Textination Newsline

Reset
2 results
Image: Udo Jandrey
22.03.2024

New model for sustainable structures of textile-reinforced concrete

By reinforcing concrete with textiles instead of steel, it is possible to use less material and create slender, lightweight structures with a significantly lower environmental impact. The technology to utilise carbon fibre textiles already exists, but it has been challenging, among other things, to produce a basis for reliable calculations for complex and vaulted structures. Researchers from Chalmers University of Technology, in Sweden, are now presenting a method that makes it easier to scale up analyses and thus facilitate the construction of more environmentally friendly bridges, tunnels and buildings.

By reinforcing concrete with textiles instead of steel, it is possible to use less material and create slender, lightweight structures with a significantly lower environmental impact. The technology to utilise carbon fibre textiles already exists, but it has been challenging, among other things, to produce a basis for reliable calculations for complex and vaulted structures. Researchers from Chalmers University of Technology, in Sweden, are now presenting a method that makes it easier to scale up analyses and thus facilitate the construction of more environmentally friendly bridges, tunnels and buildings.

"A great deal of the concrete we use today has the function to act as a protective layer to prevent the steel reinforcement from corroding. If we can use textile reinforcement instead, we can reduce cement consumption and also use less concrete − and thus reduce the climate impact," says Karin Lundgren, who is Professor in Concrete Structures at the Department of Architecture and Civil Engineering at Chalmers.

Cement is a binder in concrete and its production from limestone has a large impact on the climate. One of the problems is that large amounts of carbon dioxide that have been sequestered in the limestone are released during production. Every year, about 4.5 billion tonnes of cement are produced in the world and the cement industry accounts for about 8 percent of global carbon dioxide emissions. Intensive work is therefore underway to find alternative methods and materials for concrete structures.

Reduced carbon footprint with thinner constructions and alternative binders
By using alternative binders instead of cement, such as clay or volcanic ash, it is possible to further reduce carbon dioxide emissions. But so far, it is unclear how well such new binders can protect steel reinforcement in the long term.

"You could get away from the issue of corrosion protection, by using carbon-fibres as reinforcement material instead of steel, because it doesn't need to be protected in the same way. You can also gain even more by optimising thin shell structures with a lower climate impact," says Karin Lundgren.

In a recently published study in the journal Construction and Building Materials, Karin Lundgren and her colleagues describe a new modelling technique that was proved to be reliable in analyses describing how textile reinforcement interacts with concrete.

"What we have done is to develop a method that facilitates the calculation work of complex structures and reduces the need for testing of the load-bearing capacity," says Karin Lundgren.

One area where textile reinforcement technology could significantly reduce the environmental impact is in the construction of arched floors. Since the majority of a building’s climate impact during production comes from the floor structures, it is an effective way to build more sustainably. A previous research study from the University of Cambridge shows that textile reinforcement can reduce carbon dioxide emissions by up to 65 percent compared to traditional solid floors.

Method that facilitates calculations
A textile reinforcement mesh consists of yarns, where each yarn consists of thousands of thin filaments (long continuous fibres). The reinforcement mesh is cast into concrete, and when the textile-reinforced concrete is loaded, the filaments slip both against the concrete and against each other inside the yarn. A textile yarn in concrete does not behave as a unit, which is important when you want to understand the composite material's ability to carry loads. The modelling technique developed by the Chalmers researchers describes these effects.

"You could describe it as the yarn consisting of an inner and an outer core, which is affected to varying degrees when the concrete is loaded. We developed a test and calculation method that describes this interaction. In experiments, we were able to show that our way of calculating is reliable enough even for complex structures," says Karin Lundgren.

The work together with colleagues is now continuing to develop optimisation methods for larger structures.

"Given that the United Nations Environment Programme (UNEP) expects the total floor area in the world to double over the next 40 years due to increased prosperity and population growth, we must do everything we can to build as resource-efficiently as possible to meet the climate challenge," says Karin Lundgren.

Source:

Chalmers | Mia Halleröd Palmgren

intelligent fabrics (c) Sanghyo Lee
24.04.2023

Cheaper method for making woven displays and smart fabrics

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using conventional industrial looms used to make the clothing worn every day.
 
An international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can be manufactured in specialised microelectronic fabrication facilities, but these are highly expensive and produce large volumes of waste.

However, the team found that flexible displays and smart fabrics can be made much more cheaply, and more sustainably, by weaving electronic, optoelectronic, sensing and energy fibre components on the same industrial looms used to make conventional textiles. Their results, reported in the journal Science Advances, demonstrate how smart textiles could be an alternative to larger electronics in sectors including automotive, electronics, fashion and construction.

Despite recent progress in the development of smart textiles, their functionality, dimensions and shapes have been limited by current manufacturing processes.
“We could make these textiles in specialised microelectronics facilities, but these require billions of pounds of investment,” said Dr Sanghyo Lee from Cambridge’s Department of Engineering, the paper’s first author. “In addition, manufacturing smart textiles in this way is highly limited, since everything has to be made on the same rigid wafers used to make integrated circuits, so the maximum size we can get is about 30 centimetres in diameter.”

“Smart textiles have also been limited by their lack of practicality,” said Dr Luigi Occhipinti, also from the Department of Engineering, who co-led the research. “You think of the sort of bending, stretching and folding that normal fabrics have to withstand, and it’s been a challenge to incorporate that same durability into smart textiles.”
Last year, some of the same researchers showed that if the fibres used in smart textiles were coated with materials that can withstand stretching, they could be compatible with conventional weaving processes. Using this technique, they produced a 46-inch woven demonstrator display.

Now, the researchers have shown that smart textiles can be made using automated processes, with no limits on their size or shape. Multiple types of fibre devices, including energy storage devices, light-emitting diodes, and transistors were fabricated, encapsulated, and mixed with conventional fibres, either synthetic or natural, to build smart textiles by automated weaving. The fibre devices were interconnected by an automated laser welding method with electrically conductive adhesive.
 
The processes were all optimised to minimise damage to the electronic components, which in turn made the smart textiles durable enough to withstand the stretching of an industrial weaving machine. The encapsulation method was developed to consider the functionality of the fibre devices, and the mechanical force and thermal energy were investigated systematically to achieve automated weaving and laser-based interconnection, respectively.

The research team, working in partnership with textile manufacturers, were able to produce test patches of smart textiles of roughly 50x50 centimetres, although this can be scaled up to larger dimensions and produced in large volumes.
 
“These companies have well-established manufacturing lines with high throughput fibre extruders and large weaving machines that can weave a metre square of textiles automatically,” said Lee. “So when we introduce the smart fibres to the process, the result is basically an electronic system that is manufactured exactly the same way other textiles are manufactured.”
The researchers say it could be possible for large, flexible displays and monitors to be made on industrial looms, rather than in specialised electronics manufacturing facilities, which would make them far cheaper to produce. Further optimisation of the process is needed, however.

“The flexibility of these textiles is absolutely amazing,” said Occhipinti. “Not just in terms of their mechanical flexibility, but the flexibility of the approach, and to deploy sustainable and eco-friendly electronics manufacturing platforms that contribute to the reduction of carbon emissions and enable real applications of smart textiles in buildings, car interiors and clothing. Our approach is quite unique in that way.”

The research was supported in part by the European Union and UK Research and Innovation.

Source:

University of Cambridge