viertels profitieren als auch dazu beitragen.

Quelle:

Bcomp; BMW Group

Foto Pixabay
16.11.2022

Grüne Chemie verwandelt Gesichtsmasken in Ethernet-Kabel

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Professor Alvin Orbaek White vom Forschungsinstitut für Energiesicherheit (ESRI) der Universität Swansea:
„Einweg-Gesichtsmasken sind eine wirkliche Katastrophe für das Recyclingsystem, da sie riesige Mengen an Plastikmüll erzeugen - ein Großteil davon landet in unseren Ozeanen. Im Rahmen der Studie haben wir festgestellt, dass der Kohlenstoff im Inneren der Gesichtsmaske als ziemlich gutes Ausgangsmaterial für die Herstellung hochwertiger Materialien wie CNTs verwendet werden kann.“

„CNTs sind sehr begehrt, weil sie herausragende physikalische Eigenschaften besitzen und in der industriellen Herstellung sehr viel teurer sind. Mit dieser Studie haben wir also gezeigt, dass wir sehr hochwertige Materialien herstellen können, indem wir CNTs aus eigentlich wertlosen Gesichtsmaskenabfällen verarbeiten.“

Das Team untersuchte ebenfalls die mit diesem Verfahren verbundenen Energiekosten und kam zu dem Schluss, dass die Technik nicht nur im Hinblick auf den Ressourcenverbrauch umweltfreundlich ist, sondern auch in Bezug auf die Erzeugung eines Produktwert im Gegensatz zur Abfallerzeugung. Darüber hinaus war das mit den CNTs hergestellte Ethernet-Kabel von guter Qualität und entsprach den Übertragungsgeschwindigkeiten der Kategorie 5, wobei es die in den meisten Ländern, einschließlich des Vereinigten Königreichs, für das Breitband-Internet festgelegten Richtwerte leicht übertraf.

Professor Orbaek White:
„Die Verwendung von CNT-Folien in Batterien anstelle von Metallfolien hat geringere Auswirkungen auf die Umwelt, da die Verwendung von Kohlenstoff die Notwendigkeit von Bergbau- und Förderaktivitäten ausgleicht. Diese Arbeit ist von entscheidender Bedeutung, da sie nicht nur zu einer Kreislaufwirtschaft beiträgt, sondern auch skalierbar und für die industrielle Verarbeitung geeignet ist und im Kern eine grüne Chemie darstellt.“

Quelle:

Swansea University

© ITM/TUD - Biomimetische Fischflosse mit dielektrischen Elastomeraktoren und Faserverstärkung.
08.11.2022

Förderung für Faser-Elastomer-Verbunde: Intelligente Materialien für Robotik und Prothesen

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. In der ersten Förderphase wurden hierfür wichtige Grundsteine gelegt, um große zweidimensionale Verformungen in weichen, biomimetischen Strukturen zu erzielen. Die weitere Förderung durch die DFG ist eine Bestätigung für die herausragenden bisherigen Ergebnisse. Darauf aufbauend stehen in der zweiten Förderphase ionische und helixförmige Aktor-Sensor-Konzepte im Fokus. Durch die Kombination mit intelligenten Auslegungs- und Regelungsalgorithmen werden autarke, sich dreidimensional verformende Materialsysteme entstehen. So werden diese Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Quelle:

TU Dresden: Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)