Magnesium als Textil: Potenziale textiler Mg-Implantate
Gewebe Gestricke & Gewirke Medizin Tests
Zusammenfassung
Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.
Bericht
Abstract: Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.
- Einleitung
Die Food and Drug Administration (FDA), die Aufsichtsbehörde für Lebensmittel und Arzneimittel in den USA, einem der größten Medizintechnikmärkte der Welt, definiert Implantate als Produkte, die an oder unter der Körperoberfläche implantiert werden, um Medikamente abzugeben, Körperfunktionen zu überwachen oder Organe und Gewebe zu unterstützen. Beispiele sind Stentimplantate, Knochenschrauben/-platten sowie Herzschrittmacher und Defibrillatoren. [FDA19] Die Fallzahlen der Implantationen in Deutschland verdeutlichen, dass es zwei große Anwendungsbereiche für Implantate gibt. Sieht man von Zahnimplantaten ab, werden die meisten Implantate im Bereich des Skelettsystems eingesetzt. Im Jahr 2017 wurden 238.000 Hüftgelenke, 191.000 Kniegelenke und 26.000 Endoprothesen in Extremitäten implantiert. An zweiter Stelle stehen Stentimplantate mit 138.000 Implantaten in Gefäßen und Organen. [Bra18]
Die aktuell überwiegend verwendeten Implantatmaterialien können in Metalle, Polymere und Keramiken unterteilt werden. Metalle wie rostfreier Stahl werden verwendet, wenn eine hohe Festigkeit erforderlich ist, während Nickel-Titan-Legierungen eingesetzt werden, wenn ein elastisches Strukturverhalten erforderlich ist. Im Bereich der Polymere werden verschiedene Kunststoffe verwendet, von Polyethylen für hohe Abriebfestigkeit bis zu Polytetrafluorethylen (PTFE) für besonders geringe Reibung. Keramische Werkstoffe werden vor allem als Hüftgelenkkugeln, Knochenersatzmaterial und in der Zahnmedizin verwendet, darunter Aluminium und Zirkonoxid. [SSA+15; Psc20]
Diese beständigen Implantatmaterialien bringen allerdings entscheidende Nachteile mit sich. Die fünf am häufigsten genannten Defizite sind im Folgenden zusammengefasst:
- Ein zentrales Defizit ist das Risiko von Entzündungsreaktionen, wie z. B. beim Einsatz von Stentimplantaten. Stents werden eingesetzt, um verengte Gefäße wieder zu öffnen oder offen zu halten. Wenn ein Stent über einen längeren Zeitraum von mehreren Jahren im Körper verbleibt, kann es aufgrund mechanischer und biochemischer Reizungen zu Entzündungsreaktionen (Inflammation) kommen. Diese führt zur Bildung von Narbengewebe, welches den Stent überwuchern kann, wodurch das betroffene Gefäß wieder verschlossen wird (Restenose). [OTO+21]
- Ein weiterer Nachteil sind die notwendigen Revisions- oder Entnahmeoperationen für vorübergehend benötigte Implantate. In diesem Zusammenhang sind die häufig erforderlichen Medikamente zur Verringerung von Fremdkörperreaktionen und ihre Nebenwirkungen eine zusätzliche Belastung der Patienten. Dies und der zusätzliche Eingriff führt zu erhöhter Belastungen des Patienten, höheren Kosten und operationsbedingten Risiken wie bspw. Infektionen. [WXH+20]
- Stress Shielding ist ein Defizit permanenter Implantate, welches insbesondere in der Orthopädie auftritt. Dieser Effekt hängt mit den mechanischen Eigenschaften der verwendeten Implantatmaterialien zusammen, insbesondere mit der Festigkeit und dem elastischen Verhalten. Die heute verwendeten Materialien haben in der Regel eine höhere Zugfestigkeit und ein höheres Elastizitätsmodul als der umgebende Knochen. Dadurch werden die Kräfte, die nativ gleichmäßig durch den Knochen geleitet werden, je nach Belastung lokal, punktuell in das weichere Füllmaterial (Spongiosa) des Knochens eingebracht. Bereiche des Knochens, die nun weniger belastet werden, werden zurückgebildet und dies kann zu einer Lockerung des Implantats führen. [WXH+20]
- Ein Nachteil bei der Behandlung junger, noch wachsender Patienten ist, dass sich Implantate, die lange Zeit im Körper verbleiben, nur bedingt dem Wachstum anpassen können. Dies kann zur Lockerung von Endoprothesen und so zu einem erhöhten Risiko der Migration von Stentimplantaten führen. Darüber hinaus können Implantate das natürliche Wachstum des Patienten negativ beeinflussen. [OTO+21]
- Implantate erschweren die Diagnostik anhand bildgebender Verfahren. Insbesondere metallische Implantate verursachen Bildartefakte in Röntgenaufnahmen oder bei CT-Scans, was die Auswertung des Bildmaterials erschwert oder unmöglich macht. [OTO+21]
Zusammenfassend kann also festgehalten werden, dass es sinnvoll wäre Implantate zu verwenden, die während der Heilungsphase abgebaut werden, damit der Körper nach und nach seine natürliche Funktion wiederherstellen kann und langfristig keine Fremdkörper im Patienten zurückbleiben.
- Stand der Technik & Defizit
Bei der Auswahl geeigneter Implantatmaterialien müssen drei zentrale Materialeigenschaften berücksichtigt werden. Die Biokompatibilität, die mechanischen Eigenschaften sowie die Degradationszeit. Biokompatible Materialien verursachen keine nachteiligen Gewebereaktionen, sind metabolisierbar und erzeugen pH-neutrale Abbauprodukte. Was die mechanischen Eigenschaften betrifft, so müssen Zugfestigkeit und Elastizitätsmodul genauso wie die Degradationszeit in vivo der Heilungszeit der jeweiligen Anwendung entsprechen. [PRW+22]
Die Auswahl an in der aktuellen Forschung relevanten, abbaubaren Implantatmaterialien umfasst Polymere wie PLLA (Polymilchsäure) und PDS (Polydioxanon) sowie Metalle wie Eisen und Magnesium (Tabelle 1). Ein optimales Implantatmaterial sollte chemisch neutral abbaubar sein, eine biokompatibel sein und innerhalb des optimalen Korridors der Abbaudauer liegen. Insbesondere bei Anwendungen in Hohlorganen und Gefäßen sollten die mechanischen Eigenschaften des Implantatmaterials besonders hoch sein, um ein optimales Verhältnis zwischen Wandstärke und Stützkraft zu ermöglichen. Da PLLA und Eisen zu langsam degradieren, setzt sich Magnesium aufgrund seiner besseren Zugfestigkeit und Steifigkeit im Vergleich zu PDS als besser geeignetes Material für tragende und stützende Anwendungen durch. [PRW+22]
s. Anlage Tabelle 1: Eigenschaften degradierbarer Materialien [EBK+22; MLM+20; LFW14]
Es ist anzumerken, dass die Eigenschaften von purem Magnesium hinsichtlich der Anwendung für medizinische Implantate nicht ausreichend sind. Wie bei anderen Metallen können diese Eigenschaften anhand der Stellgrößen Legierungskomponenten, Kornstruktur sowie Geomtrie- und Oberflächengestaltung eingestellt werden. Dabei spielen das metallische Gefüge (Legierungszusammensetzung und Kornstruktur), die geometrische Gestaltung des Implantats, die Oberflächenbehandlung und die Beschichtung eine Rolle. Eine in der Medizintechnik häufig verwendete Legierung ist WE43, die Yttrium, verschiedene seltene Erden und Zirkonium enthält und eine hohe Festigkeit und Korrosionsbeständigkeit aufweist. [LFW14] Es befinden sich bereits lasergeschnittene Implantate aus diesem Material wie der Magmaris-Stent von Biotronik SE, Berlin in klinischen Studien, Knochenschrauben wie die Magnezix-Schraube der Firma Syntellix AG, Hannover sind bereits auf dem Markt und auch an großvolumigen, 3D-gedruckten (Lasersintern) Lösungen wird geforscht. [HIK+18; Syn19] Die textile Verarbeitung von Mg-Draht zu textilen Implantaten ist nach aktuellem Stand der Technik noch wenig erforscht. Dabei besteht gerade im Bereich großlumiger Gefäßprothesen ein hoher, stark wachsender Bedarf. [GJG22; Mer23b]
- Methodik
Bei der Validierung von Magnesium als Implantatmaterial für die Herstellung abbaubarer, textiler Stützstrukturen sind initial zwei zentrale Fragen zu klären.
- Zum einen stellt sich die Frage nach der Verarbeitbarkeit des Ausgangsmaterials. Textile Prozesse erfordern spezifische, mechanische und tribologische Eigenschaften des Halbzeugs. Hierzu gehören eine hohe Zugfestigkeit, ein geeignetes Elastizitätsmodul und passende Biegesteifigkeit sowie ein verarbeitbarer Durchmesser des Ausgangsmaterials.
- Zum anderen muss die Eignung der Produkteigenschaften der textilen Strukturen für relevante klinische Indikationen gewährleistet sein. Hierzu gehören die mechanischen Eigenschaften (FRRF, FCOF) (1) sowie die mechanische Integrität bei zyklischer Belastung der Implantate (2).
3.1 Validierung der Verarbeitbarkeit
Am Institut für Textiltechnik der RWTH Aachen wurde die Verarbeitbarkeit von Magnesium und vergleichbaren Werkstoffen zur Herstellung von textilen Schlauchstrukturen durch Stricken, Weben und Flechten bereits untersucht (IGF-Forschungsprojekt 18880 N "MagCage - Textiles Magnesium-Implantat mit spezifischem mechanischem und geometrischem Eigenschaftsprofil für die Behandlung großer Knochendefekte in Röhrenknochen"). Es konnte gezeigt werden, dass aus Magnesiumdraht schlauchförmige Strukturen durch Strickverfahren hergestellt werden können. Im Webprozess führte die Herstellung von Geweben mit geschlossenen Webkanten aufgrund der Biegesteifigkeit des Ausgangsmaterials zu unbrauchbaren, inhomogenen Ergebnissen. Die Verarbeitbarkeit im Flechtprozess wurde sowohl maschinell als auch manuell untersucht. Es konnte gezeigt werden, dass der Magnesiumdraht mit geringen Modifikationen der Flechtklöppel verarbeitet werden kann. Auch die manuelle Verarbeitbarkeit des Magnesiumdrahtes konnte nachgewiesen werden (Siehe Abbildung 1). [Bol18]
s. Anlage Abbildung 1: Textile Verarbeitung von Magnesium-Draht [Bol18; Mer23a]
3.2 Validierung der Produkteigenschaften
Die Eignung von drahtbasierten Geflechten zur Anwendung als Implantat wurde am Institut für Textiltechnik am Beispiel von Stentimplantaten untersucht und bestätigt [Mer23b]. Eine Validierung der relevanten Produktparameter sowie der Dauerfestigkeit der Produkte steht noch aus und soll hier vorgestellt werden. Zur Prüfung der mechanischen Eigenschaften der Stentstrukturen bestehen genormte Verfahren wie die radiale Druckprüfung (DIN EN ISO 25539-2) (Siehe Abbildung 2). Dabei wird der Widerstand des Implantats gegen Kompression auf einen kleineren Durchmesser gemessen. Eine Bewertung kann z. B. anhand der radialen Stützkraft des Implantats bei einem Mindestdurchmesser von 50 % des Ausgangsdurchmessers vorgenommen werden.
s. Anlage Abbildungs 2: Prüfvorrichtung zur Validierung der Radialkraft der Stentimplantate [Mer23a]
Im Rahmen der hier veröffentlichten Studien wurden zunächst zentrale Produktparameter (1) und ihr Einfluss auf die Zielgrößen Radialkraft (FRRF), Öffnungskraft (FCOF) sowie die bleibende Verformung (Längung, ΔDS und Stauchung, ΔLS) untersucht. Die berücksichtigen Produktparameter sind die Kronenzahl nK, der Flechtwinkel (Anzahl der Windungen nW) sowie die Länge der Implantate LS (Tabelle 2). Der Stent Durchmesser beträgt DS = 16 mm. Die Stentimplantate wurden manuell aus PEO-beschichtetem Mg-Draht der Firma Meotec GmbH, Aachen (DD = 0,2 mm) geflochten (Abbildung 3), in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 geprüft und anhand eines faktoriellen Versuchsplanes ausgewertet.
s. Anlage Tabelle 2 und Abbildung 3: Tabelle 2: Strukturmerkmale und Variationen und Abbildung 3: Exemplarische Darstellung der Mg-Stentimplantate
Zur Validierung der Dauerfestigkeit (2) wurden in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 zyklische Versuche durchgeführt. Das hierzu herangezogene Stentdesign ist ein Rundgeflecht mit einer Länge LS = 30 mm und einem Durchmesser von DS = 6 mm. Zur Validierung der Dauerfestigkeit wurde in Vorversuchen zunächst der Bereich der „elastischen Verformung“ des Implantates ermittelt. Es wurde ein Crimp-Durchmesser von DS = 85% D0 als überwiegend elastischer Prüfbereich definiert. Vollständige elastische Rückstellung ist mit dem vorliegenden Mg-Draht nicht möglich. Mit diesem Prüfdurchmesser wurden Versuchsreihen mit nP = 50 und 200 Zyklen durchgeführt und ausgewertet.
4. Ergebnisse
Im Folgenden werden die Ergebnisse der Parameteruntersuchung (1) sowie der Validierung der Dauerfestigkeit (2) vorgestellt.
Im Rahmen der Parameterstudie (1) konnte gezeigt werden, dass die Anzahl der Kronen nK einen deutlichen Einfluss auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents hat. Durch eine Erhöhung der Kronenanzahl nK von 6 auf 12 ergibt sich eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 381 % und eine Zunahme der Öffnungskraft FCOF um durchschnittlich ca. 32 %. Des Weiteren führt die Erhöhung der Kronenanzahl nK zu einer signifikanten Veränderung der bleibenden Verformung. Dabei wurde eine Reduzierung der bleibenden Stauchung ΔDS von durchschnittlich ca. 65 % und eine Erhöhung der bleibenden Längung ΔLS von durchschnittlich ca. 33 % festgestellt.
Die Erhöhung der Anzahl der Windungen nW zeigt einen positiven Effekt in Bezug auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents. Durch eine Erhöhung der Anzahl der Windungen nW von 1 auf 2 wurde eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 253 % und eine Zunahme der Öffnungskraft FCOF um ca. 212 % beobachtet. In Bezug auf die bleibende Verformung ist ein Anstieg um ca. 33 % bei der bleibenden Längung ΔLS erkennbar, während der Effekt auf die bleibende Stauchung ΔDS nicht eindeutig festzustellen ist.
Der Produktparameter Länge LS wirkt sich negativ auf die Radialkraft FRRF und die Öffnungskraft FCOF aus. Eine Erhöhung LS der Länge von 37 mm auf 45 mm führt zu einer durchschnittlichen Reduzierung der Radialkraft FRRF um ca. 11 % und zu einer durchschnittlichen Verringerung der Öffnungskraft FCOF um ca. 16 %. In Bezug auf die bleibenden Längung ΔLS und bleibende Stauchung ΔDS sind keine eindeutigen Effekte festzustellen. Die zahlenmäßigen Ergebnisse sind in Abbildung 4, die durchschnittlichen Effekte der einzelne Parameter auf die Zielgrößen in Tabelle 3 dargestellt.
s. Anlage Abbildung 4 und Tabelle 3, Abbildung 3: Exemplarische Darstellung der Mg-Stentimplantate und Tabelle 3: Mittlerer Effekt auf Zielgrößen (Faktorieller Versuchsplan)
Die Validierung der Dauerfestigkeit (2) wurde bei einem Prüfdurchmesser von DS = 85% D0 validiert (nP = 10) und durchgeführt (Abbildung 5, links). Die zyklischen Versuche wurden zunächst mit nP = 50 Zyklen durchgeführt (Abbildung 5, rechts).
s. Anlage Abbildung 5: Zentrale Ergebnisse der zyklischen Versuche (1/2)
Die maximale Radialkraft (DS,85) des Implantates schwankt über den Prüfverlauf, während die geometrische Integrität erhalten bleibt. Es kommt zu keiner nennenswerten plastischen Verformung. Eine Veränderung der Stützkraft über den Prüfverlauf ist nicht erkennbar (Abbildung 6, links). Die mittlere Radialkraft stagniert zwischen 11,5 N und 10,7 N, bei einer Standardabweichung von 0,3 – 0,5 N. Die Radialkräfte von Zyklus 1., 25. und 50. unterscheiden sich nicht signifikant. Die Versuchsreihe mit nP = 200 Zyklen (nS = 1) ergibt ein ähnliches Ergebnis (Abbildung 6, rechts). Die Streuung der Ergebnisse nimmt erheblich zu, aber es ist keine Tendenz erkennbar.
s. Anlage Abbildung 6: Zentrale Ergebnisse der zyklischen Versuche (2/2)
4. Fazit und Ausblick
Die Anwendungsbereiche für drahtbasierte Implantate wie bspw. Stentimplantate sind groß und nehmen zu. Degradierbare Implantate gelten dabei als vielversprechender Lösungsansatz, um die Defizite permanenter Implantate auszuräumen. Drahtbasierte Fertigungsverfahren zur Herstellung von Mg-Implantaten sind allerdings kaum untersucht. Im Rahmen der vorliegenden Studie wurden Ergebnisse zu relevanten mechanischen Eigenschaften von Mg-Implantaten und wie diese im Produktdesign eingestellt werden können präsentiert.
Die Ergebnisse der Studie zeigen signifikante Effekte der zentralen Produktparameter, insbesondere auf die Zielgrößen Radialkraft FRRF und Öffnungskraft FCOF. Im Hinblick auf die Öffnungskraft FCOF ergibt sich die Anzahl der Windungen nW aber auch die Anzahl der Kronen nK als entscheidende Faktoren mit größtem Optimierungspotential. Es stellte sich auch heraus, dass die Länge LS einen schwach negativen Einfluss auf die Öffnungskraft FCOF hat, was bei der Auslegung berücksichtigt werden sollte. Eine Bewertungsübersicht der zentralen Ergebnisse bezüglich der Effektstärken ist in Tabelle 4 dargestellt.
Die zyklischen Versuche zeigen, dass Mg-Draht basierte Stentimplantate eine geringe Ermüdungsneigung aufweisen und eine vollelastische Strukturstabilität der textilen Strukturen nach einmaliger Verformung im 1. Prüfzyklus gegeben ist. Bis zu nP = 200 Zyklen wurden kein Materialversagen oder anderweitige Unregelmäßigkeiten beobachtet. Auch wenn die Forschung noch am Anfang steht, zeigt diese, wie auch vorangegangene Veröffentlichungen [Mer23b; GJG22], das Magnesium als Implantatmaterial für drahtbasierte (Stent-)Implantate ein Werkstoff mit hohem Innovationspotenzial ist.
s. Anlage Abbildung 6: Zentrale Ergebnisse der zyklischen Versuche (2/2)
Literaturverzeichnis
[Mer23a] Merkord, F.:
Evaluierung automatisierter Verfahren zur Herstellung drahtbasiert geflochtener Stentimplantate. 1. AuflageAufl.- Düren: Shaker, 2023
[Mer23b] Merkord, F.:
Magnesium Wire in Medical Application - A Glimpse Into Future (2023)
Kontakt: felix.merkord@ita.rwth-aachen.de
Institut für Textiltechnik der RWTH Aachen, Otto-Blumenthal-Str. 1, 52074 Aachen
More entries from ITA Institut für Textiltechnik der RWTH Aachen University