From the Sector

Reset
17 results
SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group (c) Composites United
Skeletal windshield design based on injection molding with carbon fiber profiles
16.11.2020

SGL Carbon and Koller Kunststofftechnik manufacture composite windshield for BMW Group

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

  • Carbon fibers combined with injection molding replace conventional steel construction
  • SGL Carbon supplies innovative carbon fiber profiles
  • Serial use in a future high-volume model of BMW Group
  • Construction method offers great potential for use in other automotive projects

Already in August, SGL Carbon received a multi-year order from Koller Kunststofftechnik GmbH for the production of novel carbon fiber profiles for serial use in windshields for a future high-volume model of BMW Group.

The profiles are particularly flexible fiber tows, pre-impregnated with thermoplastic resin in various dimensions. They will be compiled by SGL Carbon on the basis of its own 50k carbon fiber at its site in Innkreis, Austria, and subsequently processed by the injection molding experts at Koller to form a skeletal plastic component. The composite component will replace the previous steel-based windshield. Production of the carbon fiber profiles will start in the remainder of 2020 and will then be ramped up gradually over the next few years for the BMW Group model launch.

In the vehicle, the windshield is a connecting element between the roof frames and thus has an important stabilizing function. The carbon fiber profiles add the required stiffness and crash safety to the component. At the same time, they help to significantly reduce the weight of the roof and thus also support the driving dynamics. The injection molding process also enables particularly complex and material-efficient structures. In the BMW Group model, this innovative component concept will cut weight by 40 percent compared to conventional steel designs of the component while creating important space for cable ducts and sensors.

The production of the carbon fiber profiles themselves is also particularly geared to material and process efficiency in large-scale production. The profiles consist of several smaller fiber strands, the so-called rods, and are manufactured using the modern continuous pultrusion process. During product and process development it was one key objective to ensure that material loss during production is almost completely avoided.

"At SGL Carbon, we have been working on the development of thermoplastic carbon fiber profiles for use in injection molding for some time already. This development work is now beginning to pay off. Due to the many advantages and competitive costs, we see a great potential for the technology to be used in other automotive projects too," explains Sebastian Grasser, Head of the Automotive Segment in the Business Unit Composites - Fibers & Materials at SGL Carbon.

"Innovative lightweight construction with hybrid designs has developed into a strategically conclusive concept for Koller Group's OEM customers," confirms Max Koller, CEO of Koller Group. "SGL Carbon's high level of material expertise, combined with the process know-how of KOLLER Kunststofftechnik and KOLLER Formenbau, create the basis for a promising future in innovative lightweight construction technologies. With this order, the BMW Group has confirmed its confidence in the successful cooperation between SGL and Koller; we are particularly pleased about this", said Max Koller.
 
The Koller Group is a globally operating technology company with plants in Europe and China, as well as NAFTA. The Koller Group develops and manufactures lightweight construction, tools and serial components, primarily for the automotive industry.

Source:

SGL CARBON SE

Pump components made from zirconium oxide ceramic (c) Oerlikon
Pump components made from zirconium oxide ceramic
12.11.2020

Oerlikon: Robust pumps for sophisticated special fibers

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

Special materials for special tasks
The process, the expected pump lifespan and the maintenance frequency are the decisive factors for choosing the materials from which the pumps and their components are manufactured. For optimum results, Oerlikon Barmag offers solutions that intelligently combine the various materials and the latest technologies. Whether in the case of surfaces with ceramic coatings, gears and shafts featuring DLC coatings, pumps made from cobalt alloys (StelliteTM) or robust and durable Oerlikon Barmag hybrid constructions comprising zirconium oxide ceramic and duplex stainless steel – the high-precision ZP- and GM-series pumps are design-optimized depending on the intended use. Various seal systems and customized drive concepts round off the pump program.

Source:

Oerlikon

Anlagentechnik zum Carbonfaser-Recycling im Zentrum für Textilen Leichtbau am STFI, Foto: Dirk Hanus.
28.10.2020

Innovationen beim Recycling von Carbonfasern

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsabfällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf. Neben den Entwicklungen für den Einsatz z.B. im BMW i3 in Dach oder Hintersitzschale wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf. So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozess-Schritt zu realisieren.“

Source:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

(c) BMW Group
21.04.2020

SGL Carbon receives contract for battery enclosure from BMW Group

  • New composite e-Mobility application
  • Multi-year substantial contract

After prototypes for a Chinese automotive manufacturer, a major order from a North American automaker, and yet another order for a European sports car manufacturer, SGL Carbon has now been nominated by BMW Group to produce a cover component for battery enclosures in series. This substantial multi-year order will include the production of an innovative glass-fiber-based cover plate for the battery housing for usage in a future plug-in hybrid model of BMW Group.

  • New composite e-Mobility application
  • Multi-year substantial contract

After prototypes for a Chinese automotive manufacturer, a major order from a North American automaker, and yet another order for a European sports car manufacturer, SGL Carbon has now been nominated by BMW Group to produce a cover component for battery enclosures in series. This substantial multi-year order will include the production of an innovative glass-fiber-based cover plate for the battery housing for usage in a future plug-in hybrid model of BMW Group.

Materials made of composites are suited for battery enclosures for different reasons: Besides their light weight, which enhances the electric vehicle’s range, fiber-reinforced plastics offer high stiffness. In addition, they meet high requirements for water and gas tightness and feature excellent fire protection properties. Composite materials can also help to achieve improved structural stiffness of the underbody, e.g. to protect against penetration, as well as an optimized thermal management. Carbon fibers are ideal for especially stressed structures or load-bearing elements, such as the underbody panels and side frames. For components subjected to less stress, such as battery box covers, glass fibers or a fiber mix may suffice.

In addition to the new application for the hybrid model battery enclosure, SGL Carbon will continue producing the usual components made of carbon-fiber-reinforced plastic for the BMW i3 and delivering materials for the Carbon Core body of the BMW 7 series, and has been nominated as the supplier for all carbon materials - fibers, textiles, stacks - for the BMW iNEXT, set to be launched in 2021.

Source:

SGL CARBON SE

Hexcel at JEC World 2020
Hexcel at JEC World 2020
25.02.2020

Hexcel at JEC World 2020

Hexcel’s Leading Position in Aerospace and Automotive Makes Hexcel a Trusted Partner for Urban Air Mobility

At this year’s JEC World in Paris on March 3-5, Hexcel will highlight the growing need for innovations in composite materials to support the emerging Urban Air Mobility (UAM) market.

Urban air mobility – urban transportation systems that move people by air or enable cargo deliveries – is the next big transportation innovation. Similar to taxis or ride sharing today, UAM will help remove congestion from our streets and provide a convenient, rapid method for travel in urban centers as well as in remote areas.

Advanced composite materials will be at the heart of UAM vehicles by providing lightweight, efficient, reliable, and cost-competitive options for manufacturing. “Materials have been a key driver of efficiency for aircraft today, and they will be even more important for the emerging UAM marketplace,” said Imad Atallah, Director of Strategic Marketing for Aerospace and Urban Air Mobility at Hexcel.

Hexcel’s Leading Position in Aerospace and Automotive Makes Hexcel a Trusted Partner for Urban Air Mobility

At this year’s JEC World in Paris on March 3-5, Hexcel will highlight the growing need for innovations in composite materials to support the emerging Urban Air Mobility (UAM) market.

Urban air mobility – urban transportation systems that move people by air or enable cargo deliveries – is the next big transportation innovation. Similar to taxis or ride sharing today, UAM will help remove congestion from our streets and provide a convenient, rapid method for travel in urban centers as well as in remote areas.

Advanced composite materials will be at the heart of UAM vehicles by providing lightweight, efficient, reliable, and cost-competitive options for manufacturing. “Materials have been a key driver of efficiency for aircraft today, and they will be even more important for the emerging UAM marketplace,” said Imad Atallah, Director of Strategic Marketing for Aerospace and Urban Air Mobility at Hexcel.

Already, Hexcel is a leader in advanced composite materials for the aerospace market and is a key supplier of composite materials to the automotive industry. So, the company is well positioned to offer solutions to meet the critical needs of high-rate and quick-part manufacturing cycles, in addition to low-cost needs for this space. Hexcel’s materials solutions approach for UAM is to make it greener and more sustainable, safer, more comfortable, and more affordable.

Hexcel’s broad range of carbon fiber and HexPly® prepreg solutions, including snap cure thermosets and thermoplastics, coupled with the most qualified positions on aerospace programs in the industry make the company a trusted partner for UAM. In addition to offering composite materials from carbon fibers, prepregs, honeycomb and reinforcements, Hexcel’s best-performing market solution in noise absorption on aircraft jet engines, Acousti-Cap®, provides a strong position of innovation to solve one of the most critical problems in the UAM space – community noise. “We are applying our technologies to the unique needs of urban air mobility vehicles,” Atallah said.

Hexcel’s ability to bring materials technology from the aerospace and automotive industries represents a unique strength in solving the critical challenges of UAM, especially around high-rate manufacturing, low-cost materials, light weighting, and noise. “Both thermoplastics and quick-cure thermoset materials are expected to have applications on UAM vehicles,” Atallah said. Furthermore, Hexcel’s broad product portfolio including unsized carbon fiber has proven to be the most compatible with thermoplastic resins from a consolidation perspective.

More information:
Hexcel JEC World
Source:

AGENCE APOCOPE

Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany (c) SGL Carbon
Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany
07.02.2020

JEC World 2020: SGL Carbon presents new solutions

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

  •    Composite battery enclosures for e-mobility
  •    Flexible new leaf spring generation for rear axles
  •    Innovative component designs for passenger airplanes, helicopters and air taxis
  •    Extremely lightweight and stable transfer beam for mechanical engineering

Selective applications with focus on serial production
In the field of automotive applications, SGL Carbon will present at the JEC World composite battery enclosures as a promising new application driven by increasing demand for electric vehicles and the resulting new flexible chassis platforms. The company demonstrates a prototype of a battery enclosure based on carbon fibers. However, hybrid composites with a mixture of glass and carbon fibers are also possible.

In the aerospace sector, SGL Carbon is also expanding its portfolio of realized projects and expertise relying on the trend to use more efficient materials and processes in this industry too.
In the area of primary structure components, the company will present a demo exhibit for the door frame of a passenger airplane realized in collaboration with external partners and based on 50k carbon fiber from the SGL Carbon, which is suitable for serial production.

Live simulations and intense exchange at the booth
Visitors can experience live how their ideas can be implemented both sustainably and cost-effectively in composites thanks to simulations. Experts from the company’s own Lightweight and Application Center demonstrate the path from the concept to virtual prototypes using simulation software, with the result visible either to the entire audience or just individual visitors. To prepare, interested parties can contact the team now at the following link: https://www.sglcarbon.com/anmeldung-jec.

On March 4, 2020, the SGL Carbon stand will host its traditional get-together for customers and friends starting at 4 p.m. – no registration necessary.
 

More information:
SGL Carbon JEC World
Source:

SGL Carbon

Ultra-light landing gear made of carbon fiber composites for air taxis (c) SGL Carbon
Ultra-light landing gear made of carbon fiber composites for air taxis
20.01.2020

SGL Carbon: Ultra-light landing gear made of carbon fiber composites for air taxis

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

“With with our landing gear we help to shape this very new, promising application of manned, autonomous civil aviation. This involvement also demonstrates our wide range of services. From engineering, to prototype manufacture, to serial production with our own materials – all of our competences along the entire value chain made a contribution to the project ,” emphasizes Dr. Andreas Erber, Head of the Aerospace segment of the Composites – Fibers & Materials business unit at SGL Carbon.

The landing gear was developed in close collaboration between customer experts and specialists from SGL Carbon. The carbon fibers for the component are produced at the SGL Carbon plant in Muir of Ord, Scotland. The final part is being manufactured at the SGL Carbon site in Innkreis, Austria.

 

More information:
SGL Carbon
Source:

SGL Carbon

SGL Carbon: Großauftrag für Batteriegehäuse (c) SGL Carbon
SGL Carbon: Großauftrag für Batteriegehäuse
13.01.2020

SGL Carbon: Contract for composite battery enclosures

  • New composite e-mobility application gains momentum
  • Strengthening regional footprint in North America
  • Potential for further extensions

Following the production of first prototypes of battery enclosures for a Chinese automotive manufacturer in 2018, SGL Carbon has now received a contract from a North-American automaker for high-volume serial production of carbon and glass fiber-based composite top and bottom layers for battery enclosures. The serial production of the components will start end of 2020. The carbon fibers and fabrics as well as the assembled components come from SGL Carbon’s fully integrated value chain. On top of this order, there is the potential for more extensions with further substantial volumes for the shared platform business of the manufacturer.

In addition, SGL Carbon has won a smaller volume contract from a European sports car manufacturer to serially produce bottom layers made of composite as of mid-2020. The company is additionally in talks with further automakers to develop and manufacture battery enclosure solutions for their e-car platforms.

  • New composite e-mobility application gains momentum
  • Strengthening regional footprint in North America
  • Potential for further extensions

Following the production of first prototypes of battery enclosures for a Chinese automotive manufacturer in 2018, SGL Carbon has now received a contract from a North-American automaker for high-volume serial production of carbon and glass fiber-based composite top and bottom layers for battery enclosures. The serial production of the components will start end of 2020. The carbon fibers and fabrics as well as the assembled components come from SGL Carbon’s fully integrated value chain. On top of this order, there is the potential for more extensions with further substantial volumes for the shared platform business of the manufacturer.

In addition, SGL Carbon has won a smaller volume contract from a European sports car manufacturer to serially produce bottom layers made of composite as of mid-2020. The company is additionally in talks with further automakers to develop and manufacture battery enclosure solutions for their e-car platforms.

“Driven by the increasing need for e-cars worldwide and thus for new flexible chassis platforms, our composite battery enclosures are a very promising new application in our product portfolio. The recent contract wins show that our approach of developing custom-made solutions based on our integrated value chain offers an excellent value proposition”, says Sebastian Grasser, Head of Automotive Segment.

More information:
SGL Carbon
Source:

SGL Carbon

18.09.2019

Hexcel to Exhibit at CAMX 2019

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

With 50 years of experience and the most qualified carbon fiber positions on aerospace programs in the industry with its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate and is introducing a new fiber to its portfolio. HexTow® HM54 combines high modulus and high tensile strength, which allows structural designers to achieve higher safety margins for both stiffness and strength-critical applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications, examples of golfing applications will be on display.

Additive manufacturing is on the forefront of innovation for composite technologies, and Hexcel is leading the way with its HexAM® additive manufacturing process. HexAM® additive manufacturing combines high performance PEKK thermoplastics with carbon fiber to produce flight-ready 3D printed HexPEKK® parts. HexPEKK® structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

HexPly® M77 snap-cure prepregs are yet another example of Hexcel technology leading the way. HexPly® M77HF, the latest member of this quick-curing prepreg family, is revolutionizing the world of composites for high-performance sporting goods with its faster production times and excellent surface quality. It will be featured in the Hexcel booth in two products – a carbon fiber Goode water ski which is setting records in the competitive world with its precision and durability, and in a HED cycling wheel noted for its aerodynamics and light weight.

Among Hexcel’s latest technologies are the RF Interference Control materials made by ARC Technologies, a Hexcel company. A selection of these industry-leading custom RF / EMI and microwave absorbing composite materials for military, aerospace and industrial applications will be on display at the Hexcel booth.

HexForce® bias weave woven reinforcements are a patented solution to optimize material usage. These bias weave reinforcements are continuous rolls of carbon fiber fabric in which the warp and weft yarns are oriented on the bias at +/- 45° which can reduce prepreg waste up to 60%. Visitors at CAMX will be able to see this new woven reinforcement and learn more.

Source:

AGENCE APOCOPE

11.06.2019

Hexcel at Paris Air Show 2019: Le Bourget, 17 – 23 June

STAMFORD, Conn. – At this year's Paris Airshow [Le Bourget, June 17-23] Hexcel will promote a range of carbon fibers and composite materials used to manufacture high-performance weight-saving structures in civil aircraft, engines, helicopters, and space applications.

Visitors to the Hexcel stand will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® carbon fiber reinforcements. HiTape® dry carbon reinforcements were developed for the automated lay-up of preforms and to complement a new generation of HiFlow™ resin systems, producing high-quality aerospace structures using the resin infusion process. The reinforcements incorporate a toughening veil to enhance mechanical properties and meet the structural requirements for aerospace parts. The I-Beam was manufactured using C-RTM (Compression Resin Transfer Molding) and was injected with Hexcel’s RTM6 resin in a process taking less than five minutes.

STAMFORD, Conn. – At this year's Paris Airshow [Le Bourget, June 17-23] Hexcel will promote a range of carbon fibers and composite materials used to manufacture high-performance weight-saving structures in civil aircraft, engines, helicopters, and space applications.

Visitors to the Hexcel stand will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® carbon fiber reinforcements. HiTape® dry carbon reinforcements were developed for the automated lay-up of preforms and to complement a new generation of HiFlow™ resin systems, producing high-quality aerospace structures using the resin infusion process. The reinforcements incorporate a toughening veil to enhance mechanical properties and meet the structural requirements for aerospace parts. The I-Beam was manufactured using C-RTM (Compression Resin Transfer Molding) and was injected with Hexcel’s RTM6 resin in a process taking less than five minutes.

Hexcel honeycomb saves weight and enhances stiffness in composite structures, and the company provides a range of engineered core solutions that enable highly contoured parts with precision profiling to be produced to exact customer specifications. A sample part made from aluminum FlexCore® that is CNC machined on both sides and formed and stabilized with both peel ply and flyaway layers of stabilization will be on display.

Another honeycomb innovation is Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb that significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.
Another Hexcel technology to benefit aircraft engines is HexShield™ honeycomb which provides high-temperature resistance in nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential reuse of material after a fire.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

Another area of expertise that uses HexTow® carbon fiber is additive manufacturing, where Hexcel uses PEKK ultrahigh performance polymers and HexAM™ technology to manufacture carbon reinforced 3D printed parts. This innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Later this year Hexcel will open a joint research and development laboratory in Les Avenières (Isère), France with Arkema to develop carbon fiber-reinforced thermoplastic prepreg tapes for aerospace, space and defense applications. A spool of thermoplastic prepreg tape will be on display on Hexcel’s stand to showcase this cost-effective technology that enables lightweight parts to be produced in faster production cycles for future generations of aircraft.

Hexcel’s stand is located next to Hexcel’s official distributor for aerospace products, Groupe Gazechim Composites. In 2018, Hexcel and Gazechim formed a joint venture, HexCut Services, to provide aerospace and defense customers with customized kitting services that include Hexcel’s innovative carbon fiber prepreg, fabrics and adhesives. Pre-cut kits save customers time and investment, reduce inventory and minimize material losses through scrap reduction.

More information:
Hexcel Paris Air Show Composites
Source:

AGENCE APOCOPE

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE

07.02.2019

Hexcel Exhibits at Aero India 2019

Hexcel is exhibiting at the Aero India show for the sixth time, continuing to support customers in the Indian subcontinent and throughout Asia. This year’s show takes place in Bangalore from February 20-24 (Stand AB2.5D, Hall AB) to promote a range of carbon fibers and composites that are benefiting Indian aerospace manufacturers for commercial aircraft, helicopters and space programs.

To coincide with the show, Hexcel is announcing the opening of its new sales office, Hexcel Composites India LLP. The office is located in Bangalore and will be fully operational in March 2019. Mr Vijay Sharma, Sales Manager, and Mr Ram Kumar, Technical Representative, will manage the sales activities and support key customers in the region.

Hexcel has supplied carbon and glass fiber fabrics, prepregs, honeycombs and adhesives to Indian aerospace companies for more than 28 years, including Hindustan Aeronautics Ltd (HAL), National Aerospace Lab (NAL), Indian Space Research Organisation (ISRO), Vikram Sarabhai Space Centre (VSSC) and TATA Advanced Materials.

Hexcel is exhibiting at the Aero India show for the sixth time, continuing to support customers in the Indian subcontinent and throughout Asia. This year’s show takes place in Bangalore from February 20-24 (Stand AB2.5D, Hall AB) to promote a range of carbon fibers and composites that are benefiting Indian aerospace manufacturers for commercial aircraft, helicopters and space programs.

To coincide with the show, Hexcel is announcing the opening of its new sales office, Hexcel Composites India LLP. The office is located in Bangalore and will be fully operational in March 2019. Mr Vijay Sharma, Sales Manager, and Mr Ram Kumar, Technical Representative, will manage the sales activities and support key customers in the region.

Hexcel has supplied carbon and glass fiber fabrics, prepregs, honeycombs and adhesives to Indian aerospace companies for more than 28 years, including Hindustan Aeronautics Ltd (HAL), National Aerospace Lab (NAL), Indian Space Research Organisation (ISRO), Vikram Sarabhai Space Centre (VSSC) and TATA Advanced Materials.

Hexcel’s high strength and intermediate modulus carbon fiber range has been augmented by the launch of HexTow® HM63, a high modulus carbon fiber that has the highest tensile strength of any existing HM fiber. HexTow® HM63 provides outstanding translation of fiber properties in a composite, including superior inter-laminar shear and compression shear strength. HexTow® HM63 is therefore ideal for any high stiffness and strength-critical applications including space, satellites, UAV, commercial aerospace and helicopters.

Source:

AGENCE APOCOPE

(c) Technische Universität Dresden
Frau Dr. Fazeli
23.10.2018

Wissenschaftlerin vom ITM der TU Dresden mit dem Innovationspreis des Industrieclubs Sachsen geehrt

Frau Dr.-Ing. Monireh Fazeli¬ Zoghalchali vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wird am 23. Oktober 2018 für ihre Dissertation "Technologieentwicklung für gewebte Knotenstrukturen mit komplexer Geometrie in Integralbauweise für Faserverbundanwendungen“ mit dem Innovationspreis des Industrieclubs Sachsen 2017 ausgezeichnet. Der Preis ist mit 5.000 Euro dotiert und wird jährlich an einen Absolventen der TU Dresden verliehen.

Die Entscheidung zur Vergabe des Innovationspreises des Industrieclubs Sachsen 2017 erfolgte im Juni 2018 durch ein Preisgericht. Am 23. Oktober findet nun die feierliche Verleihung durch den Industrieclub Sachsen in Dresden statt. Frau Dr. Fazeli absolviert derzeit bis Ende März 2019 im Rahmen des DAAD-Förderprogramms P.R.I.M.E. (Postdoctoral Researchers International Mobility Experience) einen internationalen Forschungsaufenthalt am Centre for Advanced Composite Materials (CACM), University of Auckland in Neuseeland. Deshalb wird Herr Professor Chokri Cherif, Institutsdirektor des ITM und Doktorvater von Frau Dr. Fazeli, den Preis stellvertretend entgegennehmen.

Frau Dr.-Ing. Monireh Fazeli¬ Zoghalchali vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wird am 23. Oktober 2018 für ihre Dissertation "Technologieentwicklung für gewebte Knotenstrukturen mit komplexer Geometrie in Integralbauweise für Faserverbundanwendungen“ mit dem Innovationspreis des Industrieclubs Sachsen 2017 ausgezeichnet. Der Preis ist mit 5.000 Euro dotiert und wird jährlich an einen Absolventen der TU Dresden verliehen.

Die Entscheidung zur Vergabe des Innovationspreises des Industrieclubs Sachsen 2017 erfolgte im Juni 2018 durch ein Preisgericht. Am 23. Oktober findet nun die feierliche Verleihung durch den Industrieclub Sachsen in Dresden statt. Frau Dr. Fazeli absolviert derzeit bis Ende März 2019 im Rahmen des DAAD-Förderprogramms P.R.I.M.E. (Postdoctoral Researchers International Mobility Experience) einen internationalen Forschungsaufenthalt am Centre for Advanced Composite Materials (CACM), University of Auckland in Neuseeland. Deshalb wird Herr Professor Chokri Cherif, Institutsdirektor des ITM und Doktorvater von Frau Dr. Fazeli, den Preis stellvertretend entgegennehmen.

Im Rahmen ihrer Dissertation, die Frau Dr. Fazeli im Dezember 2016 mit der Bestnote „summa cum laude“ abschloss, wurde eine CAE-gestützte Prozesskette zur effizienten automatisierten Fertigung komplexer gewebter Knotenelementhalbzeuge aus Carbonfasern für Rahmentragwerke in Fahrzeugen, Flugzeugen, Maschinen und Anlagen sowie der Architektur realisiert. Für diese Rahmentragwerke in Leichtbauweise steht derzeit bereits ein umfangreiches Sortiment aus faserverstärkten Profilen zur Verfügung. Die erforderlichen Knotenelemente zur Verbindung der Profile sind entweder nach wie vor aus Metall oder müssen extrem aufwändig und somit kostenintensiv gefertigt werden.

Mit der neuen automatisierten Technologie ist es möglich, hochkomplexe, in mehreren Raumrichtungen verzweigte Knotenelemente webtechnisch in einem Stück zu fertigen. Damit entfallen die Prozesse des Zuschnittes und sehr aufwändigen Fügens von Teilflächen. Die Bauteilperformance wird deutlich gesteigert. Am ITM wird in enger Zusammenarbeit mit der Firma MAGEBA International GmbH und durch die finanzielle Förderung von Forschungsprojekten über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) die gesamte Prozesskette vom CAD-Entwurf, über die strukturelle Entwicklung, die Erstellung der Maschinensteuerprogramme, die textiltechnische Umsetzung und die Bauteilkonsolidierung erfolgreich erarbeitet.

Source:

Technische Universität Dresden

Hexcel to Exhibit at Toulouse Space Show 2018
Hexcel to Exhibit at Toulouse Space Show 2018
25.06.2018

Hexcel to Exhibit at Toulouse Space Show 2018

Hexcel is exhibiting at the Toulouse Space Show on June 26-28 to promote its latest technologies and innovations in composites for space applications. More than 3,000 visitors are expected at this major international forum that is dedicated to novel solutions for space.

Hexcel’s promotions will feature a number of 3D-printed flight-ready carbon fiber parts manufactured from HexAM™ additive manufacturing technology, combining high performance PEKK thermoplastics with aerospace grade carbon fiber. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

Hexcel is exhibiting at the Toulouse Space Show on June 26-28 to promote its latest technologies and innovations in composites for space applications. More than 3,000 visitors are expected at this major international forum that is dedicated to novel solutions for space.

Hexcel’s promotions will feature a number of 3D-printed flight-ready carbon fiber parts manufactured from HexAM™ additive manufacturing technology, combining high performance PEKK thermoplastics with aerospace grade carbon fiber. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

Other Hexcel solutions for space applications include carbon fiber, prepregs and honeycomb materials with proven performance for satellite structures and launchers.

Hexcel Corporation is a leading advanced composites company. It develops, manufactures and markets lightweight, high-performance structural materials including carbon fibers, specialty reinforcements, prepregs and other fiber-reinforced matrix materials, honeycomb, adhesives, engineered core and composite structures for use in commercial aerospace, space and defense and industrial applications.

Source:

AGENCE APOCOPE

26.02.2018

Hexcel’s Product Innovations for Aerospace, Automotive, Wind Energy and Marine at JEC WORLD 2018

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

STAMFORD, February 26, 2018 - at JEC World 2018, taking place in Paris March 6-8, Hexcel will display an array of product innovations for customer applications in aerospace, automotive, wind energy and marine markets.
Hexcel’s banner at the exhibit hall entrance features the Airbus H160 helicopter and A350 XWB aircraft, both with carbon fiber livery to acknowledge the high Hexcel composites content in both programs. Hexcel’s reinforcements, prepregs, adhesives and honeycomb materials were selected for the H160’s composite fuselage structures and main rotor blades, contributing to the lightweight fuel-saving design and performance optimization. Airbus has loaned Hexcel an H160 BLUE EDGE blade to display on the booth.

Among the Aerospace promotions at Hexcel’s booth are carbon-reinforced 3D printed parts, made from Hexcel’s HexAM™ additive manufacturing technology that uses PEKK ultra-high performance polymers. Hexcel acquired this technology from Oxford Performance Materials in December 2017 to provide a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Aircraft engines benefit from a number of Hexcel technologies that will be promoted at JEC 2018, including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.
Another honeycomb innovation from Hexcel is Acousti-Cap® broadband noise-reducing honeycomb that significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs. An example of this technology will be on display at JEC 2018.

Rounding off the aircraft engine exhibits is a CTi fan blade for new generation lightweight turbofan engines from Rolls-Royce, manufactured from Hexcel’s HexPly® M91 high toughness and impact-resistant epoxy prepreg. Hexcel supplies HexPly® M91 as slit tape for the automated lay-up of the complex aerodynamic shape, with a constantly changing thickness across the blade length. The blade which is thinner and lighter than titanium fan blades is currently undergoing flight tests.
Hexcel’s HiTape® and HiMax™ dry carbon reinforcements that were developed for the automated lay-up of preforms for resin-infused aerospace structures will be promoted at the show. Two demonstrator parts, one made with HiMax™ and one with HiTape®, were both infused with HexFlow® RTM6 resin to demonstrate the potential benefits of an integrated design for aircraft skins, spars and stiffeners that meets OEM requirements for production rate increases and cost effectiveness.

Hexcel is also introducing its new range of HiFlow™ advanced liquid resins for aerospace structures manufactured by liquid molding technologies. Based on novel proprietary chemistry, the new resin family will enhance the performance of composites and ease processing when combined with HiTape® and HiMax™ dry carbon reinforcements. HiFlow™ HF610 is the first resin in the range.
Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil last October. Hexcel is relaunching the acquired products under the new HexBond™ brand name at JEC World. This fast-growing range of pastes, liquid shim and film adhesives has a wide spectrum of operating temperatures and is in qualification with a large number of aerospace and industrial OEMs.
In the Planet Aerospace area at JEC, Daher and Hexcel will jointly display an aircraft spar manufactured from HexPly® M56 prepreg. Hexcel’s Neil Parker and Daher R&T Director Dominique Bailly will give a joint presentation focusing on the materials used and the benefits for the finished part. The aircraft spar was designed and manufactured by Daher using Hexcel’s HexPly® M56 prepreg, in slit tape format, that was developed for automated deposition and out-of-autoclave curing. The spar was manufactured using only the vacuum bag process and demonstrates very low porosity levels. It is currently undergoing testing and validation through CORAC funding.

Hexcel’s Automotive promotions at JEC World 2018 include a new prepreg for composite leaf springs, HexPly® M901. In contrast to steel leaf springs used for suspension on vans, trucks and SUVs, newer composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. Hexcel’s HexPly® M901 prepreg raises the bar further, reducing mold cure time below 15 minutes, a 50% reduction compared to standard industrial prepregs. HexPly® M901 provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure. Hexcel’s expertise in manufacturing heavy weight glass UD prepregs, with fiber areal weights of up to 1600gsm, allows the company to offer a highly cost-competitive solution for the rapid manufacture of these safety critical components.

Hexcel is constantly seeking ways to ensure that customers obtain the maximum benefit from composites and has recently acquired state-of-the-art simulation technology that accurately predicts how HiMax™ non-crimp fabrics will drape in a mold. Working in collaboration with Nottingham University Hexcel has created a car seat shell, for which the material selection was optimized using this new drape simulation technology. Visitors to Hexcel’s stand at JEC will see an on-screen demonstration that illustrates how the simulation tool operates, predicting process and performance and ensuring that the optimum fabric architecture is quickly identified, reducing the need for expensive trial programs.
Hexcel’s HexMC®-i 2000 carbon fiber/epoxy molding compound has been successfully used by Audi to manufacture a high-performance engine cross brace. HexMC®-i is a fast curing high-performance molding material, suitable for the series production of complex shaped parts and providing excellent mechanical properties. The Audi cross brace covers the engine, providing torsional stiffness for enhanced drive dynamics.

Hexcel’s product offering for customers in the Marine industry has expanded following the acquisition of Formax in 2016 and Structil in 2017. At JEC World, Hexcel will promote its enhanced portfolio of carbon fibers, prepregs, woven reinforcements and multiaxial fabrics for builders of racing catamarans and luxury yachts.
Marine customers have supplied a number of parts for display to illustrate their expertise in manufacturing composite structures from Hexcel materials. These include part of a Diam 24 yacht mast made by ADH Inotec from Hexcel’s HexPly® M79 fast curing, low temperature cure prepreg. ADH Inotec purchased the prepreg from Composites Distribution, a Hexcel Official Distributor that also supplied HexPly® M9.6 prepreg to Lorima for the Outremer 5X catamaran mast section on display. Part of Lorima’s 42m wing mast for a multihull racing boat made with HexPly® prepreg from Vert-Le-Petit (formerly Structil) will complete the marine display.

Hexcel’s innovations for Wind Energy include Polyspeed® pultruded laminates for load-carrying elements in wind blades. These continuous cross-section profiles, made from a polyurethane matrix reinforced with unidirectional carbon fiber, provide consistently high mechanical properties, including high stiffness, fracture toughness and shear strength, combined with low weight and durability. Visitors to Hexcel’s stand will see a 2m diameter coil of pultruded carbon laminate that contains 255m of material in a single roll. This technology offers an economical way of reinforcing large-scale composite structures such as wind turbine blades. Hexcel will also launch its surface finishing prepreg for wind turbine blades and components. This provides a tough, durable and ready-to-paint blade surface without the use of gel coat and results in faster blade manufacture, saving time in production and reducing material costs. The benefits of the new surfacing prepreg will be demonstrated via a wind blade exhibit that has been given four different treatments across the blade surface. These include a section with gel coat, a section of standard prepreg without gel coat, and a section where a fleece has been added to improve surface quality but still requires preparation before painting due to pin holes. The final section made with new HexPly® XF2P surfacing prepreg has a ready-to-paint surface, straight from the mold, without any requirement for gel coat, fleece or finishing operations.

More information:
Hexcel JEC World 2018 Aircraft
Source:

Dorothée DAVID & Marion RISCH, AGENCE APOCOPE

JEC Group Source: www.agenceapocope.com
JEC Group
30.05.2017

Innovations that will change the future of Building and Construction to be rewarded at JEC Innovation Awards in Chicago, June 20-22, 2017

Composites use in Building and Construction will be highlighted at JEC newest event dedicated to this specific Composites Industry next month in Chicago, IL, USA. The numerous and diverse benefits that these innovative materials bring to the Building Industry will help overcome the coming challenges such as, urbanization, increase of natural disasters (floods, storms, tsunamis, earthquakes…), along with the decrease of non-renewable raw materials and the high standard levels set by the society in terms of lightness and fluidity. Composites Materials bring answers and opportunities to tackle those issues in sustainable, durable and reliable manners. Solutions like ease of fabrication (Owens Corning), structures durability (Biteam), anti-seismic reinforcement (DowAksa), use of end-of-life products such as recycled bottles of water (Premier Composites Technologies), aerial forms (Optima Projects Ltd) or again energy saving (Armageddon Energy).

Composites use in Building and Construction will be highlighted at JEC newest event dedicated to this specific Composites Industry next month in Chicago, IL, USA. The numerous and diverse benefits that these innovative materials bring to the Building Industry will help overcome the coming challenges such as, urbanization, increase of natural disasters (floods, storms, tsunamis, earthquakes…), along with the decrease of non-renewable raw materials and the high standard levels set by the society in terms of lightness and fluidity. Composites Materials bring answers and opportunities to tackle those issues in sustainable, durable and reliable manners. Solutions like ease of fabrication (Owens Corning), structures durability (Biteam), anti-seismic reinforcement (DowAksa), use of end-of-life products such as recycled bottles of water (Premier Composites Technologies), aerial forms (Optima Projects Ltd) or again energy saving (Armageddon Energy).


Following its strategy to address every Composites End-user, the JEC Innovation Awards will reward these 6 Composites Innovators in Building & Construction that will change the way we build.
If the majority of submissions relied on glass fibers, which is common in the Construction field, we see an increased interest in carbon fibers, especially for structural applications. And similarly to all sectors of the composite industry, thermoplastics are gaining in importance in Construction. Therefore, to promote the growing use of composites as a construction material, 6 categories are awarded, covering a large panel of applications and possibilities.

Source:

AGENCE APOCOPE

Hexcel AGENCE APOCOPE
Hexcel
19.05.2017

Hexcel exhibiting at SAMPE Seattle 2017

Hexcel is exhibiting at the SAMPE 2017 technical conference May 23-24, in booth G11, in Seattle, Washington, U.S. to promote its latest materials for aerospace and industrial applications. Specialists from Hexcel’s carbon fibers, reinforcements, prepregs, honeycomb and engineered core groups will be there to speak with attendees about Hexcel’s wide variety of products and offerings.

Hexcel is exhibiting at the SAMPE 2017 technical conference May 23-24, in booth G11, in Seattle, Washington, U.S. to promote its latest materials for aerospace and industrial applications. Specialists from Hexcel’s carbon fibers, reinforcements, prepregs, honeycomb and engineered core groups will be there to speak with attendees about Hexcel’s wide variety of products and offerings.


This year at SAMPE Seattle Hexcel will be promoting its HiTape® dry carbon fiber reinforcements with a C spar panel and co-infused stringer. This display shows the high forming capability of HiTape® reinforcements and how the technology can be used to co-infuse stringers and C spar panels. It is also representative of an aircraft wing construction. HiTape® dry carbon fiber reinforcements are designed for the automated manufacture of preforms at very high deposition rates. The dry preforms are infused with Hexcel’s HexFlow® RTM6 resin for a cost-efficient out-of-autoclave manufacturing process for next generation aircraft structures. Parts produced with HiTape® reinforcements and Hexcel’s HexFlow® infusion resins can be up to 30mm thick with a 58 to 60% fiber volume content, resulting in mechanical properties that are as high as those achieved with primary structure prepregs.

More information:
Hexcel, Sampe Seattle, 2017
Source:

AGENCE APOCOPE