Textination Newsline

from to
Zurücksetzen
Foto Pixabay
21.03.2023

3D-gedruckte Einlagen messen Sohlendruck direkt im Schuh

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

  • Für Sport und Physiotherapie

Forschende der ETH Zürich, der Empa und der EPFL entwickeln eine 3D-gedruckte Einlagesohle mit integrierten Sensoren, die das Messen des Sohlendrucks im Schuh und damit während beliebiger Aktivitäten erlaubt. Dies hilft Athletinnen oder Patienten, Leistungs- und Therapiefortschritte zu bestimmen.

Im Spitzensport entscheiden manchmal Sekundenbruchteile zwischen Sieg und Niederlage. Um ihre Leistungen zu optimieren, nutzen Sportlerinnen und Sportler deshalb unter anderem massgefertigte Einlagesohlen. Aber auch Menschen mit Schmerzen des Bewegungsapparates greifen auf Einlagen zurück, um ihre Beschwerden zu bekämpfen.

Um solche Einlagen exakt anzupassen, müssen Fachleute zuerst ein Druckprofil der Füsse erstellen. Dazu müssen Sportler oder Patientinnen barfuss über druckempfindliche Matten gehen, wo sie ihren individuellen Fussabdruck hinterlassen. Aufgrund dieses Druckprofils erstellen Orthopädinnen und Orthopäden dann in Handarbeit individuell passende Einlagen. Optimierungen und Anpassungen brauchen aber Zeit. Weiterer Nachteil: Die druckempfindlichen Matten lassen nur Messungen in einem begrenzten Raum zu, aber nicht während des Trainings oder Outdoor-Aktivitäten.

Nun könnte aber eine Erfindung eines Forschungsteams der ETH Zürich, der Empa und der EPFL die Situation deutlich verbessern: Die Forschenden fabrizierten nämlich mittels 3D-Druck eine massgeschneiderte Einlagesohle mit integrierten Drucksensoren. Damit kann der Fusssohlendruck direkt im Schuh bei verschiedenen Aktivitäten gemessen werden.

«Man kann anhand der ermittelten Druckmuster erkennen, ob jemand geht, läuft, eine Treppe hochsteigt oder gar eine schwere Last am Rücken trägt. Dann verlagert sich der Druck nämlich mehr auf die Ferse», erklärt Co-Projektleiter Gilberto Siqueira, Oberassistent an der Empa und am Labor für komplexe Materialien der ETH Zürich. Mühsame Mattentests sind damit passé. Die Erfindung wurde vor kurzem in der Fachzeitschrift Scientific Reports vorgestellt.

Ein Gerät, mehrere Tinten
Dabei ist aber nicht nur die Benutzung, sondern auch die Herstellung der Einlagesohlen einfach. Samt den integrierten Sensoren und Leiterbahnen werden sie in nur einem Arbeitsgang und nur auf einem 3D-Drucker hergestellt, einem sogenannten Extruder. Zum Drucken verwenden die Forschenden verschiedene Tinten, deren Rezepturen sie eigens für diese Anwendung entwickelt haben. So nutzen die Materialwissenschaftler als Grundlage der Einlagesohle ein Gemisch aus Silikon und Zellulose-Nanopartikeln.

Auf diese erste Schicht drucken sie dann mit einer leitfähigen silberhaltigen Tinte die Leiterbahnen, und auf diese an einzelnen Stellen – mit russhaltiger Tinte – die Sensoren. Die Verteilung der Sensoren ist dabei nicht zufällig: Sie werden genau dort platziert, wo der Fusssohlendruck am stärksten ist. Um die Leiterbahnen und die Sensoren zu schützen, überziehen die Forschenden diese mit einer weiteren Silikonschicht.

Eine anfängliche Schwierigkeit bestand darin, eine gute Haftung der unterschiedlichen Materialschichten zu erzielen. Die Forschenden behandelten deshalb die Oberfläche der Silikonschichten mit einem heissen Plasma.

Die Sensoren sind sogenannte Piezoelemente, die mechanischen Druck in elektrische Signale umwandeln. Sie messen Normal- und Scherkräfte. Die Forschenden haben auch eine Schnittstelle zum Auslesen der generierten Daten in die Sohle eingebaut.

Laufdaten bald drahtlos auslesen
Tests zeigten den Forschenden, dass die additiv gefertigte Einlage gut funktioniert. «Mit einer Datenanalyse können wir also tatsächlich verschiedene Aktivitäten identifizieren, je nachdem, welche Sensoren wie stark angesprochen haben», sagt Projektleiter Siqueira.

Im Moment brauchen er und seine Kolleginnen und Kollegen noch eine Kabelverbindung, um die Daten auszulesen. Seitlich der Einlage haben sie einen Kontakt eingebaut. Einer der nächsten Entwicklungsschritte werde sein, eine drahtlose Verbindung zu schaffen. «Das Auslesen der Daten stand bisher jedoch nicht im Vordergrund unserer Arbeit», betont der Forscher.

Eine solche 3D-gedruckte Einlagesohle mit integrierten Sensoren könnte künftig von Sportlerinnen und Sportlern oder auch in der Physiotherapie genutzt werden, etwa um Trainings- oder Therapiefortschritte zu messen. Auf den Messdaten basierend können dann Trainingspläne angepasst und mittels 3D-Druck permanente Schuheinlagen mit unterschiedlich harten und weichen Zonen fabriziert werden.

Obwohl Siqueira das Marktpotenzial für ihre Entwicklung besonders im Spitzensport als gross einschätzt, hat sein Team bislang noch keine Schritte in Richtung Kommerzialisierung unternommen.

An der Entwicklung der Einlagesohle waren Forschende der Empa, der ETH Zürich und der EPFL beteiligt. EPFL-Forscher Danick Briand koordinierte das Projekt und seine Gruppe steuerte die Sensoren bei, die ETH- und Empa-Forschenden die Entwicklung der Tinten und die Druckplattform. Am Projekt beteiligt waren auch das Universitätsspital Lausanne CHUV und die Orthopädiefirma Numo. Gefördert wurde das Projekt im Rahmen der «Strategic Focus Area» Advanced Manufacturing des ETH-Bereichs.

Quelle:

Peter Rüegg, ETH Zürich

(c) nova-Institut GmbH
14.03.2023

Bakterien statt Bäume, Textil- und Agrarabfälle

Zum dritten Mal verlieh das nova-Institut im Rahmen der „Cellulose Fibres Conference 2023“ in Köln, 8. bis 9. März 2023, den Preis „Cellulose Fibre Innovation of the Year“.  

Die jährlich stattfindende Konferenz ist Treffpunkt der globalen Cellulosefaser-Industrie. 42 Referierende aus zwölf Ländern zeigten das Innovationspotenzial von Cellulosefasern auf und präsentierten die neuesten Markteinblicke und Trends vor mehr als 220 Teilnehmenden aus 30 Ländern.

Führende internationale Expertinnen und Experten stellten neue Technologien für das Recycling Cellulose-reicher Rohstoffe und innovative Praktiken der Kreislaufwirtschaft in den Bereichen Textilien, Verpackung und Hygiene vor, die unter aktiver Publikumsbeteiligung in sieben Podiumsdiskussionen erörtert wurden.    

Zum dritten Mal verlieh das nova-Institut im Rahmen der „Cellulose Fibres Conference 2023“ in Köln, 8. bis 9. März 2023, den Preis „Cellulose Fibre Innovation of the Year“.  

Die jährlich stattfindende Konferenz ist Treffpunkt der globalen Cellulosefaser-Industrie. 42 Referierende aus zwölf Ländern zeigten das Innovationspotenzial von Cellulosefasern auf und präsentierten die neuesten Markteinblicke und Trends vor mehr als 220 Teilnehmenden aus 30 Ländern.

Führende internationale Expertinnen und Experten stellten neue Technologien für das Recycling Cellulose-reicher Rohstoffe und innovative Praktiken der Kreislaufwirtschaft in den Bereichen Textilien, Verpackung und Hygiene vor, die unter aktiver Publikumsbeteiligung in sieben Podiumsdiskussionen erörtert wurden.    

Im Vorfeld der Konferenz hatte der Konferenzbeirat sechs bemerkenswerte Innovationen nominiert. Die Gewinner wurden am ersten Veranstaltungstag in einem Kopf-an-Kopf-Rennen im Rahmen eines Live-Votings durch das Konferenzpublikum gewählt.

Die Zusammenarbeit zwischen Nanollose (AU) und Birla Cellulose (IN) mit baumfreiem Lyocell aus bakterieller Cellulose namens Nullarbor™ wurde die siegreiche Cellulosefaser-Innovation 2023, gefolgt von Renewcell (SE) Cellulosefasern aus 100 % Textilabfällen, und Vybrana – die neue Generation von Bananenfasern von Gencrest Bio Products (IN) belegt den dritten Platz.    

Sieger: Nullarbor™ – Nanollose und Birla Cellulose (AU/IN)
Im Jahr 2020 begannen Nanollose und Birla Cellulose eine Reise zur Entwicklung und Vermarktung von baumfreiem Lyocell aus bakterieller Cellulose, genannt Nullarbor™. Der Name leitet sich vom lateinischen „nulla arbor“ ab, was „keine Bäume“ bedeutet. Erste Laborforschungen auf beiden Seiten führten zu einer gemeinsamen Patentanmeldung „Herstellung von hochfesten Lyocellfasern aus bakterieller Cellulose“.  

Nullarbor ist deutlich fester als Lyocell aus holzbasiertem Zellstoff; selbst die Zugabe geringer Mengen von Bakteriencellulose zu Holz-
zellstoff erhöht die Faserzähigkeit. Im Jahr 2022 wurde die erste Pilotcharge von 260 kg mit einem Anteil von 20 % Bakterienzellstoff hergestellt. Mit dieser Faser wurden mehrere hochwertige Stoffe und Kleidungsstücke hergestellt. Die Zusammenarbeit zwischen Nanollose und Birla Cellulose konzentriert sich nun auf eine Erhöhung der Produktionsmenge und des Anteils an bakterieller Zellulose in der Faser.

Zweiter Platz: Circulose® – Macht Mode rund – Renewcell (SE)
Circulose® von Renewcell ist ein Markenzellstoff, der zu 100 % aus Textilabfällen wie Altkleidern und Produktionsabfällen gewonnen wird. Es handelt sich um ein einzigartiges Material für Mode, das zu 100 % recycelt, wiederverwertbar, biologisch abbaubar und von gleichwertiger Qualität wie Neuware ist. Es wird von Faserherstellern zur Herstellung von Stapelfasern oder Filamenten wie Viskose, Lyocell, Modal, Acetat oder anderen Arten von cellulosischen Chemiefasern verwendet. Im Jahr 2022 eröffnete Renewcell in Sundsvall, Schweden, die weltweit erste Anlage für das chemische Recycling von Textilien zu Textilien – Renewcell 1. Die Anlage wird eine jährliche Kapazität von 120.000 Tonnen erreichen.

Dritter Platz: Vybrana – Die Bananenfaser der neuen Generation – Gencrest Bio Products (IN)
Vybrana ist eine nachhaltige, aus Agrarabfällen gewonnene Cellulosefaser von Gencrest. Die Rohfasern werden aus dem Stamm der Banane am Ende des Lebenszyklus der Pflanze extrahiert. Die Biomasseabfälle werden anschließend mit der von Gencrest Bio Products patentierten Fiberzyme-Technologie behandelt. Mithilfe von Cocktail-Enzymformulierungen werden hierbei der hohe Ligningehalt und andere Verunreinigungen entfernt und die Faserfibrillierung unterstützt. Das firmeneigene Kotonisierung liefert feine, spinnbare Zellulosestapelfasern, die sich zum Mischen mit anderen Stapelfasern eignen und auf allen herkömmlichen Spinnsystemen zu Garnen für nachhaltige Bekleidung versponnen werden können. Vybrana wird ohne den Einsatz schädlicher Chemikalien und mit minimalem Wasserverbrauch in einem abfallfreien Verfahren hergestellt, bei dem die Restbiomasse in die Bio-Stimulanzien Agrosatva und bio-basiertem Dünger sowie organischen Dünger umgewandelt werden.

Die nächste Cellulose Fibres Conference findet am 13. und 14. März 2024 statt.

Quelle:

nova-Institut GmbH / Textination

08.03.2023

Composites Germany legt Ergebnisse der 20. Markterhebung vor

  • Gesamtwirtschaftliche Entwicklungen belasten Stimmung in der Composites-Industrie
  • Zukunftserwartungen optimistisch
  • Investitionsklima auf konstantem Niveau
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber bleiben unverändert
  • Composites-Index zeigt in verschiedene Richtungen

Zum 20. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.  

  • Gesamtwirtschaftliche Entwicklungen belasten Stimmung in der Composites-Industrie
  • Zukunftserwartungen optimistisch
  • Investitionsklima auf konstantem Niveau
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber bleiben unverändert
  • Composites-Index zeigt in verschiedene Richtungen

Zum 20. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.  

Gesamtwirtschaftliche Entwicklungen belasten Stimmung in der Composites-Industrie
Wie die Industrie generell war auch die Composites-Industrie in den vergangenen Jahren von starken negativen Einflüssen betroffen. Zentrale Herausforderungen in den letzten Jahren waren vor allem die Corona-Pandemie, der Halbleitermangel, Probleme in den Logistikketten und ein starker Anstieg der Rohstoffpreis. Hinzu kamen weitere Einzeleffekte, die den Druck auf die Industrie zusätzlich erhöht haben.

Zentrale Herausforderungen des letzten Jahres waren hauptsächlich der extreme Anstieg der Energie- und Spritpreise sowie der Logistikkosten. Daneben hat der Krieg in der Ukraine-Krise die ohnehin geschwächten Handelsketten weiter belastet.

Insgesamt zeigen sowohl die Börsenpreise für Strom als auch Erdölpropdukte derzeit zwar deutlich nach unten. Allerdings werden die deutlich geringeren Preise von den Erzeugern/Einkäufern noch nicht an Endkunden weitergegeben.

Die vorgenannten Effekte haben die Stimmung in der Composites-Industrie weiter nach unten gezogen. Der entsprechende Index für die Bewertung der aktuellen generellen Geschäftslage in Deutschland und Europa gibt nochmals nach. Etwas positiver zeigt sich die Bewertung der weltweiten Situation.
    
Trotz dieser generell negativen Bewertung der aktuellen Situation dreht die Bewertung der eigenen Geschäftslage der Unternehmen in der aktuellen Befragung leicht ins Positive. Die befragten Unternehmen bewerten die Position der eigenen Unternehmen somit besser als bei der letzten Befragung.

Zukunftserwartungen optimistisch
Die Erwartungen an die zukünftige Marktentwicklung zeigen ein sehr positives Bild. Die entsprechenden Kennwerte für die generelle Geschäftslage zeigen, nach einem deutlichen Abrutschen bei der letzten Befragung, nun wieder deutlich nach oben. Auch für das eigene Unternehmen zeigen sich die Befragten hinsichtlich ihrer Zukunftserwartungen deutlich optimistischer.

Das Investitionsklima bleibt auf einem relativ stabilen Niveau. Fast die Hälfte der befragten Unternehmen plant für das kommende halbe Jahr entsprechend Personal einzustellen. Nach wie vor halten etwa 70 % der Befragten Maschineninvestitionen für möglich oder planen diese. Dieser Wert bleibt im Gegensatz zur Vorbefragung fast gleich.    

Erwartungen an Anwendungsindustrien unterschiedlich
Der Composites Markt ist durch eine starke Heterogenität sowohl material- aber auch anwendungsseitig gekennzeichnet. In der Befragung werden die Teilnehmer gebeten, ihre Einschätzung hinsichtlich der Marktentwicklung unterschiedlicher Kernbereiche zu geben. Die Erwartungen zeigen sich äußerst verschieden.
 
Das bedeutendste Anwendungssegment für Composites ist der Transportbereich. Die Zulassungszahlen im PKW-Bereich waren dabei in den letzten Jahren rückläufig. Hier manifestierte sich die Abkehr der OEM von Volumenmodellen hin zu margenstarken Mittel- und Hochpreissegmenten. Dies zeigt sich in der aktuellen Befragung an relativ zurückhaltenden Erwartungen an dieses Segment.

Größere Rückgänge werden der derzeit eher pessimistischen Erwartung an die Baukonjunktur folgend vor allem auch in diesem Bereich erwartet. Speziell der Baubereich reagiert oftmals eher langsam auf entsprechende kurzfristige, wirtschaftliche Schwankungen und zeigte sich lange relativ robust gegenüber den oben genannten Krisen. Nun scheint es auch in diesem Bereich zu entsprechend negativen Einflüssen zu kommen.

Die pessimistische Sichtweise auf den Sport- und Freizeitbereich erklärt sich durch eine eher pessimistische Sichtweise auf das Konsumentenverhalten der Verbraucher.
Die Erwartungen an die zukünftige Marktentwicklung sind aber deutlich positiver, als dies die hier dargestellten Zahlen vermuten lassen.
 
Wachstumstreiber bleiben unverändert
Regional bleiben in der aktuellen Erhebung Deutschland, Europa und Asien die Weltregionen, aus denen die wesentlichen Wachstumsimpulse für das Composites-Segment erwartet werden, wobei Europa dabei für viele der Befragten eine Schlüsselrolle einnimmt.

Bei den Werkstoffen setzt sich der Paradigmenwechsel weiter fort. Wurde von den Befragten in den ersten 13 Erhebungen stets CFK als Material genannt, aus dessen Umfeld die wesentlichen Wachstumsimpulse für den Composites-Bereich zu erwarten sind, so werden die wesentlichen Impulse mittlerweile durchweg von GFK oder materialübergreifend erwartet.

Composites-Index zeigt in verschiedene Richtungen
Trotz der zahlreichen negativen Einflüsse der letzten Zeit zeigen sich Composites für die Zukunft gut aufgestellt. Durch eine sehr starke Marktentwicklung in 2021 konnte das Vor-Corona-Niveau bereits fast wieder erreicht werden. Die Aussichten für die Marktentwicklung 2022 liegen noch nicht final vor, zeigen aber eine weniger positive Entwicklung für das letzte Jahr.

Dennoch spricht vieles dafür, dass sich die generell über die letzten Jahre positive Entwicklung der Composites-Industrie weiterhin fortsetzen kann. Die strukturellen Änderungen im Mobilitätsbereich eröffnen Composites mittelfristig die Möglichkeit, auch in neuen Anwendungen Fuß zu fassen. Große Möglichkeiten bieten der Bau- und Infrastrukturbereich. Hier zeigen sich, der schwächeren Marktlage zum Trotz, enorme Chancen für Composites, aufgrund ihres einmaligen Eigenschaftsniveaus, das sie für den langfristigen Einsatz prädestiniert. Langlebigkeit bei nahezu wartungsfreiem Einsatz und die Möglichkeit zur Umsetzung entsprechender Leichtbaukonzepte sowie ein positiver Einfluss im Hinblick auf Nachhaltigkeit sprechen für den Einsatz der Materialien. Darüber hinaus wird die Windindustrie zu einem wesentlichen Wachstumstreiber werden, wenn die politisch selbst gesteckten Ziele zum Anteil der erneuerbaren Energien am Stromverbrauch eingehalten werden sollen.

Insgesamt zeigt der Composites-Index eine verhaltene Bewertung der aktuellen Situation, wohingegen die Bewertung der zukünftigen Situation deutlich positiv ausfällt. Die Befragten schauen somit optimistisch in die Zukunft. Dies deckt sich mit der oben angesprochenen Einschätzung: Composites befinden sich seit vielen Jahrzenten im industriellen (Serien-)Einsatz und offenbaren trotz zahlreicher Herausforderungen auch für die Zukunft ein enormes Potenzial, sich weitere Anwendungsfelder zu erschließen.

Die nächste Composites-Markterhebung erscheint im Juli 2023.

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

Intelligente Beschichtung könnte Textilien zu Schutzkleidung machen

Präzise angewandte metall-organische Technologie erkennt und bindet giftige Gase aus der Luft

Eine dauerhafte Beschichtung auf Kupferbasis, die von Forschenden in Dartmouth entwickelt wurde, kann präzise in Gewebe integriert werden, um reaktionsfähige und wiederverwendbare Materialien wie Schutzausrüstungen, Umweltsensoren und intelligente Filter herzustellen, so eine aktuelle Studie.
 
Die Beschichtung reagiert auf das Vorhandensein giftiger Gase in der Luft, indem sie diese in weniger giftige Substanzen umwandelt, die im Gewebe eingeschlossen werden, berichtet das Team im Journal of the American Chemical Society.

Präzise angewandte metall-organische Technologie erkennt und bindet giftige Gase aus der Luft

Eine dauerhafte Beschichtung auf Kupferbasis, die von Forschenden in Dartmouth entwickelt wurde, kann präzise in Gewebe integriert werden, um reaktionsfähige und wiederverwendbare Materialien wie Schutzausrüstungen, Umweltsensoren und intelligente Filter herzustellen, so eine aktuelle Studie.
 
Die Beschichtung reagiert auf das Vorhandensein giftiger Gase in der Luft, indem sie diese in weniger giftige Substanzen umwandelt, die im Gewebe eingeschlossen werden, berichtet das Team im Journal of the American Chemical Society.

Die Ergebnisse beruhen auf einer leitfähigen metallorganischen Technologie bzw. einem Modell, das im Labor der korrespondierenden Autorin Katherine Mirica, außerordentliche Professorin für Chemie, entwickelt wurde. Dabei handelte es sich um eine einfache Beschichtung, die auf Baumwolle und Polyester aufgetragen werden konnte, um intelligente Textilien zu schaffen, die die Forscher SOFT = Self-Organized Framework on Textiles nannten (JACS 2017). In ihrer Arbeit zeigten sie, dass die SOFT-Smart-Stoffe giftige Substanzen in der Umgebung erkennen und binden können.

In der neuesten Studie fanden die Forscher heraus, dass sie - anstelle der einfachen Beschichtung, über die 2017 berichtet wurde - die Struktur mithilfe eines Kupfervorläufers präzise in Gewebe einbetten können, wodurch sie spezifische Muster erstellen und die winzigen Lücken und Löcher zwischen den Fäden effektiver ausfüllen können.

Die Forschenden stellten fest, dass die Modelltechnologie das Toxin Stickoxid effektiv in Nitrit und Nitrat sowie das giftige, brennbare Gas Schwefelwasserstoff in Kupfersulfid umwandelt. Wie sie weiter berichten, hält die Fähigkeit, giftige Stoffe abzufangen und umzuwandeln sowohl der Abnutzung oder dem normalen Abrieb wie auch Wasch- und Bügelvorgängen stand.
Die Vielseitigkeit und Haltbarkeit, die das neue Verfahren bietet, würde es ermöglichen, das Verfahren für spezifische Zwecke und an präziseren Stellen einzusetzen, beispielsweise als Sensor auf Schutzkleidung oder als Filter in einer bestimmten Umgebung, so Mirica.
 
„Die neue Abscheidungsmethode bedeutet, dass die elektronischen Textilien aufgrund ihrer Robustheit potenziell mit einer breiteren Palette von Systemen verbunden werden könnten“, sagte sie. „Dieser technologische Fortschritt ebnet den Weg für weitere Anwendungen der kombinierten Filtrations- und Sensorfähigkeiten des Gerüsts, die in biomedizinischen Bereichen und bei der Umweltsanierung von Nutzen sein könnten.“

Die Technik könnte auch eine kostengünstige Alternative zu Technologien sein, die teuer und nur begrenzt einsetzbar sind, da sie eine Energiequelle oder - wie etwa Katalysatoren in Autos - seltene Metalle benötigen, so Mirica.
 
„Hier verlassen wir uns auf eine in der Erde reichlich vorhandene Materie, um giftige Chemikalien zu ‚ent‘-giften, und zwar ohne Energiezufuhr von außen, so dass wir keine hohen Temperaturen oder elektrischen Strom benötigen, um diese Funktion zu erreichen“, sagte Mirica.

Co-Erstautor Michael Ko, beobachtete den neuen Prozess zunächst im Jahr 2018, als er versuchte, das metallorganische Gerüst auf kupferbasierten Dünnfilmelektroden abzuscheiden. Aber die Kupferelektroden wurden durch das Gerüst ersetzt.

„Er wollte es oben auf den Elektroden haben und nicht als deren Ersatz“, sagte Mirica. „Wir haben vier Jahre gebraucht, um herauszufinden, was passiert und welchen Nutzen es hat. Es ist ein sehr einfacher Prozess, aber die Chemie dahinter ist es nicht, und wir benötigten einige Zeit und zusätzliche Studierende und Mitarbeitende, um das zu verstehen.“

Das Team entdeckte, dass das metallorganische Gerüst über Kupfer „wächst“ und dieses durch ein Material ersetzt, das in der Lage ist, giftige Gase zu filtern und umzuwandeln. Ko und Co-Autor Lukasz Mendecki, ein Postdoktorand in der Mirica-Gruppe von 2017-18, untersuchten Methoden, um das Gerüstmaterial in bestimmten Designs und Mustern auf Gewebe aufzubringen.

Co-Erstautorin Aileen Eagleton, die ebenfalls der Mirica-Gruppe angehört, hat die Technik durch die Optimierung des Verfahrens zum Aufdrucken des metallorganischen Gerüsts auf Stoff fertiggestellt und untersucht, wie seine Struktur und Eigenschaften durch chemische Exposition und Reaktionsbedingungen beeinflusst werden.

Zukünftige Arbeiten werden sich auf die Entwicklung neuer multifunktionaler Gerüstmaterialien und die Skalierung des Verfahrens zur Einbettung der metallorganischen Beschichtungen in Gewebe konzentrieren, so Mirica.

Quelle:

Dartmouth / Textination

Foto unsplash
21.02.2023

Konsortium für enzymatisches Textilrecycling gewinnt neue Unterstützer

"Gemeinsame Vision einer echten Kreislaufwirtschaft für die Textilindustrie"

Der US-amerikanische Modekonzern PVH hat sich dem von Carbios, On, Patagonia, PUMA und Salomon gegründeten Faser-zu-Faser-Konsortium angeschlossen. Ziel ist es, die Weiterentwicklung des Biorecyclingverfahrens von Carbios im industriellen Maßstab zu unterstützen und so neue globale Standards für Textilrecyclingtechnologien zu setzen. Zu PVH gehören Marken wie Calvin Klein und Tommy Hilfiger. In der von der PVH Corp. unterzeichneten Vereinbarung verpflichtet sich das Unternehmen, durch seine Mitwirkung im Konsortium den Übergang der Textilindustrie zu einer Kreislaufwirtschaft zu beschleunigen.

"Gemeinsame Vision einer echten Kreislaufwirtschaft für die Textilindustrie"

Der US-amerikanische Modekonzern PVH hat sich dem von Carbios, On, Patagonia, PUMA und Salomon gegründeten Faser-zu-Faser-Konsortium angeschlossen. Ziel ist es, die Weiterentwicklung des Biorecyclingverfahrens von Carbios im industriellen Maßstab zu unterstützen und so neue globale Standards für Textilrecyclingtechnologien zu setzen. Zu PVH gehören Marken wie Calvin Klein und Tommy Hilfiger. In der von der PVH Corp. unterzeichneten Vereinbarung verpflichtet sich das Unternehmen, durch seine Mitwirkung im Konsortium den Übergang der Textilindustrie zu einer Kreislaufwirtschaft zu beschleunigen.

Carbios arbeitet mit On, Patagonia, PUMA, PVH Corp. und Salomon daran, seine biologische Recyclingtechnologie an deren Produkten zu testen und zu verbessern. Ziel ist es, im Sinne der Nachhaltigkeitsverpflichtungen den Nachweis zu erbringen, dass durch dieses Verfahren der Kreislauf von Faser zu Faser im industriellen Maßstab geschlossen wird.

Das auf zwei Jahre ausgelegte Kooperationsprojekt soll nicht nur das biologische Recycling von Polyesterartikeln in industriellem Maßstab ermöglichen, sondern auch gründliche Sortier- und Zerlegetechnologien für komplexe Textilabfälle entwickeln. Die bestehenden Mitglieder stimmten einstimmig für den Beitritt der PVH Corp. zum Konsortium und erklärten, das gemeinsame Ziel sei es, die Entwicklung praktikabler Lösungen zu unterstützen, die den Beitrag der Modeindustrie zum Klimawandel adressieren.
 
Carbios hat eine Technologie entwickelt, bei der hochselektive Enzyme zum Einsatz kommen, die gemischte Ausgangsmaterialien recyceln können und so die aufwändige Sortierung reduzieren, die bei den derzeitigen thermomechanischen Recyclingverfahren erforderlich ist. Bei Textilien aus Mischfasern wirkt das patentierte Enzym ausschließlich auf das darin enthaltene PET-Polyester. Mit diesem innovativen Verfahren wird recyceltes PET (r-PET) erzeugt, das in seiner Qualität dem von neuem PET entspricht und zur Herstellung neuer Textilfasern verwendet werden kann
 
Behandlung von Textilabfällen und Recycling
Weltweit werden derzeit nur 13 % der Textilabfälle recycelt, und zwar hauptsächlich für minderwertige Anwendungen wie Polsterung, Isolierung oder Lumpen. Die restlichen 87 % sind für die Deponierung oder Verbrennung bestimmt. Um an der Verbesserung der Textilrecyclingtechnologien zu arbeiten, werden die Mitglieder des Konsortiums Ausgangsmaterial in Form von Bekleidung, Unterwäsche, Schuhen und Sportbekleidung liefern. 2023 wird in der Demonstrationsanlage von Carbios eine neue Anlage für PET-Textilabfälle in Betrieb genommen, insbesondere im Rahmen des von der Europäischen Union kofinanzierten Projekts "LIFE Cycle of PET".  Dies geschieht im Vorgriff auf künftige Vorschriften, wie die getrennte Sammlung von Textilabfällen, die in Europa ab dem 1. Januar 2025 verbindlich vorgeschrieben ist.

Von Faser zu Faser: Kreislauffähigkeit von Textilien
Zur Herstellung von Fasern und Stoffen ist die Textilindustrie heute weitgehend auf nicht erneuerbare Ressourcen angewiesen, zum Teil greift sie auf recycelte PET-Flaschen für recycelte Polyesterfasern zurück. Diese Ressource wird jedoch knapp werden, da PET-Flaschen ausschließlich für die Herstellung neuer Flaschen in der Lebensmittel- und Getränkeindustrie verwendet werden. In einer Kreislaufwirtschaft werden die zur Herstellung von Textilien verwendeten Materialien aus recycelten oder erneuerbaren Rohstoffen gewonnen, die durch regenerative Verfahren hergestellt werden. Die Mitglieder des Konsortiums liefern nicht nur Rohstoffe für die Demonstrationsanlage, sondern wollen auch neue Produkte aus r-PET-Fasern herstellen, die mit dem Biorecycling-Verfahren des Unternehmens produziert werden.
 
"Die Partnerschaft mit Carbios und seinen Konsortiumsmitgliedern zeigt unser kontinuierliches Engagement für die Aufnahme von mehr Kreislaufmaterialien in unsere Kollektionen", so Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global und PVH Europe. "Wir freuen uns, die Entwicklung der enzymatischen Recyclingtechnologie von Carbios zu unterstützen und neue Lösungen zu nutzen, die uns dabei helfen können, die Mode nachhaltig voranzutreiben."

Weitere Informationen:
Carbios Textilrecycling Enzyme
Quelle:

Carbios / Textination

Bild: Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering
15.02.2023

Der neue Schmetterlingseffekt: Wendepunkt für das Recyceln von Kleidung?

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Herkömmliche Etiketten überleben oft nicht bis zum Ende der Lebensdauer eines Kleidungsstücks - sie können abgeschnitten oder gewaschen werden, bis sie unleserlich sind, und die Informationen ohne Etiketten können sich abnutzen. Das Recycling könnte effektiver sein, wenn ein Etikett in den Stoff eingewebt würde, unsichtbar, bis es gelesen werden muss. Genau das könnte die neue Faser leisten.

Recycler verwenden bereits Nahinfrarot-Sortiersysteme, die verschiedene Materialien anhand ihrer natürlich vorkommenden optischen Signaturen identifizieren - PET-Kunststoff in einer Wasserflasche beispielsweise sieht unter Nahinfrarotlicht anders aus als der HDPE-Kunststoff in einer Milchverpackung. Auch verschiedene Stoffe haben unterschiedliche optische Signaturen, aber Brian Iezzi, Postdoktorand in Shteins Labor und Hauptautor der Studie, erklärt, dass diese Signaturen für Recycler nur von begrenztem Nutzen sind, da Mischgewebe weit verbreitet sind.

„Für ein wirklich kreislauforientiertes Recyclingsystem ist es wichtig, die genaue Zusammensetzung eines Stoffes zu kennen - ein Baumwoll-Recycler möchte nicht für ein Kleidungsstück zahlen, das zu 70 % aus Polyester besteht“, so Iezzi. „Natürliche optische Signaturen können dieses Maß an Präzision nicht bieten, aber unsere photonischen Fasern können es.“

Das Team hat die Technologie entwickelt, indem es das photonische Fachwissen von Iezzi und Shtein, das normalerweise bei Produkten wie Displays, Solarzellen und optischen Filtern zum Einsatz kommt, mit der fortschrittlichen Textilexpertise des Lincoln Labs des MIT kombiniert hat. Das Labor arbeitete daran, die photonischen Eigenschaften in ein Verfahren einzubringen, das mit einer großtechnischen Produktion kompatibel ist.

Sie lösten diese Aufgabe, indem sie mit einer Preform begannen - einem Kunststoffrohstoff, der aus Dutzenden von sich abwechselnden Schichten besteht. In diesem Fall verwendeten sie Acryl und Polycarbonat. Während jede einzelne Schicht durchsichtig ist, wird das Licht durch die Kombination zweier Materialien gebeugt und gebrochen, so dass optische Effekte entstehen, die wie Farben aussehen können. Es ist das gleiche grundlegende Phänomen, das Schmetterlingsflügeln ihren Schimmer verleiht.

Die Preform wird erhitzt und dann mechanisch - ähnlich wie Toffee - zu einem haardünnen Faserstrang gezogen. Das Herstellungsverfahren unterscheidet sich zwar von der Extrusionstechnik, mit der herkömmliche synthetische Fasern wie Polyester hergestellt werden, doch können damit dieselben kilometerlangen Faserstränge produziert werden. Diese Stränge können dann mit denselben Geräten verarbeitet werden, die bereits von Textilherstellern verwendet werden.

Durch Anpassung der Materialmischung und der Geschwindigkeit, mit der die Vorform gezogen wird, haben die Forscher die Faser so eingestellt, dass sie die gewünschten optischen Eigenschaften aufweist und recycelbar ist. Obwohl die photonische Faser teurer ist als herkömmliche Textilien, schätzen die Forscher, dass sie nur zu einem geringen Anstieg der Kosten für die Endprodukte führen wird.

„Die photonischen Fasern müssen nur einen kleinen Prozentsatz ausmachen - gerade einmal 1 % des fertigen Kleidungsstücks“, so Iezzi. „Das könnte die Kosten des Endprodukts um etwa 25 Cent erhöhen - ähnlich wie die Kosten für die uns allen bekannten Pflegeetiketten.“

Shtein ist überzeugt, dass die photonische Kennzeichnung nicht nur das Recycling erleichtern, sondern auch dazu verwendet werden könnte, Verbrauchern mitzuteilen, wo und wie die Waren hergestellt wurden, und sogar die Echtheit von Markenprodukten zu überprüfen. Dies könnte eine Option sein, Kunden einen wichtigen Mehrwert zu bieten.

„Wenn elektronische Geräte wie Mobiltelefone immer ausgereifter werden, könnten sie möglicherweise in der Lage sein, diese Art von photonischer Kennzeichnung zu lesen“, so Shtein. „Ich könnte mir also eine Zukunft vorstellen, in der eingewebte Etiketten sowohl für Verbraucher als auch für Recycler ein nützliches Merkmal sind.“

Das Team hat Patentschutz beantragt und prüft derzeit Möglichkeiten, die Technologie zu vermarkten.

Die Forschung wurde von der National Science Foundation und dem Under Secretary of Defense for Research and Engineering unterstützt.

Quelle:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Foto: pixabay
08.02.2023

6 von 10 Verbrauchern achten beim Einkaufen auf Nachhaltigkeitskriterien

Bei Lebensmitteln und Kleidung sind den Verbraucher:innen ESG-Aspekte  am wichtigsten. Besonders junge Menschen fordern Informationen und Transparenz: Nachhaltigkeitssiegel, -zertifizierungen und -berichte sorgen für Vertrauen. Für Händler und Hersteller wird Nachhaltigkeit zum Muss.

Bei Lebensmitteln und Kleidung sind den Verbraucher:innen ESG-Aspekte  am wichtigsten. Besonders junge Menschen fordern Informationen und Transparenz: Nachhaltigkeitssiegel, -zertifizierungen und -berichte sorgen für Vertrauen. Für Händler und Hersteller wird Nachhaltigkeit zum Muss.

Unter welchen Bedingungen werden die Kühe gehalten, deren Milch ich trinke? Duldet der Hersteller meines neuen T-Shirts Kinderarbeit? Geht der Händler meines Vertrauens fair mit Mitarbeitenden und Geschäftspartnern um? Solche Fragen stellt sich die Mehrheit der Deutschen vor einer Kaufentscheidung. 59 Prozent der Verbraucher:innen achten beim Einkaufen immer oder zumindest häufig auf die ökologische, ökonomische oder soziale Nachhaltigkeit von Händlern und Herstellern. Bei den unter 35-Jährigen sind es sogar zwei Drittel, bei den über 55-Jährigen immerhin jede:r Zweite. Zu diesen Ergebnissen kommt eine repräsentative Befragung unter 1.000 Menschen in Deutschland im Auftrag der Wirtschaftsprüfungs- und Beratungsgesellschaft PwC Deutschland.

Bei Nachhaltigkeit geht es nicht mehr um das „Ob“, sondern das „Wie“
„Nachhaltigkeit hat sich in den vergangenen Jahren zum Mainstream entwickelt. Für Unternehmen ist es längst ein Muss, in ihren Lieferketten auf Nachhaltigkeit zu achten“, kommentiert Dr. Christian Wulff. Der Leiter des Bereichs Handel und Konsumgüter bei PwC Deutschland ist überzeugt, dass Unternehmen bereits in naher Zukunft gute Gründe nennen müssen, wenn sie bei der Herstellung eines Produkts nicht auf Umwelt, soziale Aspekte und eine gute Unternehmensführung achten. „Beim Thema Nachhaltigkeit geht es also nicht mehr um das Ob, sondern um das Wie“, so der Handels-Experte weiter.

Nachhaltigkeit beinhaltet verschiedene Aspekte in den drei Bereichen Umwelt, Soziales und nachhaltige Unternehmensführung (auf Englisch: Environment, Social, Governance, kurz: ESG). Bei der umweltbezogenen Nachhaltigkeit stehen Fragen zum Tierwohl - etwa die Haltungsbedingungen oder Tierversuche - und zur Verwendung recyclebarer Materialien im Mittelpunkt. 40 Prozent der Deutschen würden gerne vor einem Kauf darüber aufgeklärt werden. Im sozialen Bereich ist der Mehrheit der Befragten wichtig zu wissen, ob Einzelhandel und Hersteller die Menschenrechte einhalten (58 Prozent) - also beispielsweise Zwangs- oder Kinderarbeit in ihren Wertschöpfungsketten dulden. Mit Blick auf die Governance - also die Unternehmensführung - wünscht sich jede:r Zweite, vor dem Kauf über die Lieferketten Bescheid zu wissen und die Produkte zurückverfolgen zu können.

Bei Lebensmitteln ist Nachhaltigkeit besonders wichtig
Wie genau die Verbraucher:innen auf Nachhaltigkeit schauen, hängt auch vom Produkt ab: So ist ihnen Nachhaltigkeit bei Lebensmitteln besonders wichtig. 81 Prozent der Deutschen achten beim Kauf von Nahrungsmitteln zumindest auf eines der drei ESG-Kriterien, also Umwelt, Soziales oder eine gute Unternehmensführung. Aber auch beim Kauf von Textilien sind diese Kriterien relevant: Immerhin 63 Prozent geben an, beim Kauf von Kleidung oder Schuhen darauf zu schauen, wie nachhaltig der Artikel entstanden ist. Während bei Lebensmitteln Umweltaspekte die größte Rolle spielen (für 62 Prozent), achten die Verbraucher:innen bei Kleidung, Schuhen und Accessoires vermehrt auf soziale Aspekte (52 Prozent).

Fast jede:r Zweite ist kürzlich zu nachhaltigen Produkten gewechselt
Die wachsende Bedeutung von ESG-Aspekten im Einkaufsverhalten deutscher Verbraucher:innen belegen auch die Verschiebungen hin zum Kauf von nachhaltigen Produkten. Bei Lebensmitteln ist der Trend zu nachhaltigen Produkten am deutlichsten: 45 Prozent der Befragten geben an, dass sie innerhalb der vergangenen zwei Jahre bewusst auf nachhaltigere Produkte umgeschwenkt sind. Den Wechsel (zurück) auf weniger nachhaltige Produkte räumen dagegen nur 17 Prozent ein, von denen jede:r Dritte fehlende finanzielle Mittel als Grund angibt.

Ein möglicher Wechsel zu nachhaltigeren Produkten würde für knapp die Hälfte der Befragten durch eine bessere Verfügbarkeit im stationären Handel unterstützt. Auch gesetzliche Regelungen werden als hilfreich erachtet, sowohl hinsichtlich der Auszeichnung von Produkten (38 Prozent) als auch für den Produktionsprozess (37 Prozent). Ebenfalls würde eine aufmerksamkeitsstärkere Produktplatzierung im Geschäft helfen (37 Prozent).

Vor allem junge Menschen fordern Transparenz und Aufklärung
Das Bedürfnis der Verbraucher:innen nach Transparenz in Sachen ESG ist ausgeprägt: So informieren sich laut Umfrage fast drei Viertel der Deutschen mindestens gelegentlich über ökologische Nachhaltigkeitsthemen. Zwei Drittel recherchieren Aspekte der sozialen Nachhaltigkeit. Gut die Hälfte macht sich regelmäßig über eine nachhaltige Unternehmensführung schlau.

Dabei hat das Alter großen Einfluss darauf, wie intensiv sich die Menschen mit dem Thema auseinandersetzen: Während 80 Prozent der 16- bis 24-Jährigen sich vor dem Kauf über Umweltaspekte eines Produkts informieren, sind es bei den über 65-Jährigen nur 59 Prozent. „Insbesondere jüngere Menschen informieren sich aktiv und fordern Transparenz rund um ESG-Kriterien“, resümiert Christian Wulff.

Verbraucher:innen wünschen sich Infos auf Verpackungen und online
Um diesem Informationsbedürfnis nachzukommen, rät der PwC-Experte Herstellern und Einzelhandel, insbesondere online ausführlich über ESG-Aspekte der Produkte zu informieren. „Die damit verbundene, deutlich steigende Datenflut stets aktuell zu halten, wird für Unternehmen zunehmend zu einer Herausforderung, die nur durch signifikante Investitionen in neue Technologien zu lösen ist.“

Einig sind sich die Konsument:innen darin, was Unternehmen tun können, um ihren Nachhaltigkeitsaktivitäten mehr Glaubwürdigkeit zu verleihen: Gut zwei Drittel halten anerkannte Nachhaltigkeitssiegel, Zertifizierungen oder unabhängig geprüfte Nachhaltigkeitsberichte für geeignet, um Aktivitäten in puncto ESG glaubhaft vermitteln können. „Die Ergebnisse unserer Befragung zeigen, dass Siegel und unabhängige Zertifizierungen sehr wichtig sind, um das Vertrauen der Kund:innen zu gewinnen. Es lohnt sich also, die ESG-Maßnahmen durch externe Organisationen bestätigen zu lassen“, so Christian Wulff.

Händler und Hersteller sollten auf Transparenz setzen
„Hersteller und Einzelhandel stehen vor der Aufgabe, im Hinblick auf die Nachhaltigkeit ihrer Produkte für ein hohes Maß an Transparenz zu sorgen. Dabei ist Ehrlichkeit, aber auch Kreativität gefragt: Bei Mode ist es beispielsweise denkbar, die einzelnen Stationen der Lieferkette detailliert nachzuzeichnen und die dabei anfallenden Kosten darzustellen. So können die Verbraucher:innen genau nachvollziehen, wie ein Preis zustande kommt“, so das Fazit von Christian Wulff.

Quelle:

PwC / Textination

Aerogel (c) Outlast Technologies GmbH
31.01.2023

Aerogel: Gefrorener Rauch für Bekleidung und Arbeitsschutz

Mit einem Luftanteil von bis zu 99,8 Prozent ist Aerogel der leichteste Feststoff der Welt. Das aufgrund seiner optischen und physikalischen Eigenschaften auch als „gefrorener Rauch“ bezeichnete Material hat eine außerordentlich geringe Wärmeleitfähigkeit, die andere Isolierungen um ein Vielfaches übertrifft. Die NASA nutzt Aerogel daher seit vielen Jahren für Raumfahrt-Projekte.

Mit einem Luftanteil von bis zu 99,8 Prozent ist Aerogel der leichteste Feststoff der Welt. Das aufgrund seiner optischen und physikalischen Eigenschaften auch als „gefrorener Rauch“ bezeichnete Material hat eine außerordentlich geringe Wärmeleitfähigkeit, die andere Isolierungen um ein Vielfaches übertrifft. Die NASA nutzt Aerogel daher seit vielen Jahren für Raumfahrt-Projekte.

Dennoch war es in der rund 90-jährigen Geschichte des Werkstoffes bisher nicht gelungen, ihn in hoher Konzentration an Textilien zu binden und eine unkomplizierte Weiterverarbeitung zu ermöglichen. Die Outlast Technologies GmbH hat nun ein neuartiges zum Patent angemeldetes Verfahren entwickelt, mit dem sich große Mengen Aerogel dauerhaft an unterschiedliche Träger wie Vliesstoffe, Filze und Verbundmaterialien heften lassen. Deren ursprüngliche Eigenschaften bleiben erhalten, sodass sie sich in herkömmlichen Fertigungsprozessen problemlos weiterverarbeiten lassen.
 
Die unter dem Namen Aersulate vertriebenen Textilien sind nur 1 bis 3 mm dick und erreichen sehr hohe Isolationswerte, die selbst unter Druck und Feuchtigkeit weitestgehend erhalten bleiben. Trotz ihrer hohen Leistungsfähigkeit sind sie weich und bieten sich für Schuhe, Bekleidung und Arbeitsschutzprodukte an, aber auch für Schlafsäcke oder technische Anwendungen.

„Aufgrund der außerordentlichen physikalischen Eigenschaften nutzt die NASA Aerogel bereits seit vielen Jahren“, weiß Volker Schuster, Leiter Forschung und Entwicklung bei Outlast Technologies, „zum Beispiel zur Isolierung bei ihren Mars-Rovern oder zum Einfangen von Staub aus dem Schweif eines Kometen bei der Stardust-Mission.“ Seit der Entwicklung von Aerogel durch den US-amerikanischen Wissenschaftler und Chemieingenieur Samuel Stephens Kistler im Jahr 1931 war es trotz intensiver Forschung allerdings niemandem gelungen, den vielseitigen Werkstoff in größeren Mengen auf Textilien aufzubringen, ohne deren ursprüngliche Eigenschaften zu verändern. Damit waren die Produkte nicht nur häufig sehr starr, sondern machten durch ihren großen Staubabrieb auch eine Verarbeitung in herkömmlichen Produktionsprozessen unmöglich. Mit der neuentwickelten Aersulate-Technologie, die im Juni 2022 erstmals vorgestellt wurde, schlägt der in Heidenheim ansässige Spezialist für textile Thermoregulierung ein anderes Kapitel in der Isolierungs-Geschichte auf.

High-Performance-Isolierung - 1-3 mm dick
„Die Konsistenz von Aerogel lässt sich am besten als flüssige Staubkörner beschreiben, die sich aufgrund ihrer geringen Dichte innerhalb von Sekunden unkontrollierbar im Raum verteilen“, so Schuster. „Daher ist die Verarbeitung eine große Herausforderung.“ Es brauchte eine rund fünfjährige Entwicklungszeit, bis Outlast Technologies das neuartige Verfahren, Aerogel zwischen mehrere Stofflagen einzukleben, zur Marktreife brachte. Je nach Anwendungsbereich können Vliesstoffe, Filze oder unterschiedliche Verbundmaterialien als Träger genutzt werden. Die Eigenschaften der jeweiligen Textilien werden durch die Aersulate-Technologie nicht beeinträchtigt, sodass sie sich – trotz ihrer zugewonnenen thermischen Eigenschaften – problemlos in herkömmlichen Prozessen und unter industriellen Bedingungen weiterverarbeiten lassen.
 
Als Feststoff auf Silicatbasis wird Aerogel aus natürlichem Quarzsand gewonnen, verfügt jedoch über eine 1.000 Mal geringere Dichte als aus demselben Rohstoff hergestellte Gläser. Die außerordentliche Isolierungsleistung verdankt das Material seiner extrem porigen Struktur, die einen Luftanteil von bis zu 99,8 Prozent ermöglicht.
 
„Ein Liter Aerogel wiegt gerade einmal 50 g“, erläutert Schuster. „Schon 10 g davon verfügen allerdings über die Oberfläche eines Fußballfeldes.“ Dank dieser Eigenschaften übertreffen die Aersulate-Textilien bei einer deutlich geringeren Dicke sämtliche bisher bekannte Isolierungsmaterialien in ihrer Performance. So haben Tests der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) mithilfe des Alambeta-Verfahrens ergeben, dass sich der Wärmedurchgangswiderstand eines Aersulate-Vlieses im Vergleich zu einem herkömmlichen Vlies mit identischer Dicke mehr als verdoppelt. Hinzu kommt, dass die Isolierungsleistung von Aersulate-Produkten trotz Druck und Nässe hoch bleibt, während sie bei anderen gebräuchlichen Stoffen wie Filzen oder Polyurethan-Schäumen (PU) unter diesen Bedingungen massiv abnimmt.

Arbeitsschutz und Funktionskleidung mit Aersulate
Dank des textilen Trägers eignen sich die dünnen Aersulate-Produkte besonders für die Schuh- und Bekleidungsindustrie sowie sämtliche Bereiche des Arbeitsschutzes. Je nach Einsatzzweck kommen dem Anwender die unterschiedlichen Eigenschaften zugute: „Mit einem Handschuh aus nur 1 mm dickem Aersulate kann man zum Beispiel problemlos in kochendes Wasser greifen, ohne sich zu verbrühen“, erklärt Schuster. „Hier spielen uns die extrem hydrophoben Eigenschaften wortwörtlich in die Hände.“ Bei dem Kniebesatz von Arbeits- sowie Funktionshosen oder bei Schuhen bzw. -sohlen werden dagegen auch die Materialeigenschaften bei Kompression relevant. Denn die Isolierungsleistung anderer Stoffe würde einerseits durch die Feuchtigkeit – von außen sowie als Schweiß von innen – und andererseits durch die permanente Einwirkung des Körpergewichts nach und nach abnehmen.
          
Abgesehen vom eigenen Körper lassen sich mit Aersulate auch Gepäck oder technische Geräte vor extremen Temperaturen sowie Witterungseinflüssen schützen. Zu diesem Zweck können bspw. entsprechende Handy- oder Equipmenttaschen in Kleidungsstücke eingenäht werden, um die Akkulaufzeit auch bei sehr kalten Außentemperaturen zu erhalten oder die Geräte bei starker Wärmeeinwirkung vor Überhitzen zu bewahren. „Mit der breiten Palette an möglichen textilen Trägermaterialien eignet sich Aersulate für alle Anwendungen, die einerseits eine hohe Isolierungsleistung erfordern, bei denen andererseits aber nur wenig Platz vorhanden und mit Kompression sowie Feuchtigkeit zu rechnen ist“, fasst Schuster die Vorteile zusammen.

Quelle:

Outlast Technologies / Textination

(c) Continuum
24.01.2023

… und sie können doch recycelt werden: Windturbinenblätter

Das dänische Unternehmen Continuum Group ApS mit Tochtergesellschaften in Dänemark (Continuum Aps) und Großbritannien (Continuum Composite Transformation (UK) Limited) will ausgedienten Windkraftflügeln und Verbundwerkstoffen einen neuen Zweck geben und verhindern, dass sie in den Müll wandern. Zielsetzung ist, die durch die derzeitigen Abfallströme in die Atmosphäre abgegebenen CO2-Mengen zu reduzieren und so einen Beitrag zu den europäischen Net Zero-Bemühungen zu leisten.

Continuum stellt nach eigenen Angaben sicher, dass alle Windturbinenblätter zu 100 % recycelbar sind, und plant, in ganz Europa Recyclingfabriken im industriellen Maßstab zu errichten.

Net Zero ist in aller Munde, 2030 rückt näher, über die Erzeugung erneuerbarer Energie durch Windenergie, die Millionen von europäischen Haushalten mit Strom versorgen soll ist omnipräsent in den Nachrichten – doch was passiert, wenn Turbinenblätter das Ende ihrer Lebensdauer erreichen?

Das dänische Unternehmen Continuum Group ApS mit Tochtergesellschaften in Dänemark (Continuum Aps) und Großbritannien (Continuum Composite Transformation (UK) Limited) will ausgedienten Windkraftflügeln und Verbundwerkstoffen einen neuen Zweck geben und verhindern, dass sie in den Müll wandern. Zielsetzung ist, die durch die derzeitigen Abfallströme in die Atmosphäre abgegebenen CO2-Mengen zu reduzieren und so einen Beitrag zu den europäischen Net Zero-Bemühungen zu leisten.

Continuum stellt nach eigenen Angaben sicher, dass alle Windturbinenblätter zu 100 % recycelbar sind, und plant, in ganz Europa Recyclingfabriken im industriellen Maßstab zu errichten.

Net Zero ist in aller Munde, 2030 rückt näher, über die Erzeugung erneuerbarer Energie durch Windenergie, die Millionen von europäischen Haushalten mit Strom versorgen soll ist omnipräsent in den Nachrichten – doch was passiert, wenn Turbinenblätter das Ende ihrer Lebensdauer erreichen?

Aktuell lautet die allgemeine Antwort, sie zu deponieren oder zu Zement zu verarbeiten, was beides nicht umweltfreundlich ist. Viele Länder in Europa streben ab 2025 ein Deponieverbot an, so dass diese Möglichkeit in naher Zukunft entfallen dürfte.

Eine Alternative bietet Continuum an: Wenn das Ende des ersten Lebenszyklus der Turbinenblätter erreicht ist, recycelt das Unternehmen sie zu neuen, hochleistungsfähigen Verbundplatten für das Baugewerbe und verwandte Branchen. Die Vision der Dänen: Die Abkehr von der derzeitigen Deponierung und die drastische Reduzierung der CO2-Emissionen, die bei der Verbrennung und Weiterverarbeitung in Zementfabriken entstehen. 100 Millionen Tonnen bis zum Jahr 2050 sollen durch deren mechanische Verbundstoff-Recyclingtechnologie und Produktionsstätten im industriellen Maßstab eingespart werden.  

Die Technologie sei erprobt, patentiert und einsatzbereit, so Reinhard Kessing, Mitbegründer und CTO der Continuum Group ApS. Kessing hat über 20 Jahre Forschungs- und Entwicklungsarbeit in diesem Bereich geleistet und die Rückgewinnung von Rohstoffen aus Windflügeln und anderen Verbundwerkstoffprodukten sowie die Umwandlung dieser Materialien in neue, leistungsstarke Plattenprodukte vorangetrieben.

Durch die Zusammenarbeit mit Partnern deckt Continuum kostengünstig die gesamte Logistik und alle Prozesse ab. Dies reicht von der Sammlung der ausgedienten Flügel über die Rückgewinnung der reinen, sauberen Rohstoffe bis hin zur Wiederaufbereitung all dieser Materialien zu hochwertigen, hochleistungsfähigen, unendlich recycelbaren Verbundplatten für die Bauindustrie oder die Herstellung vieler Alltagsprodukte wie Fassaden, Industrietüren und Küchenarbeitsplatten. Die Platten bestehen zu 92 % aus recyceltem Blattmaterial und sollen die Leistung vieler Konkurrenzprodukte deutlich übertreffen.

Nicolas Derrien: Vorstandsvorsitzender der Continuum Group ApS sagte: „Wir brauchen Lösungen für die umweltfreundliche Entsorgung von Windturbinenblättern, wir brauchen sie jetzt, und wir brauchen sie schnell! Als Gesellschaft konzentrieren wir uns zu Recht auf die Erzeugung erneuerbarer Energien, aber die Frage, was mit den Rotorblättern von Windkraftanlagen nach der Produktion geschehen soll, wurde bisher nicht effektiv angegangen. Wir ändern das, indem wir eine Recyclinglösung für die Flügel und ein Bauprodukt anbieten, das die meisten anderen existierenden Baumaterialien übertrifft, unendlich oft recycelbar ist und den geringsten Kohlenstoff-Fußabdruck seiner Klasse aufweist."

Martin Dronfield, Chief Commercial Officer der Continuum Group ApS und Geschäftsführer von Continuum Composite Transformation (UK) Ltd, fügt hinzu: "Wir brauchen Windenergiebetreiber und -entwickler in ganz Europa, die einen Schritt zurücktreten und mit uns zusammenarbeiten, um die Herausforderung des großen Ganzen zu lösen. Continuum bietet ihnen einen Service, der nicht nur ihrem Unternehmen eine vollständige und nachhaltige Kreislaufwirtschaft ermöglicht, sondern auch zum Schutz unseres Planeten beiträgt.

Jeder Continuum-Industriestandort in Europa wird mindestens 36.000 Tonnen Turbinenschaufeln am Ende ihrer Lebensdauer pro Jahr recyceln können und als hochwertiges, unbegrenzt recycelbares Produkt bis 2024/25 wieder in die Kreislaufwirtschaft einspeisen.

Durch eine Investition von Climentum Capital und einen Zuschuss der britischen "Offshore Wind Growth Partnership" plant Continuum, die erste von sechs Fabriken in Esbjerg bis Ende 2024 in Betrieb zu nehmen und eine zweite Fabrik in Großbritannien direkt danach zu errichten. Anschließend sollen bis 2030 vier weitere in Frankreich, Deutschland, Spanien und der Türkei entstehen.

Als Teil des eigenen Versprechens, umweltfreundliches Verhalten zu fördern, hat Continuum seine Produktionsstätten so konzipiert, dass sie ausschließlich mit 100 % grüner Energie betrieben werden und keine Kohlenstoffemissionen verursachen, d. h. keine Emissionen in die Luft, keine Abfallstoffe in den Boden und keine Verbrennung von Kohlenstoff.

Quelle:

Continuum / Textination

North Carolina State University
17.01.2023

Mit Stickerei kostengünstig Wearable Electronics produzieren

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 
In der Studie, die in der Zeitschrift Nano Energy veröffentlicht wurde, testeten die Forscher mehrere Designs für stromerzeugende Garne. Um sie so haltbar zu machen, dass sie der Spannung und Biegung beim Sticken standhalten, verwendeten sie schließlich fünf handelsübliche Kupferdrähte, die mit einer dünnen Polyurethanbeschichtung versehen waren. Dann nähten sie sie mit einem anderen Material - PTFE - auf Baumwollgewebe.

„Dies ist eine kostengünstige Methode zur Herstellung von tragbarer Elektronik mit handelsüblichen Produkten“, so Yin. „Die elektrischen Eigenschaften unserer Prototypen waren mit denen anderer Designs vergleichbar, die auf demselben Mechanismus zur Stromerzeugung basieren“.
Die Forscher stützten sich auf eine Methode zur Stromerzeugung, die als „triboelektrischer Effekt“ bezeichnet wird und bei der Elektronen, die von zwei verschiedenen Materialien ausgetauscht werden, wie statische Elektrizität nutzbar gemacht werden. Sie stellten fest, dass das PTFE-Gewebe in Kontakt mit den polyurethanbeschichteten Kupferdrähten die beste Leistung in Bezug auf Spannung und Stromstärke erbrachte, verglichen mit anderen getesteten Gewebetypen, darunter Baumwolle und Seide. Sie testeten ebenfalls die Beschichtung der Stickerei-Muster mit Plasma, um den Effekt zu verstärken.

„In unserem Muster gibt es zwei Schichten - eine ist der leitende, mit Polyurethan beschichtete Kupferdraht, die andere ist PTFE, und dazwischen befindet sich eine Lücke", so Yin. "Wenn die beiden nichtleitenden Materialien miteinander in Kontakt kommen, verliert das eine Material Elektronen und das andere erhält Elektronen. Verbindet man sie miteinander, so entsteht ein Strom.”

Die Forscher testeten ihre Garne als Bewegungssensoren, indem sie sie mit dem PTFE-Gewebe auf Jeansstoff bestickten. Sie platzierten die Stickereien auf der Handfläche, unter dem Arm, am Ellbogen und am Knie, um die elektrischen Signale zu verfolgen, die bei der Bewegung einer Person entstehen. Außerdem befestigten sie den bestickten Stoff an der Innensohle eines Schuhs, um seine Verwendung als Schrittzähler zu testen. Dabei stellten sie fest, dass die elektrischen Signale variierten, je nachdem, ob die Person ging, lief oder sprang.
Schließlich testeten sie ihre Garne in einem textilbasierten Ziffernblock am Arm, den sie anfertigten, indem sie Zahlen auf ein Stück Baumwollstoff stickten und dieses auf einem Stück PTFE-Gewebe befestigten. Je nach Zahl, die die Person auf dem Tastenfeld drückte, wurden unterschiedliche elektrische Signale erzeugt.

„Man kann unsere Garne auf Kleidung sticken, und wenn man sich bewegt, wird ein elektrisches Signal erzeugt, und diese Signale können als Sensor verwendet werden“, sagte Yin. „Wenn wir die Stickerei in einen Schuh einnähen, erzeugt sie beim Laufen eine höhere Spannung als beim bloßen Gehen. Wenn wir Zahlen auf den Stoff gestickt haben und sie drücken, wird für jede Zahl eine andere Spannung erzeugt. Das könnte als Interface genutzt werden.”

Da Textilprodukte unweigerlich gewaschen werden, testeten sie die Haltbarkeit ihres Stickdesigns in einer Reihe von Wasch- und Reibungstests. Nach dem Waschen mit der Hand, dem Durchwaschen mit Waschmittel und dem Trocknen im Ofen, stellten sie keinen Unterschied oder einen leichten Anstieg der Spannung fest. Bei dem mit Plasma beschichteten Prototyp wurde eine schwächere, aber immer noch bessere Leistung im Vergleich zum Originalmuster festgestellt. Nach einem Abriebtest konnte festgehalten werden, dass sich die elektrische Ausgangsleistung nach 10.000 Scheuerzyklen nicht signifikant verändert hatte.

Für die Zukunft planen sie, ihre Sensoren mit anderen Geräten zu integrieren, um weitere Funktionen hinzuzufügen. „Der nächste Schritt ist die Integration dieser Sensoren in ein tragbares System“, so Yin.

Die Studie mit dem Titel " Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction " wurde online in Nano Energy veröffentlicht. Zu den Koautoren gehören Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao und Bao Yang. Die Finanzierung erfolgte durch die North Carolina State University über den NC State Faculty Research & Professional Development Fund und das NC State Summer REU-Programm.

Quelle:

North Carolina State University, Rong Yin, Laura Oleniacz

Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

04.01.2023

Kreislaufwirtschaft: Es könnte alles so einfach sein... oder auch nicht

Interview mit Henning Wehland & Robert Kapferer, Circularity Germany

Ich bin von Natur aus ein sehr neugieriger Typ. Deshalb hatte ich mich in diesem Jahr bei einer bekannten Münsteraner Hotdog-Station als Aushilfe angeboten, um auf die Personalnot in der Gastronomie aufmerksam zu machen. Darüber schrieb ich einen Artikel auf LinkedIn, auf den wiederum Ines Chucholowius reagierte.
Aus ihrem Profil konnte ich entnehmen, dass sie als Unternehmensberaterin im Bereich der Textilindustrie tätig ist. Nicht ganz ernst gemeint, bot sie mir eine Stelle in ihrem Büro an. Auf Knopfdruck sprang mein Kopfkino an: Textilindustrie, spannend! Merchandising, Kontakte in die Industrie, Kooperationen und ich ließ mich auf einen kurzen Chat ein, an dessen Ende wir telefonierten und uns auf ein Gespräch verabredeten.

Interview mit Henning Wehland & Robert Kapferer, Circularity Germany

Ich bin von Natur aus ein sehr neugieriger Typ. Deshalb hatte ich mich in diesem Jahr bei einer bekannten Münsteraner Hotdog-Station als Aushilfe angeboten, um auf die Personalnot in der Gastronomie aufmerksam zu machen. Darüber schrieb ich einen Artikel auf LinkedIn, auf den wiederum Ines Chucholowius reagierte.
Aus ihrem Profil konnte ich entnehmen, dass sie als Unternehmensberaterin im Bereich der Textilindustrie tätig ist. Nicht ganz ernst gemeint, bot sie mir eine Stelle in ihrem Büro an. Auf Knopfdruck sprang mein Kopfkino an: Textilindustrie, spannend! Merchandising, Kontakte in die Industrie, Kooperationen und ich ließ mich auf einen kurzen Chat ein, an dessen Ende wir telefonierten und uns auf ein Gespräch verabredeten.

Sie erzählte mir von ihrer Internetseite TEXTINATION.de. Und schon waren wir drin in einem spannenden, hitzigen Austausch über Wahrnehmung und Wahrheit der Textilbranche. Ohne Weiteres zu verabreden, ließen wir es dabei und ich ging mit einem Batzen neuer Informationen über einen spannenden Bereich nach Hause. Unser Dialog über Social Media ging weiter und schließlich bot Ines mir an, mit Unterstützung von TEXTINATION.de meine „Die-Sendung-mit-der-Maus-Neugierde“ zu stillen. Ich könne einen Blog auf der Seite schreiben, über Menschen, Produkte, Dienstleister, Produzenten, Startups oder Trends, die mich interessieren, um so mein Halbwissen über die Textilindustrie zu ergänzen. Das erste Ergebnis dieser Zusammenarbeit liegt hier vor.

Vorne textiler Abfall rein … hinten neues T-Shirt raus
Während unseres Austauschs und einem langen Brainstorming kitzelten immer wieder bestimmte Begriffe meine Aufmerksamkeit:
Kreislaufwirtschaft, Circular Economy, Recycling, Wertstoffkreisläufe. Auch wenn es viele verschiedene Definitionen gibt und einige sogar zwischen Kreislaufwirtschaft und Circular Economy unterscheiden: ersteres von der Abfallseite gedacht, Abfall, der als Sekundärrohstoff wieder in die Produktion einfließt, Circular Economy, die die Abfälle bereits in der Produktion vermeidet, besteht allgemeiner Konsens eigentlich nur darüber, dass es sich bei der Kreislaufwirtschaft um einen Kreislauf handelt, in dem Abfälle als Quelle für etwas Neues verwendet werden.

Klingt für mich beides nach sinnvollen Ergänzungen für alle Bereiche der produzierenden Güterwirtschaft. Ines stellte mir Robert Kapferer vor: Er betreibt ein Startup namens Circularity Germany in Hamburg. Seine 2021 gegründete Firma, die aus Robert und einem weiteren Partner besteht, ist ein Ableger der in Holland ansässigen Firma Circularity B.V. Deren Gründer Han Hamers, studierter Kinderpsychologe, aus der Textilfärbeindustrie kommend, hatte vor fünf Jahren die Idee für eine Produktionsstätte, die ausnahmslos aus textilen Produktionsabfällen und Alttextilien neues Garn spinnt und es zu T-, Polo- und Sweatshirts verarbeitet.

Ob das funktioniert und wenn ja, wie, das wollte ich herausfinden, und Ines und ich haben uns mit Robert zu einem 90-minütigen Onlinegespräch getroffen.

Robert, von Haus aus Wirtschaftsingenieur, kommt aus dem wenig nachhaltigen Handel mit Arbeitskleidung. Er hat 11 Jahre als Geschäftsführer für die AVECO Material und Service GmbH gearbeitet, wo er für die Arbeitskleidung von mehr als 50.000 Mitarbeitern zuständig war.
Eingangs unseres Gesprächs betont er, dass ein Moment im Januar 2021 sein Leben verändert habe und er sich von da an mit Haut und Haaren dem Thema Kreislaufwirtschaft widmen wollte. Damals lernte er Han Hamers kennen, der ihn dazu inspirierte, Circularity Germany zu gründen. Seine Begeisterung und Leidenschaft für das Thema klingen glaubwürdig, und er beginnt, die Unterschiede zwischen chemischer und mechanischer Recyclingmethode zu beschreiben. Zusammengefasst werden beim mechanischen Verfahren des Schredderns und des anschließenden Spinnens die Fasern verkürzt und insbesondere im Wiederholungsfall deren Eigenschaften für die Weiterverarbeitung eingeschränkt. Der Vorteil liegt vor allem in dem vergleichsweise unkomplizierten, schnellen und kostengünstigeren Verfahren. Bei der chemischen Variante bleibt zwar chemischer Abfall zurück, aber die verarbeiteten Materialien werden wieder so in ihre Grundbausteine zerlegt, dass sie fast alle Eigenschaften wie ein sogenannter jungfräulicher (virgin) Rohstoff haben. Circularity steht für das mechanische Verfahren.

Und dann fällt der Satz, der unsere ganze Aufmerksamkeit bekommt: „Wir haben eine Spinntechnologie so stark weiterentwickelt, dass sie ausschließlich auf abfallbasierten Rohstoffen aufsetzt.“
Dieser Satz fällt fast nicht auf, weil Robert noch – durchaus spannend – darüber berichtet, dass sie eine Produktions- und Fertigungsstätte aufbauen, wo vom Strickgarn bis zum relativ feinen Faden alles gesponnen werden kann, um diesen dann zu Stoff weiterzuverarbeiten. Und hier fragen Ines und ich intensiv nach: Wesentliche Voraussetzungen, die eine industrielle Fertigung benötig, scheinen noch ungelöst, notwendige Prozesse noch in der Planung zu sein. Beispielweise die Frage, ob mit Pre- oder Post-Consumer-Abfällen gearbeitet wird. Pre-Consumer-Abfälle sind Schnittabfälle aus der Produktion von Kleidungsstücken, das entspricht etwa 10% des insgesamt verarbeiteten Materials. Post-Consumer-Abfälle kennen wir als Altkleider.

Solange noch in Indien produziert wird, nutzt Circularity hauptsächlich Pre-Consumer Abfälle. Diese kommen ausschließlich aus den umliegenden Nähfabriken aus der Region Tirupur im Süden von Indien. Beim Einsatz von Alttextilien, die es in Deutschland in großen Mengen gibt (laut einer Studie werden 28-40% aller hergestellten Kleidungsstücke ungetragen weggeworfen), produziert Circularity Mischgarne aus Baumwolle und Polyester. Reine Baumwollgarne bietet das Unternehmen nicht an.

Textilien werden in unterschiedlichem Ausmaß mit Chemikalien behandelt – insbesondere Arbeitsbekleidung kommt ohne sie nicht aus. Die Tatsache, dass auch Han Hamers gerade die textilen Altbestände der niederländischen Armee auffängt, um sie renewed wieder in den Konsumkreislauf einzubringen, beruhigt deshalb nicht. Denn Militärbekleidung muss mit allerlei Zusätzen ausgerüstet werden.

Deshalb frage ich nun nach, wie er bei einem Konsumenten wie mir, mit gesundem Halbwissen über Maskendeals und Greenwashing, die Zweifel ausräumen kann, dass einer gut gemeinten Vision ein dunkles Erwachen folgt. Diese Sorge kann nach dem Gespräch noch nicht ausgeräumt werden.

Wir beschränken uns auf das, was geplant ist: Robert hat den Traum, den globalisierten Prozess der Textilherstellung umzukehren. Er will die Entkopplung von Baumwollanbau und weit entfernter Produktion wie z.B. in Asien mit anschließender Verschiffung fertig konfektionierter Ware nach Europa. Vorhandene Altkleider und/oder Schnittabfälle sollen künftig vor Ort gesammelt, recycelt und lokal zu neuen Textilien verarbeitet werden.

Ich nehme ihm diesen Traum ab. Allerdings bleiben einige meiner Fragen zur Nachhaltigkeit offen – deshalb habe ich meine Zweifel, ob die Idee aktuell leistungs- und konkurrenzfähig ist.
Woran liegt das? Zum einen ist es meiner Meinung nach immer schwierig, notwendige Pionierarbeit zu leisten. Vor allem, wenn mir am Stammtisch die schlauen Kommentare um die Ohren fliegen, dass große Firmen ja schon intensiv an dem Prinzip Kreislaufwirtschaft arbeiten. Doch manchmal bleibt außer dem Begriff Kreislaufwirtschaft und einem unbestimmten Commitment dazu nicht viel übrig.

Circularity schreibt sich auf die Fahne, eine Technologie zu entwickeln, die ausschließlich auf Abfällen aufbaut. Das Gespräch macht deutlich, dass darin auch enthalten ist, dass die Produktion umweltverträglicher ist und Transportwege wegfallen, was die Umwelt weiter entlastet. Wenn alle Vorrausetzungen für die Umsetzung dieses Traums geschaffen sind und ein qualitativ, wie preislich konkurrenzfähiges Produkt auf den Markt gebracht werden kann, dann muss der Konsument entscheiden. Hier hätte man dann das glaubwürdige Argument der Nachhaltigkeit und eines sozial-, wie umwelttechnisch fairen Verfahrens. Um die PR müsste Circularity sich dann keine Sorgen machen.

Man muss der Sache Zeit und vor allem Aufmerksamkeit geben. Aber vielleicht sollte die Industrie sich genau hier und jetzt engagieren und in solche Startups investieren und dafür sorgen, dass Probleme aus dem Weg geräumt werden, denn eines ist uns in diesem Gespräch klargeworden:
Es könnte alles so einfach sein. Kreislaufwirtschaft ist machbar, aber der Weg dorthin noch kostspielig und steinig. Deshalb wünschen wir Robert und seinem Team viel Erfolg und vor allem Durchhaltevermögen. Danke für das Gespräch.

Kurz und knapp: das Profil des Unternehmens im beigefügten Factsheet zum Download.

 

 

Shirt, das die Atmung überwacht Bild EMPA
28.12.2022

Wearables für die Gesundheit: Sensoren zum Anziehen

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 
Der Wunsch nach einem gesunden Lebensstil hat in unserer Gesellschaft einen Trend zum «Self-Tracking» ausgelöst. Vitalwerte sollen jederzeit abrufbar sein, etwa um Trainingseffekte konsequent zu messen. Gleichzeitig ist bei der kontinuierlich wachsenden Bevölkerungsgruppe der über 65-Jährigen der Wunsch, bis ins hohe Alter leistungsfähig zu bleiben, stärker denn je. Präventive, gesundheitserhaltende Maßnahmen müssen hierbei kontrolliert werden, sollen sie das gewünschte Ergebnis erzielen. Die Suche nach Messsystemen, die entsprechende Gesundheitsparameter zuverlässig ermitteln, läuft auf Hochtouren. Neben dem Freizeitbereich benötigt die Medizin geeignete und verlässliche Messsysteme, die eine effiziente und wirksame Betreuung von immer mehr Menschen im Spital oder zuhause ermöglichen. Denn die Zunahme von Zivilisationskrankheiten wie Diabetes, Herz-Kreislaufproblemen oder Atemwegserkrankungen belastet das Gesundheitssystem.

Empa-Forschende um Simon Annaheim vom «Biomimetic Membranes and Textiles» Labor in St. Gallen entwickeln daher Sensoren für die Überwachung des Gesundheitszustandes, etwa für einen Diagnostik-Gurt, der auf flexiblen Sensoren mit elektrisch leitfähigen bzw. lichtleitenden Fasern basiert. Für die Akzeptanz einer kontinuierlichen medizinischen Überwachung bei den Patientinnen und Patienten können aber ganz andere, weniger technisch geprägte Eigenschaften entscheidend sein: So müssen die Sensoren angenehm zu tragen und einfach zu handhaben sein – und im Idealfall auch noch gut aussehen.
    
Diesen Aspekt greift ein Kooperationsprojekt zwischen der «Textile and Design Alliance», kurz TaDA, in der Ostschweiz und der Empa auf. Hierbei wurden Möglichkeiten aufgezeigt, wie textile Sensoren in Kleidungsstücke integriert werden können. Dabei stand neben der technischen Zuverlässigkeit und einem hohen Tragekomfort auch das Design der Kleidungsstücke im Zentrum. Die interdisziplinäre TaDA-Designerin Laura Deschl arbeitete elektrisch leitfähige Fasern in ein Shirt ein, die ihren Widerstand je nach Dehnung verändern. Damit kann das Shirt überwachen, wie stark sich Brustkorb und Bauch der Probanden beim Atmen heben und senken, was Rückschlüsse auf die Atemaktivität erlaubt. Eine kontinuierliche Überwachung der Atemtätigkeit ist speziell bei Patientinnen und Patienten während der Aufwachphase nach einer Operation sowie bei Patientinnen, die mit Schmerzmitteln behandelt werden, von Interesse. Auch für Patientinnen mit Atemproblemen wie Schlafapnoe oder Asthma könnte ein solches Shirt hilfreich sein. Zusätzlich stickte Deschl elektrisch leitfähige Fasern der Empa ins Shirt ein, die für die Verbindung zum Messgerät benötigt werden und die optisch in das Muster des Shirts integriert wurden.
 
Die «Textile and Design Alliance» ist ein Pilotprogramm der Kulturförderung der Kantone Appenzell Ausserrhoden, St. Gallen und Thurgau, um die Zusammenarbeit zwischen Kulturschaffenden aus aller Welt und der Textilindustrie zu fördern. Über internationale Ausschreibungen werden Kulturschaffende aller Sparten zu einem dreimonatigen Arbeitsaufenthalt in der Ostschweizer Textilwirtschaft eingeladen.
Das TaDA-Netzwerk umfasst 13 Kooperationspartner – Textilunternehmen, Kultur-, Forschungs- und Bildungsinstitutionen – und bietet den Kulturschaffenden dadurch direkten Zugang zu hochspezialisiertem Know-how und technischen Produktionsmitteln, um vor Ort an ihren textilen Projekten arbeiten, forschen und experimentieren. Diese künstlerische Kreativität wird den Partnern wiederum im Austausch als innovatives Potenzial zugänglich gemacht.

Während der Projektphase wurde Laura Deschl von Schoeller Textil AG (Rohware), Lobra (Transferdruck) und dem Saurer Museum (leitfähige Stickerei) bei der Realisierung des Prototyps unterstützt. Zudem erhielt sie fachliche Begleitung bezüglich der Druckqualität durch Martin Leuthold. Ideen für eine Weiterführung des Projekts sind bereits vorhanden; sie zielen auf eine smarte Patientenbekleidung ab, die die wichtigsten physiologischen Parameter ohne zusätzliche Sensorik erfassen und messen kann.

20.12.2022

Nachhaltige Faserverbundbauteile durch neues 3D-Druckverfahren

Die Natur arbeitet oft mit Faserverbundwerkstoffen. Das Bauprinzip der Natur benötigt wenig Material und Energie und sichert damit das Überleben von Tier- und Pflanzenarten. Beispiele sind Holz, Pflanzenhalme, Chitinpanzer, Knochen oder Gewebe wie Sehnen und Haut. Ein weiteres Bauprinzip der Natur sind Verbundgewebe wie Muschelschalen oder Spinnenseide. Diese Bionik-Prinzipien können genutzt werden, um biobasierte, nachhaltige Faserverbundwerkstoffe zu gestalten und herzustellen, die derzeit stark nachgefragt werden. Biobasierte Faserverbundwerkstoffe bestehen aus Naturfasern bzw. aus Holz hergestellten Cellulosefasern, welche in eine biobasierte Matrix eingebettet sind. Die biobasierten Produkte besitzen vergleichbare Eigenschaften wie die gängigen Glasfaserverbundwerkstoffe. Die DITF entwickeln zusammen mit dem Industriepaten Arburg GmbH + Co KG ein energie- und materialsparendes 3D-Druckverfahrens für diese leichten biobasierten Faserverbundwerkstoffe.

Die Natur arbeitet oft mit Faserverbundwerkstoffen. Das Bauprinzip der Natur benötigt wenig Material und Energie und sichert damit das Überleben von Tier- und Pflanzenarten. Beispiele sind Holz, Pflanzenhalme, Chitinpanzer, Knochen oder Gewebe wie Sehnen und Haut. Ein weiteres Bauprinzip der Natur sind Verbundgewebe wie Muschelschalen oder Spinnenseide. Diese Bionik-Prinzipien können genutzt werden, um biobasierte, nachhaltige Faserverbundwerkstoffe zu gestalten und herzustellen, die derzeit stark nachgefragt werden. Biobasierte Faserverbundwerkstoffe bestehen aus Naturfasern bzw. aus Holz hergestellten Cellulosefasern, welche in eine biobasierte Matrix eingebettet sind. Die biobasierten Produkte besitzen vergleichbare Eigenschaften wie die gängigen Glasfaserverbundwerkstoffe. Die DITF entwickeln zusammen mit dem Industriepaten Arburg GmbH + Co KG ein energie- und materialsparendes 3D-Druckverfahrens für diese leichten biobasierten Faserverbundwerkstoffe.

Bei den Faserbundwerkstoffen (FVW), die in der Natur vorkommen, sind verstärkende Fasern wie zum Beispiel Collagen- oder Cellulose Fibrillen in eine formgebende Matrix aus Lignin, Hemicellulose oder Collagen eingebettet. Die Faserstränge verlaufen dabei belastungsgerecht. Die Verbundgewebe werden hauptsächlich über lösungsbasierte physikochemische Prozesse hergestellt, die bei Umgebungstemperatur ablaufen. Ähnlich der Natur ermöglichen neue 3D-Druckverfahren mit Endlosfaserverstärkung ebenfalls eine belastungsgerechte Ablage des Fasserstrangs an den richtigen Ort (Topologie-Optimierung) und in die geeignete Richtung. Allerdings sind Naturfasern wie Cellulosefasern empfindlich gegenüber höheren Temperaturen. Sie können deshalb nicht
im klassischen Thermoplast 3D-Druckprozess verarbeitet werden.

Ergebnis des Forschungsarbeit sind 3D-gedruckte Faserverbundbauteile, die aus Cellulose-Endlosfasern bestehen, die in eine cellulosebasierten Matrix eingebettet sind. Für die Herstellung wurde ein Prozess entwickelt, der einen 3D-Druck bei Umgebungstemperatur möglich macht. Damit können, wie in der Natur, Material und Bauteil gleichzeitig in einem Arbeitsgang bei Umgebungstemperatur hergestellt werden. Der Cellulosefaserstrang wird zunächst mit einem „Binder“ für die Verarbeitung im Drucker stabilisiert. Der speziell gestaltete Druckkopf wandelt den Binder in eine Matrix um, mit der die Cellulose-Endlosfasern umhüllt werden. Da die Cellulose-Fasern und -die Matrix eine ähnliche chemische Struktur haben, ist das Bauteil sehr stabil. Die mechanischen Eigenschaften wie zum Beispiel die Bruchfestigkeit sind ausgesprochen
gut.

Die vom Forschungsteam entwickelte lösungsbasierte und energieeffiziente Herstellungsmethode kann auch bei anderen Fertigungsverfahren für Verbundwerkstoffe zum Einsatz kommen. Sie ist vor allem für die Verarbeitung der stark nachgefragten temperaturempfindlichen Materialien wie Natur- oder Cellulosefasern geeignet. Das Forschungsprojekt „CellLoes-3D-Druck“ wird durch das Bundesministerium für Bildung und Forschung im Rahmen des Ideenwettbewerbs „Biologisierung der Technik“ gefördert.

Quelle:

Deutsche Institute für Textil- und Faserforschung Denkendorf

Bild: Gaharwar Laboratory
13.12.2022

Neue Tinten für 3D-druckbare, tragbare Bioelektronik

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Diese Biomaterial-Tinte nutzt eine neue Klasse von 2D-Nanomaterialien, die als Molybdändisulfid (MoS2) bekannt sind. Die dünnschichtige Struktur von MoS2 enthält Defektzentren, die es chemisch aktiv machen und in Kombination mit modifizierter Gelatine ein flexibles Hydrogel ergeben, vergleichbar mit der Struktur von Götterspeise.

„Die Auswirkungen dieser Arbeit sind für den 3D-Druck weitreichend", sagte Dr. Akhilesh Gaharwar, außerordentlicher Professor in der Abteilung für Biomedizinische Technik und Presidential Impact Fellow. "Diese neu entwickelte Hydrogeltinte ist hochgradig biokompatibel und elektrisch leitfähig und ebnet den Weg für die nächste Generation von tragbarer und implantierbarer Bioelektronik.”1

Die Tinte hat strukturviskose oder scherverdünnende Eigenschaften. Ihre nimmt Viskosität mit zunehmender Kraft ab, so dass sie im Inneren der Tube fest ist, aber beim Zusammendrücken eher wie eine Flüssigkeit fließt, ähnlich wie Ketchup oder Zahnpasta. Das Team hat diese elektrisch leitfähigen Nanomaterialien in eine modifizierte Gelatine eingearbeitet, um eine Hydrogeltinte mit Eigenschaften herzustellen, die für die Entwicklung von Tinte für den 3D-Druck wichtig sind.

„Diese 3D-gedruckten Geräte sind extrem elastisch und können zusammengedrückt, gebogen oder verdreht werden, ohne zu brechen", so Kaivalya Deo, Doktorand in der Abteilung für biomedizinische Technik und Hauptautor der Arbeit. „Darüber hinaus sind diese Geräte elektronisch aktiv, so dass sie dynamische menschliche Bewegungen überwachen können und den Weg für eine kontinuierliche Bewegungsüberwachung ebnen.”

Für den 3D-Druck der Tinte haben die Forscher im Gaharwar-Labor einen kostengünstigen, Open-Source 3D-Biodrucker mit mehreren Druckköpfen entwickelt, der voll funktionsfähig und anpassbar ist und mit Open-Source Tools und Freeware läuft. Dies ermöglicht es jedem Forscher, 3D-Biodrucker zu bauen, die auf seine eigenen Forschungsbedürfnisse zugeschnitten sind.

Die elektrisch leitfähige 3D-gedruckte Hydrogel-Tinte kann komplexe 3D-Schaltkreise erzeugen und ist nicht auf plane Designs beschränkt, so dass Forscher eine anpassbare Bioelektronik herstellen können, die auf patientenspezifische Anforderungen zugeschnitten ist.

Mit Hilfe dieser 3D-Drucker konnte Deo elektrisch aktive und dehnbare elektronische Geräte drucken. Diese Geräte weisen außergewöhnliche Dehnungsmessfähigkeiten auf und können für die Entwicklung anpassbarer Überwachungssysteme verwendet werden. Dies eröffnet ebenfalls neue Möglichkeiten für die Entwicklung dehnbarer Sensoren mit integrierten miroelektronischen Komponenten.

Eine der möglichen Anwendungen der neuen Tinte ist der 3D-Druck elektronischer Tätowierungen für Patienten mit Parkinson. Die Forscher stellen sich vor, dass ein gedrucktes E-Tattoo die Bewegungen des Patienten, einschließlich des Zitterns, überwachen kann.

Dieses Projekt wurde in Zusammenarbeit mit Dr. Anthony Guiseppi-Elie, Vizepräsident für akademische Angelegenheiten und Personalentwicklung am Tri-County Technical College in South Carolina, und Dr. Limei Tian, Assistenzprofessor für Biomedizintechnik an der Texas A&M University, durchgeführt.
Die Studie wurde vom National Institute of Biomedical Imaging and Bioengineering, dem National Institute of Neurological Disorders and Stroke und dem Texas A&M University President's Excellence Fund finanziert. Ein vorläufiges Patent auf diese Technologie wurde in Zusammenarbeit mit der Texas A&M Engineering Experiment Station angemeldet.

1 Die Studie wurde bei ACS Nano veröffentlicht.

Quelle:

Alleynah Veatch Cofas, Texas A & M University

(c) INNATEX – Internationale Fachmesse für nachhaltige Textilien
06.12.2022

51. INNATEX thematisiert gezielt konventionellen Handel

Internationale Fachmesse für Green Fashion setzt auf neue Formate und strategische Partnerschaften:

Vom 21. bis 23. Januar 2023 findet die INNATEX zum 51. Mal und nun wieder in gewohnter Tagefolge statt. Für die von Samstag bis Montag dauernde Veranstaltung in Hofheim-Wallau bei Frankfurt am Main haben sich bisher mehr als 200 Brands angemeldet. Die Tendenz bewegt sich damit wieder in Richtung Pre-Covid-Niveau. Das Motto: One Goal. Endless Styles. verweist nicht nur auf die Diversität und Solidarität in der INNATEXCommunity, sondern auch darauf, dass Green Fashion ein für die Zukunft unabdingbares Geschäftsfeld ist.

Internationale Fachmesse für Green Fashion setzt auf neue Formate und strategische Partnerschaften:

Vom 21. bis 23. Januar 2023 findet die INNATEX zum 51. Mal und nun wieder in gewohnter Tagefolge statt. Für die von Samstag bis Montag dauernde Veranstaltung in Hofheim-Wallau bei Frankfurt am Main haben sich bisher mehr als 200 Brands angemeldet. Die Tendenz bewegt sich damit wieder in Richtung Pre-Covid-Niveau. Das Motto: One Goal. Endless Styles. verweist nicht nur auf die Diversität und Solidarität in der INNATEXCommunity, sondern auch darauf, dass Green Fashion ein für die Zukunft unabdingbares Geschäftsfeld ist.

Nachhaltigkeit als zukunftsfähiges Geschäftsmodell
„Die fortwährende Weiterentwicklung einer nachhaltigen Textilwirtschaft wollen wir mit neuen Formaten und Kooperationen fördern,“ sagt Alexander Hitzel, Projektleiter der INNATEX. „Wir arbeiten derzeit mit dem Handelsverband (HDE) an einer Ansprache für konventionelle Händlerinnen und Händler. Darüber hinaus planen wir kreative, völlig neue Konzepte für die Präsentation von Labels sowie ein Business-Panel, das Insights und Hard Facts für den Handel liefern soll. Nachhaltigkeitsprojekte sind nur dann wirklich nachhaltig, wenn sie sich auch als Geschäftsmodell tragen.”

Von Live-Präsentation über strategische Inhaltsvermittlung bis Spendenaktion
Aber auch die Nachfrage nach etablierten Naturfasern sowie besonders konsequenten Produktions- und Zertifizierungsmöglichkeiten steige. Der Internationale Verband der Naturtextilwirtschaft (IVN) bietet vor Ort seine Expertise und informiert zudem zur Einführung des neuen deutschen Lieferkettengesetzes. Das Förderprogramm für die DesignDiscoveries, die auf einer neu gestalteten Sonderfläche geordnet werden, bietet ausgewählten Newcomer-Labels eine Plattform für ihre kreativen Ideen. Bewerbungen sind noch bis 15. Dezember möglich.

„Bei der INNATEX können Händlerinnen und Händler Trends aufspüren und Neues entdecken, eine unvergleichliche Vielfalt an Kollektionen und Artikeln verschiedener Anbieter:innen direkt vergleichen sowie netzwerken – das sind die Vorteile dieser Ordermesse,“ so Hitzel.

Erstmals kooperiert die INNATEX mit der Organisation Europe Cares, die humanitäre Hilfe für “Menschen on the move” leistet. Die Überhangware, die Ausstellerinnen und Aussteller bei der Spendenaktion abgeben können, soll den Flüchtenden an den Grenzen Europas zu Gute kommen.

Quelle:

INNATEX

Foto: Pim Top for FranklinTill
29.11.2022

Heimtextil Trends 23/24: Textiles Matter

Die Heimtextil Trend Preview 23/24 präsentierte im Herbst richtungsweisende Designkonzepte und Inspirationen für die textile Einrichtungsbranche. Mit „Textiles Matter“ will die Heimtextil 2023 Maßstäbe für die zukunftsorientierte und nachhaltige textile Einrichtung von morgen setzen. Dabei steht Kreislaufwirtschaft im Mittelpunkt. Marta Giralt Dunjó von der Zukunftsforschungsagentur FranklinTill (Großbritannien) stellte die Design-Prognose 23/24 vor. Auf der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt am Main, werden die Neuheiten im Trend Space Impulse inszeniert.

Der Trend Council der Heimtextil, bestehend aus dem Studio FranklinTill (London), dem Stijlinstituut Amsterdam und der dänischen Agentur SPOTT Trends & Business, analysierte die Zukunft für den nationalen und internationalen Markt. Nachhaltigkeit und Kreislaufwirtschaft stehen dabei so stark wie nie zuvor im Fokus.

Die Heimtextil Trend Preview 23/24 präsentierte im Herbst richtungsweisende Designkonzepte und Inspirationen für die textile Einrichtungsbranche. Mit „Textiles Matter“ will die Heimtextil 2023 Maßstäbe für die zukunftsorientierte und nachhaltige textile Einrichtung von morgen setzen. Dabei steht Kreislaufwirtschaft im Mittelpunkt. Marta Giralt Dunjó von der Zukunftsforschungsagentur FranklinTill (Großbritannien) stellte die Design-Prognose 23/24 vor. Auf der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt am Main, werden die Neuheiten im Trend Space Impulse inszeniert.

Der Trend Council der Heimtextil, bestehend aus dem Studio FranklinTill (London), dem Stijlinstituut Amsterdam und der dänischen Agentur SPOTT Trends & Business, analysierte die Zukunft für den nationalen und internationalen Markt. Nachhaltigkeit und Kreislaufwirtschaft stehen dabei so stark wie nie zuvor im Fokus.

Textiles Matter: Verantwortung tragen
Textilien sind aus dem Alltag nicht mehr wegzudenken. So vielfältig die Ansprüche der Nutzer*innen sind, so vielfältige sind auch die Einsatzzwecke der Materialien und ihre Herstellung. Dies stellt die internationale Industrie vor eine große Herausforderung. Die Textilindustrie bezieht ihre Rohstoffe aus einer Vielzahl von Quellen und nutzt zahlreiche Verfahren zur Herstellung der Vielfalt ihrer Produkten. Dies bietet großes Potenzial für eine nachhaltige Weiterentwicklung der Branche. Die Heimtextil Trends zeigen Möglichkeiten auf, dieses Potenzial zu nutzen und nachhaltige Entwicklung zu fördern. Unter dem Motto „Textiles Matter“ werden Ansätze der Kreislaufwirtschaft vorgestellt, die dem Markt Impulse für eine nachhaltige Entwicklung liefern.

"In Anbetracht des ökologischen Notstands, in dem wir uns derzeit befinden, steht die Textilindustrie in der Verantwortung, ihre Prozesse zu überprüfen und zum Besseren zu verändern. Aus diesem Grund verfolgen wir bei dieser Ausgabe der Heimtextil Trends einen materialorientierten Ansatz und konzentrieren uns auf die Beschaffung, das Design und die Nachhaltigkeit von Materialien. Textiles Matter zeigt das Potenzial der Kreislaufwirtschaft auf und würdigt Designinitiativen, die schön, relevant und vor allem nachhaltig sind", erklärt Marta Giralt Dunjó von FranklinTill.

Wandel durch Kreislaufwirtschaft
Die nachhaltigen und zukunftsweisenden Trends werden im Trend Space der Heimtextil, vom 10. bis 13. Januar 2023 in Frankfurt, systemisch inszeniert und bilden das Herzstück der Fachmesse. Für Besucher*innen aus aller Welt bieten die Trends eine Orientierung und ermöglichen den Blick in die Zukunft der Wohn- und Objekttextilien. Auf der Messe geht es um Ideen und Lösungsansätze der textilen Kreislaufwirtschaft: Wie werden Textilien nachhaltig produziert? Welche Möglichkeiten der Wiederverwertung gibt es? Wie sieht optimales Recycling textiler Produkte aus? Im Rahmen der Kreislaufwirtschaft werden Materialien immer wieder einem Nutzungskreislauf hinzugefügt. Somit verringert sich auf der einen Seite der Bedarf an neuen Rohstoffen und auf der anderen Seite die Produktion von Abfall. Anorganische Materialien wie Nylon, Polyester, Kunststoffe oder Metalle können im technischen Kreislauf ohne Qualitätsverlust recycelt und wiederverwendet werden. Organische Materialien wie Leinen oder Bast werden im biologischen Kreislauf wieder in die Natur zurückgeführt. Die vier Trend-Themen „Make and Remake“, „Continuous“, „From Earth“ und „Nature Engineered“ leiten sich daraus ab.

Make and Remake
Gebrauchte Materialien, Altbestände oder Stoffreste erhalten ein neues Leben. Dabei rückt die Ästhetik des Reparierens in den Fokus und wird als gezieltes Designelement des recycelten Produkts eingesetzt. Mit hellen und fröhlichen Farben und Techniken wie Überdrucken, Überfärben, Bricolage, Collage oder Patchwork entstehen neue und kreative Produkte. Überlagerte Farbmuster und Grafiken führen zu gewagten und maximalistischen, zugleich bewussten Designs.

Continuous
Das Trend-Thema Continuous beschreibt geschlossene Kreisläufe, in denen Materialien immer wieder zu neuen, abfallfreien Produkten recycelt werden. Vermeintliche Abfallstoffe werden getrennt und zu neuen Fasern, Verbundwerkstoffen und Textilien wiederaufbereitet. Synthetische sowie zellulosehaltige Garne werden somit abfallfrei produziert. Dank technisch fortgeschrittener Rückgewinnungsverfahren behalten die Materialien ihre ursprüngliche Qualität und Ästhetik. Zweckmäßigkeit, Minimalismus und Langlebigkeit bestimmen das Design der Continuous Produkte.

From Earth
Hier stehen die Natürlichkeit und der Einklang mit der Natur der organischen Materialien im Mittelpunkt. Natürliche Färbungen vermitteln Wärme und Weichheit. Unvollkommene Texturen, Abnutzungen und Unregelmäßigkeiten präsentieren eine ökologische und erdverbundene Ästhetik. Erdige und botanische Farbtöne, natürliche Variationen und haptischer Reichtum dominieren den Bereich From Earth. Unbearbeitete und rohe Oberflächen sowie ungebleichte Textilien, natürliche Farbstoffe betonen die Materialien in ihrem ursprünglichen Zustand.

Nature Engineered
Natürlichkeit wird neu interpretiert. Nature Engineered wertet organische Materialien wie Bast, Hanf, Leinen und Nesseln mit mechanischen Mitteln auf und perfektioniert diese. Modernste Techniken bereiten natürliche Textilien zu anspruchsvollen und intelligenten Produkten auf. Klare Linien und Formen, kombiniert mit weichen Beige- und Brauntönen kennzeichnen dieses Thema.

Weitere Informationen:
Heimtextil Trends FranklinTill
Quelle:

Heimtextil, Messe Frankfurt

Foto: Bcomp
22.11.2022

Made in Switzerland: Ist Flachs das neue Carbon?

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

  • Bcomp gewinnt BMW Group Supplier Innovation Award in der Kategorie "Newcomer des Jahres"

Am 17. November 2022 wurden in der BMW Welt in München die sechsten BMW Group Supplier Innovation Awards in sechs Kategorien vergeben: "Powertrain & E-Mobility", "Sustainability", "Digitalisation", "Customer Experience", "Newcomer of the Year" und "Exceptional Team Performance".

Bcomp gewann den BMW Group Supplier Innovation Award in der Kategorie Newcomer of the Year. Nach der erfolgreichen Zusammenarbeit mit BMW M Motorsport für den neuen BMW M4 GT4, bei dem die Naturfaserlösungen powerRibs™ und ampliTex™ von Bcomp in großem Umfang zum Einsatz kommen, und der kürzlich erfolgten Beteiligung von BMW iVentures an Bcomp als Lead-Investor in der Series-B-Runde ist diese Auszeichnung ein weiterer wichtiger Schritt und eine Anerkennung auf dem Weg zur Dekarbonisierung der Mobilität.

„Innovationen sind der Schlüssel zum Erfolg unserer Transformation hin zu Elektromobilität, Digitalisierung und Nachhaltigkeit. Mit unserer Preisverleihung würdigen wir Innovation und partnerschaftliche Zusammenarbeit mit unseren Lieferanten - gerade in herausfordernden Zeiten“, sagte Joachim Post, Mitglied des Vorstands der BMW AG, verantwortlich für Einkauf und Lieferantennetzwerk, bei der Preisverleihung in der BMW Welt in München.

BMW begann 2019 erstmals mit den Materialien von Bcomp zu arbeiten, als sie Hochleistungs-Naturfaserverbundwerkstoffe im BMW iFE.20 Formel-E-Auto einsetzten. Aus dem mit Flachsfasern verstärkten Kühlschacht entwickelte sich die Zusammenarbeit, und bald darauf wurden die proprietären ampliTex™- und powerRibs™-Naturfaserlösungen erfolgreich als Ersatz für ausgewählte Kohlefaserkomponenten in DTM-Tourenwagen von BMW M Motorsport eingesetzt. Solche Entwicklungen, die auch in andere Fahrzeugprogramme einfließen, unterstreichen die wichtige Rolle, die BMW M Motorsport als Technologielabor für die gesamte BMW Group spielt. Die jüngste Zusammenarbeit mit Bcomp zur Erhöhung des Anteils nachwachsender Rohstoffe beim Nachfolger des BMW M4 GT4 setzt dies fort.

Mit der Markteinführung des neuen BMW M4 GT4 wird er das Serien-GT-Fahrzeug mit dem höchsten Anteil an Naturfaser-Komponenten sein. Die Flachsfaserlösungen ampliTex™ und powerRibs™ von Bcomp finden sich im gesamten Innenraum auf dem Armaturenbrett und der Mittelkonsole sowie auf Karosserieteilen wie Motorhaube, Frontsplitter, Türen, Kofferraum und Heckflügel. Abgesehen vom Dach gibt es fast keine Bauteile aus kohlenstofffaserverstärktem Kunststoff (CFK), die nicht durch die nachwachsenden Hochleistungsflachsmaterialien ersetzt wurden. "Produktnachhaltigkeit gewinnt auch im Motorsport zunehmend an Bedeutung", sagt Franciscus van Meel, Vorsitzender der Geschäftsführung der BMW M GmbH.

Bcomp ist ein führender Anbieter von Lösungen für Naturfaser-Verstärkungen in Hochleistungsanwendungen vom Rennsport bis zur Raumfahrt.

Das Unternehmen begann 2011 als Garagenprojekt mit dem Ziel, leichte und dennoch leistungsstarke Skier zu entwickeln. Die bCores™ wurden eingeführt und erfolgreich von einigen der größten Namen im Freeride-Skisport übernommen. Die Gründer, promovierte Materialwissenschaftler der École Polytechnique Fédérale de Lausanne (EPFL), verwendeten Flachsfasern zur Verstärkung des Balsakerns und zur Verbesserung der Schersteifigkeit. Beeindruckt von den hervorragenden mechanischen Eigenschaften der Flachsfasern begann die Entwicklung nachhaltiger Leichtbaulösungen für den breiteren Mobilitätsmarkt.

Flachs ist eine einheimische Pflanze, die in Europa natürlich wächst und seit Jahrhunderten Teil der Agrargeschichte ist. Sie benötigt sehr wenig Wasser und Nährstoffe, um erfolgreich zu wachsen. Zudem fungiert sie als Fruchtfolgepflanze und verbessert so die Ernteerträge auf bestehenden Anbauflächen. Weder beim Anbau noch bei der Verarbeitung der Flachspflanzen werden Chemikalien eingesetzt, die das Grundwasser verunreinigen könnten, die Ernte ist ein rein mechanischer Prozess. Nach der Ernte kann die gesamte Flachspflanze als Futtermittel oder zur Ölherstellung verwendet werden, und ihre Fasern werden vor allem für Heimtextilien und Kleidung genutzt. Die langen Fasern der Flachspflanze besitzen sehr gute mechanische Eigenschaften und ein hervorragendes Dämpfungsverhalten im Verhältnis zu ihrer Dichte, wodurch sie sich besonders gut als natürliche Faserverstärkung für alle Arten von Polymeren eignen.

Die Ernte und Verarbeitung des Flachses erfolgen lokal in den ländlichen Gebieten, in denen er angebaut wurde. Die Verwendung von europäischem Flachs, den Bcomp über seine gut etablierte und transparente Lieferkette bezieht, ermöglicht es, die wirtschaftliche und soziale Struktur in den ländlichen Gebieten zu unterstützen, da für die Aufrechterhaltung der Flachsproduktion zahlreiche qualifizierte Arbeitskräfte erforderlich sind. Bei der Herstellung der technischen Produkte wie dem powerRibs™-Bewehrungsnetz investiert Bcomp in lokale Produktionskapazitäten in der Nähe seines Hauptsitzes in Freiburg, Schweiz, schafft so neue Arbeitsplätze und erhält das technische Know-how in der Region. Die Produktion ist so effizient wie möglich und mit minimalen Umweltauswirkungen und Abfällen aufgebaut.

Zur weiteren Stärkung der lokalen Wirtschaft ist Bcomp bestrebt, regionale Unternehmen für Aufträge zu engagieren. Da sich der Hauptsitz im Freiburger Stadtviertel "Blaue Fabrik" befindet, kann Bcomp sowohl von der Entwicklung eines nachhaltigen und vielfältigen Viertels profitieren als auch dazu beitragen.

Quelle:

Bcomp; BMW Group

Foto Pixabay
16.11.2022

Grüne Chemie verwandelt Gesichtsmasken in Ethernet-Kabel

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Wissenschaftler der Universität Swansea haben Pionierarbeit geleistet und ein Verfahren entwickelt, bei dem der in weggeworfenen Gesichtsmasken enthaltene Kohlenstoff in hochwertige einwandige Kohlenstoff-Nanoröhren (CNT) umgewandelt wird, die anschließend zur Herstellung von Ethernet-Kabeln mit Breitbandqualität verwendet werden.
 
Die Studie, die in der Fachzeitschrift Carbon Letters veröffentlicht wurde, beschreibt, wie diese neue grüne Chemie eingesetzt werden könnte, um Materialien, die sonst weggeworfen würden, wiederzuverwerten und in hochwertige Materialien für konkreten Einsatzzwecke umzuwandeln. Die mit dieser Technik hergestellten CNT haben das Potenzial, nicht nur in Ethernet-Kabeln verwendet zu werden, sondern auch bei der Herstellung von leichten Batterien, die in Elektroautos und Drohnen zum Einsatz kommen.

Professor Alvin Orbaek White vom Forschungsinstitut für Energiesicherheit (ESRI) der Universität Swansea:
„Einweg-Gesichtsmasken sind eine wirkliche Katastrophe für das Recyclingsystem, da sie riesige Mengen an Plastikmüll erzeugen - ein Großteil davon landet in unseren Ozeanen. Im Rahmen der Studie haben wir festgestellt, dass der Kohlenstoff im Inneren der Gesichtsmaske als ziemlich gutes Ausgangsmaterial für die Herstellung hochwertiger Materialien wie CNTs verwendet werden kann.“

„CNTs sind sehr begehrt, weil sie herausragende physikalische Eigenschaften besitzen und in der industriellen Herstellung sehr viel teurer sind. Mit dieser Studie haben wir also gezeigt, dass wir sehr hochwertige Materialien herstellen können, indem wir CNTs aus eigentlich wertlosen Gesichtsmaskenabfällen verarbeiten.“

Das Team untersuchte ebenfalls die mit diesem Verfahren verbundenen Energiekosten und kam zu dem Schluss, dass die Technik nicht nur im Hinblick auf den Ressourcenverbrauch umweltfreundlich ist, sondern auch in Bezug auf die Erzeugung eines Produktwert im Gegensatz zur Abfallerzeugung. Darüber hinaus war das mit den CNTs hergestellte Ethernet-Kabel von guter Qualität und entsprach den Übertragungsgeschwindigkeiten der Kategorie 5, wobei es die in den meisten Ländern, einschließlich des Vereinigten Königreichs, für das Breitband-Internet festgelegten Richtwerte leicht übertraf.

Professor Orbaek White:
„Die Verwendung von CNT-Folien in Batterien anstelle von Metallfolien hat geringere Auswirkungen auf die Umwelt, da die Verwendung von Kohlenstoff die Notwendigkeit von Bergbau- und Förderaktivitäten ausgleicht. Diese Arbeit ist von entscheidender Bedeutung, da sie nicht nur zu einer Kreislaufwirtschaft beiträgt, sondern auch skalierbar und für die industrielle Verarbeitung geeignet ist und im Kern eine grüne Chemie darstellt.“

Quelle:

Swansea University

© ITM/TUD - Biomimetische Fischflosse mit dielektrischen Elastomeraktoren und Faserverstärkung.
08.11.2022

Förderung für Faser-Elastomer-Verbunde: Intelligente Materialien für Robotik und Prothesen

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

  • Erfolgreiche Bewilligung der 2. Förderperiode des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresdner Forschende wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu die 2. Phase des Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Professor Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 22 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. In der ersten Förderphase wurden hierfür wichtige Grundsteine gelegt, um große zweidimensionale Verformungen in weichen, biomimetischen Strukturen zu erzielen. Die weitere Förderung durch die DFG ist eine Bestätigung für die herausragenden bisherigen Ergebnisse. Darauf aufbauend stehen in der zweiten Förderphase ionische und helixförmige Aktor-Sensor-Konzepte im Fokus. Durch die Kombination mit intelligenten Auslegungs- und Regelungsalgorithmen werden autarke, sich dreidimensional verformende Materialsysteme entstehen. So werden diese Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Quelle:

TU Dresden: Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)