Textination Newsline

Reset
2 results
offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Graphik: Pixabay
11.01.2022

FIMATEC innovation network enters second funding phase

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

The network for the development of fiber materials technology for healthcare and sports will receive funding from the Central Innovation Programme for SMEs (ZIM) for another two years.

The Federal Ministry for Economic Affairs and Climate Action (BMWi) approved a corresponding application in December 2021. This will continue to provide funding for the development of innovative functional fibers, smart textiles and application-optimized fiber composite materials until June 2023 and strengthen the technological competitiveness and innovative strength of small and medium-sized enterprises (SMEs).

For this purpose, the FIMATEC innovation network combines competences from different engineering and scientific disciplines with small and medium-sized manufacturers and service providers from the target sectors in medicine and sports (e.g. orthopaedics, prosthetics, surgery, smart textiles) as well as players from the textile and plastics industry.      

This interdisciplinary combination of industrial partners and application-oriented research institutions increases competitiveness and enables the players to realise their technical research and development projects quickly and in a targeted manner. The focus for the joint R&D projects of the companies and research institutions is on the development of innovative materials and efficient manufacturing technologies. 
          
Fiber-based materials have become indispensable in many applications in medicine and sports. As a pure fiber, processed into a textile or as a fiber composite plastic, they offer an almost unlimited variety for adjusting property and functional profiles. At the same time, the demands on the range of functions, performance and cost-effectiveness are constantly increasing, so that there is great potential for innovation. Developments are driven on the one hand by new materials and manufacturing processes, and on the other by innovative applications. Products with new and superior functions create a technological advantage over international competitors and enable higher sales revenues. In addition, efficient processes, application-optimized materials or even the integration of functions into the basic structure of textile materials lead to lower production costs and improved marketing opportunities in the future.
For developments in this context, the partners have joined forces in the FIMATEC innovation network, thus combining their expertise. Within the network, innovative materials and processes are being developed jointly in the following areas and tested in future-oriented products and services:

  • Functional fibers
    Innovative fiber materials with integrated functionalities
  • Preforming
    Highly load path optimized fiber orientations for complex fiber composite components.    
  • Smart Textiles
    Textile-based sensors and actuators
  • Hybrid material and manufacturing technologies
    Application-optimized components through cross-technology solution approaches.    
  • Fiber composites  
    Intelligent matrix systems and function-optimized fiber materials.    
  • Fiber-reinforced 3D printing  
    High-quality additive manufacturing processes for the efficient production of individualized products.

 
17 network partners are researching fiber-based materials for medical and sports technologyCurrently, ten companies and seven research institutions are involved in FIMATEC. Interested companies and research institutions as well as potential users can continue to participate in the cooperation network or R&D projects. In the course of membership, the partners are actively supported in identifying and initiating innovation projects as well as securing financing through funding acquisition. One application for ZIM project funding has already been approved by FIMATEC in its first year.

The aim of the already approved project "CFKadapt" is to develop a thermoformable fiber-plastic composite material for optimally adaptable orthopedic aids such as prostheses and orthoses. In the "Modul3Rad" project, which is currently being worked out in detail, the project partners intend to develop a modular lightweight frame system for the construction of user-friendly therapy tricycles, suitable for everyday use by severely and very severely disabled children. Three further collaborative projects are already in the planning stage.

The technology and knowledge transfer enables in particular small and medium-sized enterprises (SMEs) to access cutting-edge technological research, especially these are often denied access to innovations due to the lack of their own research departments. The IWS GmbH has taken over the network management for FIMATEC and supports the partners from the first idea to the search for suitable project partners and the preparation and coordination of funding applications. The aim is to obtain funding from the Central Innovation Programme for SMEs (ZIM), which offers companies funding opportunities for a wide range of technical innovation projects in cooperation with research institutions.

FIMATEC-netzwork partners
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de

Associated network partners
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Source:

Textination / IWS Innovations- und Wissensstrategien GmbH