Textination Newsline

Zurücksetzen
Photo: zephylwer0, Pixabay
29.08.2023

Ein neuer Weg, Feuer mit nanoskaligem Material zu zähmen

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

„Bei unserer Technik, die wir als inverse thermische Degradation (inverse thermal degradation ITD) bezeichnen, wird ein dünner Film im Nanomaßstab auf ein bestimmtes Material aufgebracht. Der dünne Film verändert sich in Reaktion auf die Hitze des Feuers und reguliert die Menge an Sauerstoff, die in das Material eindringen kann. Das bedeutet, dass wir die Geschwindigkeit steuern können, mit der sich das Material erwärmt - was wiederum die chemischen Reaktionen im Material beeinflusst. Im Grunde können wir genau einstellen, wie und wo das Feuer das Material verändert.“

„ITD funktioniert folgendermaßen. Sie beginnen mit Ihrem Zielmaterial, z. B. einer Zellulosefaser. Diese Faser wird dann mit einer nanometerdicken Schicht aus Molekülen beschichtet. Die beschichteten Fasern werden dann einer intensiven Flamme ausgesetzt. Die äußere Oberfläche der Moleküle verbrennt leicht, wodurch sich die Temperatur in der unmittelbaren Umgebung erhöht. Die innere Oberfläche der molekularen Beschichtung verändert sich jedoch chemisch und bildet eine noch dünnere Glasschicht um die Zellulosefasern. Dieses Glas begrenzt die Menge an Sauerstoff, die zu den Fasern gelangen kann, und verhindert, dass die Zellulose in Flammen aufgeht. Stattdessen schwelen die Fasern - sie brennen langsam von innen nach außen.“

„Ohne die Schutzschicht des ITD würde die Beflammung von Zellulosefasern nur zu Asche führen“, sagt Thuo. „Mit der Schutzschicht des ITD erhält man Kohlenstoffröhren.“

„Wir können die Schutzschicht so gestalten, dass die Menge des Sauerstoffs, die das Zielmaterial erreicht, angepasst wird. Und wir können das Zielmaterial so gestalten, dass es die gewünschten Eigenschaften aufweist.“

Die Forscher führten Probeläufe mit Zellulosefasern durch, um Kohlenstoffröhren im Mikromaßstab herzustellen. Sie konnten die Stärke der Kohlenstoffrohrwände steuern, indem sie die Größe der durch das Einbringen Zellulosefasern, mit denen sie begannen, kontrollierten, indem sie verschiedene Salze in die Fasern einbrachten (was die Verbrennungsgeschwindigkeit zusätzlich steuert) und indem sie die Sauerstoffmenge, die durch die Schutzschicht dringt, variierten.

"Wir haben bereits mehrere Anwendungsmöglichkeiten im Kopf, die wir in zukünftigen Studien untersuchen werden", sagt Thuo. "Wir sind auch offen für eine Zusammenarbeit mit dem privaten Sektor, um verschiedene praktische Anwendungen zu erforschen, wie z. B. die Entwicklung von technischen Kohlenstoffröhren für die Öl-Wasser-Trennung, was sowohl für industrielle Anwendungen als auch für die Umweltsanierung nützlich wäre.

Die Arbeit mit dem Titel „Spatially Directed Pyrolysis via Thermally Morphing Surface Adducts“ wurde in der Zeitschrift Angewandte Chemie veröffentlicht. Mitautoren sind Dhanush Jamadgni und Alana Pauls, Doktoranden am NC State, Julia Chang und Andrew Martin, Postdoktoranden am NC State, Chuanshen Du, Paul Gregory, Rick Dorn und Aaron Rossini von der Iowa State University und E. Johan Foster von der University of British Columbia.

Quelle:

North Carolina State University, Matt Shipman