Textination Newsline

Zurücksetzen
Foto: TheDigitalArtist, Pixabay
31.01.2024

Vliesstoff-Nanokomposit-Folien für tragbare Elektronik, Fahrzeuge und Gebäude

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen.

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen. Ein weiteres Beispiel sind leichte, am Körper zu tragende Sensoren für die Gesundheits- und Umweltüberwachung, die ebenfalls zunehmend gefragt sind. Die Möglichkeit, Abwärme oder Sonnenenergie in nutzbare elektrische Energie umzuwandeln, hat sich als Chance für ein nachhaltigeres Energiemanagement erwiesen. Praktische thermoelektrische Generatoren (TEGs) haben derzeit nur einen geringen Wirkungsgrad und sind relativ groß und schwer. Sie bestehen aus teuren oder korrosionsanfälligen Materialien, sind starr und enthalten oft giftige Elemente.
 
Kürzlich entwickelte, leicht zu verarbeitende, selbsttragende und flexible Vliesstoff-Nanokomposit-Folien zeigen hervorragende thermoelektrische Eigenschaften in Kombination mit guter mechanischer Robustheit. In einem aktuellen Artikel in ACS Applied Nano Materials wird erläutert, wie die Forscher ein thermoplastisches Polyurethan (TPU) mit TUBALLTM Graphen-Nanoröhrchen kombinieren, um ein Nanokompositmaterial herzustellen, das elektrische Energie aus Abwärmequellen gewinnen kann.
 
Dank ihres hohen Aspektverhältnisses und ihrer spezifischen Oberfläche verleihen Graphen-Nanoröhrchen dem TPU elektrische Leitfähigkeit, wodurch eine hohe thermoelektrische Leistung bei gleichbleibenden oder verbesserten mechanischen Eigenschaften erreicht werden kann. "Steifigkeit, Festigkeit und Zugzähigkeit wurden im Vergleich zu Bucky Papers um das 7-, 25- bzw. 250-fache verbessert. Die Nanokompositfolie zeigt einen niedrigen elektrischen Widerstand von 7,5*10-3 Ohm×cm, einen hohen E-Modul von 1,8 GPa, eine Bruchfestigkeit von 80 MPa und eine Bruchdehnung von 41%", sagt Dr. Beate Krause, Gruppenleiterin am Leibniz-Institut für Polymerforschung Dresden e. V.

Da es sich bei Graphen-Nanoröhren um ein grundlegend neues Material handelt, bietet sich die Möglichkeit, die derzeitigen TEG-Materialien durch umweltfreundlichere zu ersetzen. Die von solch thermoelektrischen Generatoren betriebenen Sensoren könnten als "intelligente Haut" für Fahrzeuge und Gebäude fungieren, indem sie Sensorfunktionen zur Leistungsüberwachung und Vermeidung potenzieller Probleme bereitstellen, bevor diese zu Ausfällen führen, und so eine optimale Betriebseffizienz gewährleisten. In Flugzeugen könnten drahtlose Nanokomposite als eigenständige Sensoren zur Überwachung von Enteisungssystemen dienen, wodurch ein umfangreiches Netz von elektrischen Kabeln überflüssig würde. Die hohe Flexibilität, Festigkeit und Zuverlässigkeit der mit Graphen-Nanoröhrchen ausgestatteten thermoelektrischen Materialien ermöglichen auch Anwendungen im Bereich der intelligenten tragbaren und medizinischen Geräte.

Quelle:

Leibniz-Institut für Polymerforschung Dresden e. V. / OCSiAl