Textination Newsline

Zurücksetzen
2 Ergebnisse
Biofasern aus Gelatine in einem Regenbogen von Farben. © Utility Research Lab
25.06.2024

Lösliche Textilien aus Gelatine

Das ist die Mode der Zukunft: ein T-Shirt, das man ein paar Mal tragen kann und dann, wenn es einem langweilig wird, auflöst und recycelt, um daraus ein neues Shirt zu machen.

Forscher des ATLAS-Instituts an der CU Boulder sind diesem Ziel nun einen Schritt näher gekommen. In einer neuen Studie hat das Team aus Ingenieuren und Designern eine DIY-Maschine entwickelt, die Textilfasern aus Materialien wie nachhaltig hergestellter Gelatine spinnt. Die „Biofasern“ der Forschergruppe fühlen sich ein wenig wie Flachsfasern an und lösen sich in heißem Wasser innerhalb von Minuten bis zu einer Stunde auf.

Das Team unter der Leitung von Eldy Lázaro Vásquez, einer Doktorandin des ATLAS-Instituts, präsentierte seine Ergebnisse im Mai auf der CHI Conference on Human Factors in Computing Systems in Honolulu.

Das ist die Mode der Zukunft: ein T-Shirt, das man ein paar Mal tragen kann und dann, wenn es einem langweilig wird, auflöst und recycelt, um daraus ein neues Shirt zu machen.

Forscher des ATLAS-Instituts an der CU Boulder sind diesem Ziel nun einen Schritt näher gekommen. In einer neuen Studie hat das Team aus Ingenieuren und Designern eine DIY-Maschine entwickelt, die Textilfasern aus Materialien wie nachhaltig hergestellter Gelatine spinnt. Die „Biofasern“ der Forschergruppe fühlen sich ein wenig wie Flachsfasern an und lösen sich in heißem Wasser innerhalb von Minuten bis zu einer Stunde auf.

Das Team unter der Leitung von Eldy Lázaro Vásquez, einer Doktorandin des ATLAS-Instituts, präsentierte seine Ergebnisse im Mai auf der CHI Conference on Human Factors in Computing Systems in Honolulu.

„Wenn man diese Textilien nicht mehr braucht, kann man sie auflösen und die Gelatine recyceln, um neue Fasern herzustellen“, so Michael Rivera, Mitautor der neuen Forschungsarbeit und Assistenzprofessor am ATLAS-Institut und der Fakultät für Informatik.

Die Studie befasst sich mit einem weltweit wachsenden Problem: Allein 2018 haben die Menschen in den Vereinigten Staaten mehr als 11 Millionen Tonnen Textilien auf Mülldeponien entsorgt, so die Environmental Protection Agency - fast 8 % aller in diesem Jahr produzierten festen Siedlungsabfälle.

Für die Mode haben die Forschenden einen anderen Weg vor Augen.

Ihre Maschine ist klein genug, um auf einen Schreibtisch zu passen, und kostete nur 560 Dollar. Lázaro Vásquez hofft, dass das Gerät Designern auf der ganzen Welt helfen wird, mit der Herstellung ihrer eigenen Biofasern zu experimentieren.

„Man könnte Fasern mit der gewünschten Festigkeit und Elastizität sowie der gewünschten Farbe herstellen“, sagte sie. „Mit dieser Art von Prototyping-Maschine kann jeder Fasern herstellen. Man braucht nicht die großen Maschinen, die es nur in den Chemiefachbereichen der Universitäten gibt.“

Gesponnene Fäden
Die Studie kommt zu einem Zeitpunkt, an dem Modefans, Robotiker und andere einen Trend namens „intelligente Textilien“ aufgreifen. Das Trucker Jacket von Levi's mit Jacquard von Google zum Beispiel sieht aus wie eine Jeansjacke, enthält aber Sensoren, die mit dem Smartphone verbunden werden können.

Aber solche Kleidung der Zukunft hat auch eine Kehrseite, so Rivera:

„Diese Jacke ist nicht wirklich recycelbar. Es ist schwierig, den Jeansstoff von den Kupferfäden und der Elektronik zu trennen.“

Um sich eine neue Methode zur Herstellung von Kleidung vorzustellen, begann das Team mit Gelatine. Dieses elastische Protein kommt in den Knochen vieler Tiere vor, darunter auch in Schweinen und Kühen. Jedes Jahr werfen die Fleischproduzenten große Mengen an Gelatine weg, die den Anforderungen für Kosmetika oder Lebensmittel wie Götterspeise nicht genügen. (Lázaro Vásquez kaufte ihre eigene Gelatine, die in Pulverform vorliegt, in einer örtlichen Metzgerei).

Sie und ihre Kollegen beschlossen, diese Abfälle in tragbare Schmuckstücke zu verwandeln.

Die Maschine der Gruppe verwendet eine Plastikspritze, um Tröpfchen einer flüssigen Gelatinemischung zu erhitzen und herauszupressen. Zwei Walzensätze in der Maschine ziehen dann an der Gelatine und dehnen sie zu langen, dünnen Fasern aus - nicht unähnlich einer Spinne, die ein Netz aus Seide spinnt. Dabei durchlaufen die Fasern auch Flüssigkeitsbäder, in denen die Forscher biobasierte Farbstoffe oder andere Zusatzstoffe in das Material einbringen können. Die Zugabe von ein wenig Genipin, einem Fruchtextrakt, macht die Fasern beispielsweise stärker.

Zu den weiteren Co-Autoren der Studie gehören Mirela Alistar und Laura Devendorf, beide Assistenzprofessoren bei ATLAS.

Blindgänger auflösen
Lázaro Vásquez sagte, dass Designer mit dieser Art von Textilien alles machen können, was sie sich vorstellen können.

Zur Erprobung des Konzepts stellten die Forscher kleine Texilsensoren aus Gelatinefasern, Baumwolle und leitfähigen Garnen her, die dem Aufbau einer Jacquard-Jacke ähneln. Dann tauchte das Team diese Aufnäher in warmes Wasser. Die Gelatine löste sich auf und gab die Fäden frei, so dass sie leicht recycelt und wiederverwendet werden konnten.

Die Designer könnten die Chemie der Fasern optimieren, um sie etwas widerstandsfähiger zu machen, sagte Lázaro Vásquez - man möchte ja nicht, dass die Jacke im Regen verschwindet. Sie könnten auch damit spielen, ähnliche Fasern aus anderen natürlichen Bestandteilen zu spinnen. Zu diesen Materialien gehören Chitin, ein Bestandteil von Krabbenschalen, oder Agar-Agar, das aus Algen gewonnen wird.

„Wir versuchen, über den gesamten Lebenszyklus unserer Textilien nachzudenken“, so Lázaro Vásquez. „Das beginnt damit, woher das Material kommt. Können wir es aus etwas gewinnen, das normalerweise im Abfall landet?“

Weitere Informationen:
Gelatine Biofasern DIY
Quelle:

University of Colorado Boulder | Daniel Strain
Übersetzung Textination

Bild: Gaharwar Laboratory
13.12.2022

Neue Tinten für 3D-druckbare, tragbare Bioelektronik

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Diese Biomaterial-Tinte nutzt eine neue Klasse von 2D-Nanomaterialien, die als Molybdändisulfid (MoS2) bekannt sind. Die dünnschichtige Struktur von MoS2 enthält Defektzentren, die es chemisch aktiv machen und in Kombination mit modifizierter Gelatine ein flexibles Hydrogel ergeben, vergleichbar mit der Struktur von Götterspeise.

„Die Auswirkungen dieser Arbeit sind für den 3D-Druck weitreichend", sagte Dr. Akhilesh Gaharwar, außerordentlicher Professor in der Abteilung für Biomedizinische Technik und Presidential Impact Fellow. "Diese neu entwickelte Hydrogeltinte ist hochgradig biokompatibel und elektrisch leitfähig und ebnet den Weg für die nächste Generation von tragbarer und implantierbarer Bioelektronik.”1

Die Tinte hat strukturviskose oder scherverdünnende Eigenschaften. Ihre nimmt Viskosität mit zunehmender Kraft ab, so dass sie im Inneren der Tube fest ist, aber beim Zusammendrücken eher wie eine Flüssigkeit fließt, ähnlich wie Ketchup oder Zahnpasta. Das Team hat diese elektrisch leitfähigen Nanomaterialien in eine modifizierte Gelatine eingearbeitet, um eine Hydrogeltinte mit Eigenschaften herzustellen, die für die Entwicklung von Tinte für den 3D-Druck wichtig sind.

„Diese 3D-gedruckten Geräte sind extrem elastisch und können zusammengedrückt, gebogen oder verdreht werden, ohne zu brechen", so Kaivalya Deo, Doktorand in der Abteilung für biomedizinische Technik und Hauptautor der Arbeit. „Darüber hinaus sind diese Geräte elektronisch aktiv, so dass sie dynamische menschliche Bewegungen überwachen können und den Weg für eine kontinuierliche Bewegungsüberwachung ebnen.”

Für den 3D-Druck der Tinte haben die Forscher im Gaharwar-Labor einen kostengünstigen, Open-Source 3D-Biodrucker mit mehreren Druckköpfen entwickelt, der voll funktionsfähig und anpassbar ist und mit Open-Source Tools und Freeware läuft. Dies ermöglicht es jedem Forscher, 3D-Biodrucker zu bauen, die auf seine eigenen Forschungsbedürfnisse zugeschnitten sind.

Die elektrisch leitfähige 3D-gedruckte Hydrogel-Tinte kann komplexe 3D-Schaltkreise erzeugen und ist nicht auf plane Designs beschränkt, so dass Forscher eine anpassbare Bioelektronik herstellen können, die auf patientenspezifische Anforderungen zugeschnitten ist.

Mit Hilfe dieser 3D-Drucker konnte Deo elektrisch aktive und dehnbare elektronische Geräte drucken. Diese Geräte weisen außergewöhnliche Dehnungsmessfähigkeiten auf und können für die Entwicklung anpassbarer Überwachungssysteme verwendet werden. Dies eröffnet ebenfalls neue Möglichkeiten für die Entwicklung dehnbarer Sensoren mit integrierten miroelektronischen Komponenten.

Eine der möglichen Anwendungen der neuen Tinte ist der 3D-Druck elektronischer Tätowierungen für Patienten mit Parkinson. Die Forscher stellen sich vor, dass ein gedrucktes E-Tattoo die Bewegungen des Patienten, einschließlich des Zitterns, überwachen kann.

Dieses Projekt wurde in Zusammenarbeit mit Dr. Anthony Guiseppi-Elie, Vizepräsident für akademische Angelegenheiten und Personalentwicklung am Tri-County Technical College in South Carolina, und Dr. Limei Tian, Assistenzprofessor für Biomedizintechnik an der Texas A&M University, durchgeführt.
Die Studie wurde vom National Institute of Biomedical Imaging and Bioengineering, dem National Institute of Neurological Disorders and Stroke und dem Texas A&M University President's Excellence Fund finanziert. Ein vorläufiges Patent auf diese Technologie wurde in Zusammenarbeit mit der Texas A&M Engineering Experiment Station angemeldet.

1 Die Studie wurde bei ACS Nano veröffentlicht.

Quelle:

Alleynah Veatch Cofas, Texas A & M University