ENTWICKLUNG UND VALIDIERUNG EINES SYSTEMS ZUR KABELLOSEN DATEN- UND ENERGIEÜBERTRAGUNG ZWISCHEN SMART TEXTILES UND HAUTSENSOREN
Sensorik Smart Textiles Medizin
Zusammenfassung
Die Wahl der NFC-Technologie für die kabellose Energie- und Datenübertragung im Rahmen dieser Arbeit ist vielversprechend. Die geringe Reichweite der Technologie stellt für die körper-nahe Benutzung keine Einschränkung dar. Die Integration von NFC-Antennen in Textilien ist viel-versprechend und verbessert die Anwendbarkeit sowie den Tragekomfort. Dieser Ansatz dient als Grundlage für innovative Anwendungen in den Bereichen Sport und Medizin. Im Sport können Hautsensoren dazu beitragen, die Leistung und den Trainingsfortschritt zu überwachen, während in der Medizin nicht-invasive oder minimalinvasive Langzeitmessungen ermöglicht werden kön-nen. Dies weist auf die breite Anwendungsfähigkeit der entwickelten Technologie hin
Bericht
Abstract
Zum aktuellen Stand der Technik existiert keine Lösung für die Interaktion zwischen Hautsenso-ren zur Überwachung von Vitalparametern und Smart Textiles. Im Rahmen dieser Arbeit wird ein System entwickelt, welches die kabellose Daten- und Energieübertragung zwischen Sensoren und Textilien ermöglicht.
Hautsensoren ermöglichen in Bereichen wie Medizin und Sport eine nicht- oder minimalinvasive Überwachung von Vitalparametern wie Herzschlag, Atemfrequenz, Blutzucker oder Sauer-stoffsättigung des Bluts. Zur Maximierung des Tragekomfort wird eine Lösung mit passiven Haut-sensoren angestrebt, die mithilfe eines Smart Textiles mit Energie versorgt werden und welches die Daten der Sensoren ausliest.
Hiefür bietet sich NFC als Übertragungsstandard an, da NFC einen zeitgleichen Austausch von Energie und Daten ermöglicht. Mittels eines NFC-Tags mit integrierten Sensoren wird der Haut-sensor simuliert. Um die Grenzen der Lösung festlegen zu können wird der Einfluss verschiede-ner Parameter auf die Energieübertragung zwischen NFC-Antennen untersucht. Die untersuch-ten Parameter sind der Abstand zwischen NFC-Antenne und NFC-Tag, die relative Verschiebung zwischen NFC-Antenne und NFC-Tag, die Krümmung der NFC-Antenne, der Einfluss von Texti-lien zwischen NFC-Antenne und NFC-Tag sowie der Einfluss verschiedener Materialien und Ge-ometrien für gestickte NFC-Antennen.
Einleitung
Smart Textiles erlauben es auf verschiedene Arten zusätzliche Funktionen in Bekleidung oder andere Textilien zu integrieren. Soll ein elektrischer Schaltkreis auf oder in ein Textil integriert werden, bestehen verschiedene Möglichkeiten. Neben dem Drucken mit leitfähigen Tinten und dem Einbringen von leitfähigen Garnen mittels Weben und Stricken, bietet das Sticken ein hohes Maß an Designfreiheit und einer gegeben Waschbarkeit bei der Wahl von geeigneten leitfähigen Garnen. [1] Die textile Integration erlaubt außerdem einen nahezu uneingeschränkten Tragekomfort.
Bei der Wahl der Technologie für eine kabellose Datenübertragung ist besonders auf den Ener-gieverbrauch zu achten. NFC weist einen sehr niedrigen Energieverbrauch auf [2] und ermöglicht einen zeitgleichen Energie- und Datenaustausch. Die spiralförmige, flache Geometrie von NFC-Antennen, ermöglichen die Energieübertragung mittels Induktion [3]. Aufgrund der Antennenge-ometrie lassen sich NFC-Antennen mit leitfähigen Garnen auf Textilien aufsticken.
Experimenteller Teil
Um die Grenzen der Energieübertragung zwischen zwei NFC-Antennen zu untersuchen, wird der Einfluss verschiedener Faktoren auf die induzierte Spannung in einem NFC-Tag untersucht. Die untersuchten Faktoren sind der Abstand, die Verschiebung, die Krümmung und zwischen den Antennen befindliche Textilien. Dadurch werden verschiedene Situationen des Tragens von einem Bekleidungsstück mit einer textilen Antenne untersucht. Die verwendeten Versuchsvorrichtungen werden mittels 3D-Druck hergestellt, siehe Abbildung 1.
Abbildung 1: Versuchsaufbau für Messungen des Einflusses des Abstands, der Geometrie, der Verschiebung und der Krümmung zwischen NFC-Antenne und NFC-Tag. Quelle: ITA
Neben den Versuchen zu den bereits beschrieben Parametern des Systems werden verschiedene textile NFC-Antennen gefertigt und bewertet. Dabei kommen selektierte Geometrien aus verschiedenen Literaturquellen [4], [5], [6] und Materialkombinationen zum Einsatz. Die Geometrien unterscheiden sich in der Anzahl der Windungen, dem Windungsabstand und dem Durchmesser der Antenne. Die untersuchten Materialkombinationen sind (A) Shieldex und Madeira HC 40, (B) Polyester und Shieldex und (C) Polyester und Kupferlackdraht. Anhand der gestickten Antenne können Aussagen über die Materialien und Geometrien getroffen werden. Zudem werden die Widerstände sowohl von den textilen Antennen als auch gekauften NFC-Antennen gemessen.
Die verschiedenen Geometrien sind in Abbildung 2 dargestellt.
Abbildung 2: Antennengeometrien. Quelle: ITA
Mit den Erkenntnissen der praktischen Versuche wird ein Demonstrator in Form eines langärmligen Oberteils hergestellt. Zur vereinfachten Herstellung wird die Antenne und zwei Leiterbahnen auf ein Textil gestickt und nachträglich auf den Ärmel des Oberteils aufgeklebt. Zusätzlich wird der Ärmel mit einer Tasche versehen, in die ein NFC-Leser platziert werden kann. Der NFC-Leser erlaubt ein Auslesen der Sensoren des NFC-Tags und die zeitgleiche Energieversorgung. Der Demonstrator ist mit Detailaufnahmen in Abbildung 3 zu sehen.
Abbildung 3: Demonstrator mit Detailaufnahmen. Quelle: ITA
Ergebnisse
In den Versuchen zu den Antennen konnte gezeigt werden, dass der Einfluss der untersuchten Krümmung auf Energieübertragung lediglich gering ist (> 5 %). Steigende Abstände und relative Verschiebungen hingegen führen zu einer Abnahme der induzierten Spannung im NFC-Tag. Insbesondere die Verschiebung schränkt die Anwendung ein. Bereits bei einer Verschiebung von etwa 2,5 cm beträgt die induzierte Spannung nur noch die Hälfte des Werts ohne Verschiebung (siehe Abbildung 4). In einem Endprodukt muss demnach eine möglichst genaue Positionierung über dem Hautsensor gewährleistet werden.
Abbildung 4: Messergebnis Verschiebung. Quelle: ITA
Bei der Wahl der Materialien hat sich die Materialkombination (A) mit Shieldex und Madeira HC 40 am zuverlässigsten gezeigt. Verglichen mit (B) ist (A) weniger fehleranfällig, da ein Riss eines Garns nicht zwangsläufig zu einem Trennen des Schaltkreises führt. Kupferlackdraht ist neben der Anfälligkeit bei Biegung zu brechen, aufgrund der erschwerten Kontaktierung nachteilig. Au-ßerdem ist bei der Entwicklung von Geometrien auf einen definierten Windungsabstand zu ach-ten, um Kurzschlüsse innerhalb der Antenne zu vermeiden. Es ist jedoch anzumerken, dass die gestickten Antennen im Vergleich zur verwendeten kommerziellen Antenne einen etwa um den Faktor 30 höherer Widerstand aufweisen.
Diskussion
Im Rahmen der durchgeführten Versuche hinsichtlich der untersuchten Parameter Abstand, Krümmung, Verschiebung sowie Geometrie konnte bei allen Parametern ein Einfluss erkannt werden. Dieser ist für die Parameter Abstand sowie Verschiebung besonders ausgeprägt. Dies zeigt sich unter anderem durch eine Halbierung der induzierten Spannung ab einer Verschie-bung von 2,5 cm. Im Rahmen von weiterführenden Versuchen soll in einem nächsten Schritt nun genauere Untersuchung und Weiterentwicklung von textilen NFC-Antennen durchgeführt werden, um eine energiesparende Umsetzung zu ermöglichen. Für die Übertragung der aktuel-len Ergebnisse in ein realistisches Szenario muss für die Entwicklung von Endprodukten eine genaue Positionierung der Antennen realisiert werden. Zusätzlich ist für ein Endprodukt eine textilbezogene Umsetzung des NFC-Lesers und seiner Energieversorgung anzustreben.
Danksagung
Wir danken dem Bundesministerium für Wirtschaft und Klimaschutz und der AIF-Forschungsge-meinschaft für die Förderung des IGF-Projektes Nr. 351EN/1.
Literaturliste
[1] Tao, X.: Handbook of Smart Textiles, Springer Singapore, 2015
[2] Gupta, D.; Khanna, A.; Hassanien, A. E.; Anand, S.; Jaiswal, A. (Hrsg.): International Conference on Innovative Computing and Communications, Springer Nature Singapore, 2023
[3] Lathiya, P.; Wang, J.: Near-Field Communications (NFC) for Wireless Power Transfer (WPT): An Overview In Zellagui, M.: Wireless Power Transfer – Recent Development, Applications and New Perspectives: IntechOpen, 2021
[4] Jiang, Y. T.; Xu, L. L.; Pan, K. W.; Leng, T.; Li, Y.; Danoon, L.; Hu, Z. R.: e-Textile embroidered wearable near-field communication RFID antennas. IET MICROWAVES ANTENNAS & PROPAGATION. 13, S. 99–104, 2019
[5] Del-Rio-Ruiz, R.; Lopez-Garde, J. M.; Macon, J. L.; Rogier, H.; IEEE: Design and Performance Analysis of a Purely Textile Spiral Antenna for On-Body NFC Applications, 2017
[6] Lin, R.; Kim, H.-J.; Achavananthadith, S.; Kurt, S. A.; Tan, S. C. C.; Yao, H.; Tee, B. C. K.; Lee, J. K. W.; Ho, J. S.: Wireless battery-free body sensor networks using near-field-enabled clothing, NATURE COMMUNICATIONS. 11, S. 444, 2020
Kontakt: robin.oberle@ita.rwth-aachen.de
1 RWTH Aachen – Institut für Textiltechnik der RWTH Aachen University (Germany)
Arbeitsgruppenleiter: Akram Idrissi– Institut für Textiltechnik der RWTH Aachen University (Germany)
More entries from ITA Institut für Textiltechnik der RWTH Aachen University