Forschungspublikationen

3 Ergebnisse
25.08.2023

Wärmebehandlung von Magnesium-Stents zur Erhöhung der maximalen Radialkraft

Technische Textilien Medizin Tests

Zusammenfassung

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textil-bewehrtes, minimal-invasiv implantierbares Device. Die Verwendung einer biodegradierbaren magnesiumbasierten Stentstruktur, welche sich nach erfolgter Einheilung der Venenklappe in das Umgebungsgewebe auflöst, ermöglicht eine schonende Therapie mit geringer dauerhafter Materialeinbringung in den Körper. Im Rahmen der Stententwicklung wurde der Einfluss der Wärmebehandlung nach dem Flechtprozess auf die maximale Radialkraft untersucht. Es wurde gezeigt, dass eine Ausscheidungshärtung des Magnesiums bei einer Temperatur von 225 °C und einer Dauer von 34 h eine Steigerung der Radialkraft ermöglicht.

Bericht

1.  Einleitung

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Im Rahmen der Definition von CVI manifestieren sich Beinödeme, die zunächst über Nacht spontan rückgängig gemacht werden können, jedoch unbehandelt persistieren können [2,4,5].

Die Pathogenese der Erkrankung resultiert aus einer Insuffizienz der Venenklappen. Diese Defizienz der Klappen kann auf angeborene Fehlbildungen, strukturelle Schwäche oder abnormale, expandierbare Venenwände infolge anderer Pathologien wie Adipositas, langanhaltendes Stehen oder Sitzen zurückzuführen sein. Hieraus resultiert venöser Rückfluss, Behinderung des Blutflusses, Stauung und erhöhter Druck in den distalen Venenabschnitten. [1,4,6]

Die Therapie der CVI gliedert sich in konservative und invasive Maßnahmen. Die Wahl der Behandlungsstrategie hängt von der Anatomie und dem Stadium der Krankheit ab, wobei oft eine Kombination beider Ansätze empfohlen wird. Konservative Behandlungsoptionen umfassen allgemeine Maßnahmen, Kompressionstherapie, physikalische Entstauungstechniken sowie medikamentöse Therapien. Jedoch existieren Einschränkungen bezüglich der Effektivität konservativer Ansätze in bestimmten Kontexten, wie bei älteren Patienten mit multiplen Komorbiditäten. Die invasiven Verfahren fokussieren sich auf die Entfernung oder Verödung defizienter Venen oder die Isolierung der Refluxquelle vom restlichen Venensystem, wodurch das Blut ausschließlich durch gesunde Venen zirkuliert. Diese Maßnahmen führen zu signifikanter Symptomreduktion, Steigerung der Lebensqualität und Prävention von Folgeschäden. [3,5]

Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textilbewehrtes, minimal-invasiv implantierbares Device. Die Trägerstruktur für die künstliche Venenklappe bildet ein degradierbarer, geflochtener Magnesiumstent. Dieser dient zur initialen Verankerung der Klappenstruktur in der Vene. Das Design des Stents wird bezüglich der Radialkraft optimiert um eine ausreichende Verbindung zwischen der Klappenstruktur und der Venenwand zu gewährleisten. Darüber hinaus wird das Migrationsrisiko des Implantates vermindert. Weitere Aspekte des Stentdesigns konzentrieren sich auf die ausreichende Flexibilität zur Anpassung an die Anatomie der Venenwand sowie der Sicherstellung von Knickresistenz. Die Klappenstruktur des Implantates wird der Anatomie der nativen Venenklappe nachempfunden. Eine gewirkte Netzstruktur bildet die textile Verstärkung der Klappe. Durch gezielte Nahtpunkte wird die Klappenstruktur am Stent verankert. Das Textil wird im BioV²alve Projekt mit einer Hydrogelbeschichtung kombiniert.

Das Ziel der Studie ist die Untersuchung des Einflusses der Wärmebehandlung der Stents auf die Radialkraft. Hierzu werden zwei verschiedene Wärmebehandlungen aus der Literatur verwendet.

2.  Material und Methoden

Stentherstellung

Die Stents werden mittels Einfadenflechten hergestellt. Hierbei wird Magnesium Draht der Legierung WE43 der Firma Meotec GmbH, Aachen, Deutschland mit einer Drahtstärke von 300 µm verwendet. Die Maße der Stents sind l = 25 mm und d = 12 mm.

Wärmebehandlung der Stents

Drei Temperatur-Dauer-Kombinationen werden auf jeweils drei Stents verwendet. Nach den Wärmebehandlungen wird bei allen Stents die Radialkraft getestet.

s. Tabelle 1: Temperatur und Dauer der Wärmebehandlungen

Radialkrafttestung

Zur Bestimmung der Radialkraft der Stents wird der Radialkrafttester TTR2 der Firma Blockwise Engineering LLC, Tempe, USA verwendet. Die Messungen erfolgen in Anlehnung an Teil 2 der DIN EN ISO 25539 und die ASTM Richtlinie F3067 – 14. Pro Parameterkombination werden drei Proben geprüft.

s. Tabelle 2:   Prüfparameter der Radialkraftprüfung

3. Ergebnisse

Die maximale Radialkraft wird genutzt, um die unterschiedlichen Wärmebehandlungen miteinander zu vergleichen. Pro Kombination der Prozessparameter wird die maximale Radialkraft von drei Proben ermittelt. Die Mittelwerte mit Standardabweichung aus den jeweils drei Proben wurden in Abbildung 1 aufgetragen. Der Referenzstent hat eine Radialkraft von 16,5 N ± 0,7 N und weist somit die niedrigste maximale Radialkraft auf. Die Wärmebehandlung mit 210 °C für 8 h führt zu einer Steigerung der maximalen Radialkraft auf 19,8 N ± 0,7 N.  Die Parameterkombination 225 °C mit 34 h weist mit 23,2 ± 0,8 N den höchsten Wert der maximalen Radialkraft. Dies entspricht einer Steigerung von 40 % gegenüber der Referenz ohne Wärmebehandlung.

s. Abbildung 1:   Maximale Radialkraft der Stents (Mittelwert und Standardabweichung)

s. Abbildung 2: Exemplarische Hysteresschleifen der Radialkraftmessung mit drei Zyklen eines Stents mit der Wärmebehandlung 225 °C und 34 h

4.  Zusammenfassung

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textil-bewehrtes, minimal-invasiv implantierbares Device. Die Verwendung einer biodegradierbaren magnesiumbasierten Stentstruktur, welche sich nach erfolgter Einheilung der Venenklappe in das Umgebungsgewebe auflöst, ermöglicht eine schonende Therapie mit geringer dauerhafter Materialeinbringung in den Körper. Im Rahmen der Stententwicklung wurde der Einfluss der Wärmebehandlung nach dem Flechtprozess auf die maximale Radialkraft untersucht. Es wurde gezeigt, dass eine Ausscheidungshärtung des Magnesiums bei einer Temperatur von 225 °C und einer Dauer von 34 h eine Steigerung der Radialkraft ermöglicht.

5.  Danksagung

Das Projekt „BioV²alve“ (EFRE-0801315) wurde durch den Europäischen Fond für Regionale Entwicklung Nordrhein-Westfalen (EFRE.NRW) gefördert.

6.  Quellen

1.              Douketis, J.:  Chronisch Venöse Insuffizienz und Postthrombotisches Syndrom. Kenilworth 2016, URL: https://www.msdmanuals.com/de-de/profi/herz-kreislauf-krankheiten/periphere-venenerkrankungen/chronisch-venöse-insuffizienz-und-postthrombotisches-syndrom, Zugriff am 04.11.2019

2.              Ludwig, M.: Repetitorium für die Facharztprüfung Innere Medizin.
2. Aufl. Elsevier, München, Deutschland 2017

3.              Pannier F., Noppeney, T., Breu, F., et al.: S2k - Leitlinie Diagnostik und Therapie der Varikose, 03/2019

4.              Rabe, E., Gerlach, H.-E.: Praktische Phlebologie.
2. vollst. überarb. Aufl. THIEME, Stuttgart 2006

5.              Santler, B., Goerge, T.: Die chronische venöse Insuffizienz - Eine Zusammenfassung der Pathophysiologie, Diagnostik und Therapie. Journal der Deutschen Dermatologischen Gesellschaft 2017; 15 (5): 538–557

6.              Weber, B., Robert, J., Ksiazek, A., et al.:  Living-Engineered Valves for Transcatheter Venous Valve Repair. Tissue engineering Part C Methods 2014; 20 (6): 451–463

7.              Li, H.; Lv, F.; Liang, X.; Qi, Y.; Zhu, Z.; Zhang, K.:Effect of heat treatment on microstructures and mechanical properties of a cast Mg-Y-Nd-Zr alloy, Materials Science & Engineering A 667 (2016), S. 409-416

8.              Mengucci, P.; Barucca, G.; Riontino, G.; Lussana, D.; Massazza, M.; Ferragut, R.; Hassan Aly, E.: Structure evolution of a WE43 Mg alloy submitted to different thermal treatments, Materials Science and Engineering A 479 (2008), S. 37-44

AutorInnen: Caroline Emonts Ren Pan Thomas Gries

Institut für Textiltechnik der RWTH Aachen, Otto-Blumenthal-Str. 1, 52074 Aachen

Stents Implantat Geflecht

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

19.07.2023

Magnesium als Textil: Potenziale textiler Mg-Implantate

Gewebe Gestricke & Gewirke Medizin Tests

Zusammenfassung

Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.

Bericht

Abstract: Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.

  1. Einleitung

Die Food and Drug Administration (FDA), die Aufsichtsbehörde für Lebensmittel und Arzneimittel in den USA, einem der größten Medizintechnikmärkte der Welt, definiert Implantate als Produkte, die an oder unter der Körperoberfläche implantiert werden, um Medikamente abzugeben, Körperfunktionen zu überwachen oder Organe und Gewebe zu unterstützen. Beispiele sind Stentimplantate, Knochenschrauben/-platten sowie Herzschrittmacher und Defibrillatoren. [FDA19] Die Fallzahlen der Implantationen in Deutschland verdeutlichen, dass es zwei große Anwendungsbereiche für Implantate gibt. Sieht man von Zahnimplantaten ab, werden die meisten Implantate im Bereich des Skelettsystems eingesetzt. Im Jahr 2017 wurden 238.000 Hüftgelenke, 191.000 Kniegelenke und 26.000 Endoprothesen in Extremitäten implantiert. An zweiter Stelle stehen Stentimplantate mit 138.000 Implantaten in Gefäßen und Organen. [Bra18]

Die aktuell überwiegend verwendeten Implantatmaterialien können in Metalle, Polymere und Keramiken unterteilt werden. Metalle wie rostfreier Stahl werden verwendet, wenn eine hohe Festigkeit erforderlich ist, während Nickel-Titan-Legierungen eingesetzt werden, wenn ein elastisches Strukturverhalten erforderlich ist. Im Bereich der Polymere werden verschiedene Kunststoffe verwendet, von Polyethylen für hohe Abriebfestigkeit bis zu Polytetrafluorethylen (PTFE) für besonders geringe Reibung. Keramische Werkstoffe werden vor allem als Hüftgelenkkugeln, Knochenersatzmaterial und in der Zahnmedizin verwendet, darunter Aluminium und Zirkonoxid. [SSA+15; Psc20]

Diese beständigen Implantatmaterialien bringen allerdings entscheidende Nachteile mit sich. Die fünf am häufigsten genannten Defizite sind im Folgenden zusammengefasst:

  1. Ein zentrales Defizit ist das Risiko von Entzündungsreaktionen, wie z. B. beim Einsatz von Stentimplantaten. Stents werden eingesetzt, um verengte Gefäße wieder zu öffnen oder offen zu halten. Wenn ein Stent über einen längeren Zeitraum von mehreren Jahren im Körper verbleibt, kann es aufgrund mechanischer und biochemischer Reizungen zu Entzündungsreaktionen (Inflammation) kommen. Diese führt zur Bildung von Narbengewebe, welches den Stent überwuchern kann, wodurch das betroffene Gefäß wieder verschlossen wird (Restenose). [OTO+21]
  2. Ein weiterer Nachteil sind die notwendigen Revisions- oder Entnahmeoperationen für vorübergehend benötigte Implantate. In diesem Zusammenhang sind die häufig erforderlichen Medikamente zur Verringerung von Fremdkörperreaktionen und ihre Nebenwirkungen eine zusätzliche Belastung der Patienten. Dies und der zusätzliche Eingriff führt zu erhöhter Belastungen des Patienten, höheren Kosten und operationsbedingten Risiken wie bspw. Infektionen. [WXH+20]
  3. Stress Shielding ist ein Defizit permanenter Implantate, welches insbesondere in der Orthopädie auftritt. Dieser Effekt hängt mit den mechanischen Eigenschaften der verwendeten Implantatmaterialien zusammen, insbesondere mit der Festigkeit und dem elastischen Verhalten. Die heute verwendeten Materialien haben in der Regel eine höhere Zugfestigkeit und ein höheres Elastizitätsmodul als der umgebende Knochen. Dadurch werden die Kräfte, die nativ gleichmäßig durch den Knochen geleitet werden, je nach Belastung lokal, punktuell in das weichere Füllmaterial (Spongiosa) des Knochens eingebracht. Bereiche des Knochens, die nun weniger belastet werden, werden zurückgebildet und dies kann zu einer Lockerung des Implantats führen. [WXH+20]
  4. Ein Nachteil bei der Behandlung junger, noch wachsender Patienten ist, dass sich Implantate, die lange Zeit im Körper verbleiben, nur bedingt dem Wachstum anpassen können. Dies kann zur Lockerung von Endoprothesen und so zu einem erhöhten Risiko der Migration von Stentimplantaten führen. Darüber hinaus können Implantate das natürliche Wachstum des Patienten negativ beeinflussen. [OTO+21]
  5. Implantate erschweren die Diagnostik anhand bildgebender Verfahren. Insbesondere metallische Implantate verursachen Bildartefakte in Röntgenaufnahmen oder bei CT-Scans, was die Auswertung des Bildmaterials erschwert oder unmöglich macht. [OTO+21]

Zusammenfassend kann also festgehalten werden, dass es sinnvoll wäre Implantate zu verwenden, die während der Heilungsphase abgebaut werden, damit der Körper nach und nach seine natürliche Funktion wiederherstellen kann und langfristig keine Fremdkörper im Patienten zurückbleiben.

  1. Stand der Technik & Defizit

Bei der Auswahl geeigneter Implantatmaterialien müssen drei zentrale Materialeigenschaften berücksichtigt werden. Die Biokompatibilität, die mechanischen Eigenschaften sowie die Degradationszeit. Biokompatible Materialien verursachen keine nachteiligen Gewebereaktionen, sind metabolisierbar und erzeugen pH-neutrale Abbauprodukte. Was die mechanischen Eigenschaften betrifft, so müssen Zugfestigkeit und Elastizitätsmodul genauso wie die Degradationszeit in vivo der Heilungszeit der jeweiligen Anwendung entsprechen. [PRW+22]

Die Auswahl an in der aktuellen Forschung relevanten, abbaubaren Implantatmaterialien umfasst Polymere wie PLLA (Polymilchsäure) und PDS (Polydioxanon) sowie Metalle wie Eisen und Magnesium (Tabelle 1). Ein optimales Implantatmaterial sollte chemisch neutral abbaubar sein, eine biokompatibel sein und innerhalb des optimalen Korridors der Abbaudauer liegen. Insbesondere bei Anwendungen in Hohlorganen und Gefäßen sollten die mechanischen Eigenschaften des Implantatmaterials besonders hoch sein, um ein optimales Verhältnis zwischen Wandstärke und Stützkraft zu ermöglichen. Da PLLA und Eisen zu langsam degradieren, setzt sich Magnesium aufgrund seiner besseren Zugfestigkeit und Steifigkeit im Vergleich zu PDS als besser geeignetes Material für tragende und stützende Anwendungen durch. [PRW+22]

s. Anlage Tabelle 1: Eigenschaften degradierbarer Materialien [EBK+22; MLM+20; LFW14]

Es ist anzumerken, dass die Eigenschaften von purem Magnesium hinsichtlich der Anwendung für medizinische Implantate nicht ausreichend sind. Wie bei anderen Metallen können diese Eigenschaften anhand der Stellgrößen Legierungskomponenten, Kornstruktur sowie Geomtrie- und Oberflächengestaltung eingestellt werden. Dabei spielen das metallische Gefüge (Legierungszusammensetzung und Kornstruktur), die geometrische Gestaltung des Implantats, die Oberflächenbehandlung und die Beschichtung eine Rolle. Eine in der Medizintechnik häufig verwendete Legierung ist WE43, die Yttrium, verschiedene seltene Erden und Zirkonium enthält und eine hohe Festigkeit und Korrosionsbeständigkeit aufweist. [LFW14] Es befinden sich bereits lasergeschnittene Implantate aus diesem Material wie der Magmaris-Stent von Biotronik SE, Berlin in klinischen Studien, Knochenschrauben wie die Magnezix-Schraube der Firma Syntellix AG, Hannover sind bereits auf dem Markt und auch an großvolumigen, 3D-gedruckten (Lasersintern) Lösungen wird geforscht. [HIK+18; Syn19] Die textile Verarbeitung von Mg-Draht zu textilen Implantaten ist nach aktuellem Stand der Technik noch wenig erforscht. Dabei besteht gerade im Bereich großlumiger Gefäßprothesen ein hoher, stark wachsender Bedarf. [GJG22; Mer23b]

  1. Methodik

Bei der Validierung von Magnesium als Implantatmaterial für die Herstellung abbaubarer, textiler Stützstrukturen sind initial zwei zentrale Fragen zu klären.

  1. Zum einen stellt sich die Frage nach der Verarbeitbarkeit des Ausgangsmaterials. Textile Prozesse erfordern spezifische, mechanische und tribologische Eigenschaften des Halbzeugs. Hierzu gehören eine hohe Zugfestigkeit, ein geeignetes Elastizitätsmodul und passende Biegesteifigkeit sowie ein verarbeitbarer Durchmesser des Ausgangsmaterials.
  2. Zum anderen muss die Eignung der Produkteigenschaften der textilen Strukturen für relevante klinische Indikationen gewährleistet sein. Hierzu gehören die mechanischen Eigenschaften (FRRF, FCOF) (1) sowie die mechanische Integrität bei zyklischer Belastung der Implantate (2).

3.1 Validierung der Verarbeitbarkeit

Am Institut für Textiltechnik der RWTH Aachen wurde die Verarbeitbarkeit von Magnesium und vergleichbaren Werkstoffen zur Herstellung von textilen Schlauchstrukturen durch Stricken, Weben und Flechten bereits untersucht (IGF-Forschungsprojekt 18880 N "MagCage - Textiles Magnesium-Implantat mit spezifischem mechanischem und geometrischem Eigenschaftsprofil für die Behandlung großer Knochendefekte in Röhrenknochen"). Es konnte gezeigt werden, dass aus Magnesiumdraht schlauchförmige Strukturen durch Strickverfahren hergestellt werden können. Im Webprozess führte die Herstellung von Geweben mit geschlossenen Webkanten aufgrund der Biegesteifigkeit des Ausgangsmaterials zu unbrauchbaren, inhomogenen Ergebnissen. Die Verarbeitbarkeit im Flechtprozess wurde sowohl maschinell als auch manuell untersucht. Es konnte gezeigt werden, dass der Magnesiumdraht mit geringen Modifikationen der Flechtklöppel verarbeitet werden kann. Auch die manuelle Verarbeitbarkeit des Magnesiumdrahtes konnte nachgewiesen werden (Siehe Abbildung 1). [Bol18]

s. Anlage Abbildung 1: Textile Verarbeitung von Magnesium-Draht [Bol18; Mer23a]

3.2 Validierung der Produkteigenschaften

Die Eignung von drahtbasierten Geflechten zur Anwendung als Implantat wurde am Institut für Textiltechnik am Beispiel von Stentimplantaten untersucht und bestätigt [Mer23b]. Eine Validierung der relevanten Produktparameter sowie der Dauerfestigkeit der Produkte steht noch aus und soll hier vorgestellt werden. Zur Prüfung der mechanischen Eigenschaften der Stentstrukturen bestehen genormte Verfahren wie die radiale Druckprüfung (DIN EN ISO 25539-2) (Siehe Abbildung 2). Dabei wird der Widerstand des Implantats gegen Kompression auf einen kleineren Durchmesser gemessen. Eine Bewertung kann z. B. anhand der radialen Stützkraft des Implantats bei einem Mindestdurchmesser von 50 % des Ausgangsdurchmessers vorgenommen werden.

s. Anlage Abbildungs 2:           Prüfvorrichtung zur Validierung der Radialkraft der Stentimplantate [Mer23a]

Im Rahmen der hier veröffentlichten Studien wurden zunächst zentrale Produktparameter (1) und ihr Einfluss auf die Zielgrößen Radialkraft (FRRF), Öffnungskraft (FCOF) sowie die bleibende Verformung (Längung, ΔDS und Stauchung, ΔLS) untersucht. Die berücksichtigen Produktparameter sind die Kronenzahl nK, der Flechtwinkel (Anzahl der Windungen nW) sowie die Länge der Implantate LS (Tabelle 2). Der Stent Durchmesser beträgt DS = 16 mm. Die Stentimplantate wurden manuell aus PEO-beschichtetem Mg-Draht der Firma Meotec GmbH, Aachen (DD = 0,2 mm) geflochten (Abbildung 3), in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 geprüft und anhand eines faktoriellen Versuchsplanes ausgewertet.

s. Anlage Tabelle 2 und Abbildung 3: Tabelle 2:   Strukturmerkmale und Variationen und Abbildung 3:   Exemplarische Darstellung der Mg-Stentimplantate

Zur Validierung der Dauerfestigkeit (2) wurden in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 zyklische Versuche durchgeführt. Das hierzu herangezogene Stentdesign ist ein Rundgeflecht mit einer Länge LS = 30 mm und einem Durchmesser von DS = 6 mm. Zur Validierung der Dauerfestigkeit wurde in Vorversuchen zunächst der Bereich der „elastischen Verformung“ des Implantates ermittelt. Es wurde ein Crimp-Durchmesser von DS = 85% D0 als überwiegend elastischer Prüfbereich definiert. Vollständige elastische Rückstellung ist mit dem vorliegenden Mg-Draht nicht möglich. Mit diesem Prüfdurchmesser wurden Versuchsreihen mit nP = 50 und 200 Zyklen durchgeführt und ausgewertet.

4. Ergebnisse

Im Folgenden werden die Ergebnisse der Parameteruntersuchung (1) sowie der Validierung der Dauerfestigkeit (2) vorgestellt.

Im Rahmen der Parameterstudie (1) konnte gezeigt werden, dass die Anzahl der Kronen nK einen deutlichen Einfluss auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents hat. Durch eine Erhöhung der Kronenanzahl nK von 6 auf 12 ergibt sich eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 381 % und eine Zunahme der Öffnungskraft FCOF um durchschnittlich ca. 32 %. Des Weiteren führt die Erhöhung der Kronenanzahl nK zu einer signifikanten Veränderung der bleibenden Verformung. Dabei wurde eine Reduzierung der bleibenden Stauchung ΔDS von durchschnittlich ca. 65 % und eine Erhöhung der bleibenden Längung ΔLS von durchschnittlich ca. 33 % festgestellt.

Die Erhöhung der Anzahl der Windungen nW zeigt einen positiven Effekt in Bezug auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents. Durch eine Erhöhung der Anzahl der Windungen nW von 1 auf 2 wurde eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 253 % und eine Zunahme der Öffnungskraft FCOF um ca. 212 % beobachtet. In Bezug auf die bleibende Verformung ist ein Anstieg um ca.  33 % bei der bleibenden Längung ΔLS erkennbar, während der Effekt auf die bleibende Stauchung ΔDS nicht eindeutig festzustellen ist.

Der Produktparameter Länge LS wirkt sich negativ auf die Radialkraft FRRF und die Öffnungskraft FCOF aus. Eine Erhöhung LS der Länge von 37 mm auf 45 mm führt zu einer durchschnittlichen Reduzierung der Radialkraft FRRF um ca. 11 % und zu einer durchschnittlichen Verringerung der Öffnungskraft FCOF um ca. 16 %. In Bezug auf die bleibenden Längung ΔLS und bleibende Stauchung ΔDS sind keine eindeutigen Effekte festzustellen. Die zahlenmäßigen Ergebnisse sind in Abbildung 4, die durchschnittlichen Effekte der einzelne Parameter auf die Zielgrößen in Tabelle 3 dargestellt. 

s. Anlage Abbildung 4 und Tabelle 3, Abbildung 3:   Exemplarische Darstellung der Mg-Stentimplantate und Tabelle 3:        Mittlerer Effekt auf Zielgrößen (Faktorieller Versuchsplan)

Die Validierung der Dauerfestigkeit (2) wurde bei einem Prüfdurchmesser von DS = 85% D0 validiert (nP = 10) und durchgeführt (Abbildung 5, links). Die zyklischen Versuche wurden zunächst mit nP = 50 Zyklen durchgeführt (Abbildung 5, rechts).

s. Anlage Abbildung 5:           Zentrale Ergebnisse der zyklischen Versuche (1/2)

Die maximale Radialkraft (DS,85) des Implantates schwankt über den Prüfverlauf, während die geometrische Integrität erhalten bleibt. Es kommt zu keiner nennenswerten plastischen Verformung. Eine Veränderung der Stützkraft über den Prüfverlauf ist nicht erkennbar (Abbildung 6, links). Die mittlere Radialkraft stagniert zwischen 11,5 N und 10,7 N, bei einer Standardabweichung von 0,3 – 0,5 N. Die Radialkräfte von Zyklus 1., 25. und 50. unterscheiden sich nicht signifikant. Die Versuchsreihe mit nP = 200 Zyklen (nS = 1) ergibt ein ähnliches Ergebnis (Abbildung 6, rechts). Die Streuung der Ergebnisse nimmt erheblich zu, aber es ist keine Tendenz erkennbar.

s. Anlage Abbildung 6:           Zentrale Ergebnisse der zyklischen Versuche (2/2)

4. Fazit und Ausblick

Die Anwendungsbereiche für drahtbasierte Implantate wie bspw. Stentimplantate sind groß und nehmen zu. Degradierbare Implantate gelten dabei als vielversprechender Lösungsansatz, um die Defizite permanenter Implantate auszuräumen. Drahtbasierte Fertigungsverfahren zur Herstellung von Mg-Implantaten sind allerdings kaum untersucht. Im Rahmen der vorliegenden Studie wurden Ergebnisse zu relevanten mechanischen Eigenschaften von Mg-Implantaten und wie diese im Produktdesign eingestellt werden können präsentiert.

Die Ergebnisse der Studie zeigen signifikante Effekte der zentralen Produktparameter, insbesondere auf die Zielgrößen Radialkraft FRRF und Öffnungskraft FCOF. Im Hinblick auf die Öffnungskraft FCOF ergibt sich die Anzahl der Windungen nW aber auch die Anzahl der Kronen nK als entscheidende Faktoren mit größtem Optimierungspotential. Es stellte sich auch heraus, dass die Länge LS einen schwach negativen Einfluss auf die Öffnungskraft FCOF hat, was bei der Auslegung berücksichtigt werden sollte. Eine Bewertungsübersicht der zentralen Ergebnisse bezüglich der Effektstärken ist in Tabelle 4 dargestellt.

Die zyklischen Versuche zeigen, dass Mg-Draht basierte Stentimplantate eine geringe Ermüdungsneigung aufweisen und eine vollelastische Strukturstabilität der textilen Strukturen nach einmaliger Verformung im 1. Prüfzyklus gegeben ist. Bis zu nP = 200 Zyklen wurden kein Materialversagen oder anderweitige Unregelmäßigkeiten beobachtet. Auch wenn die Forschung noch am Anfang steht, zeigt diese, wie auch vorangegangene Veröffentlichungen [Mer23b; GJG22], das Magnesium als Implantatmaterial für drahtbasierte (Stent-)Implantate ein Werkstoff mit hohem Innovationspotenzial ist.

s. Anlage Abbildung 6:           Zentrale Ergebnisse der zyklischen Versuche (2/2)

 

Literaturverzeichnis

[Bol18]        Bolle, T.: MagCage - Textiles Magnesium-Implantat mit spezifischem mechanischem und geometrischem Eigenschaftsprofil für die Behandlung großer Knochendefekte in Röhrenknochen, 2018

[Bra18]       Brandt, Mathias: Was am häufigsten implantiert wird, 2018, https://de.statista.com/infografik/16204/operationen-zum-einsetzen-von-implantaten-in-deutschland/, Zugriff am 17.07.2023

[EBK+22]    Erben, J.; Blatonova, K.; Kalous, T.; Capek, L.; Behalek, L.; Boruvka, M.; Chvojka, J.:
The Injection Molding of Biodegradable Polydioxanone-A Study of the Dependence of the Structural and Mechanical Properties on Thermal Processing Conditions
Polymers Band:14 (2022)            H. 24

[FDA19]      FDA: Implants and Prosthetics, 2019, https://www.fda.gov/medical-devices/products-and-medical-procedures/implants-and-prosthetics, Zugriff am 17.07.2023

[GJG22]      Grimm, Y.; Jaworek, F.; Gries, T.:
Overview on the current global market of stent implants. Düren: Shaker Verlag, 2022

[HIK+18]     Haude, M.; Ince, H.; Kische, S.; Abizaid, A.; Tölg, R.; Alves Lemos, P.; van Mieghem, N. M.; Verheye, S.; Birgelen, C. von; Christiansen, E. H.; Barbato, E.; Garcia-Garcia, H. M.; Waksman, R.: Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III
Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions Band:92 (2018) H. 7, E502-E511

[LFW14]     Luthringer, B. J.; Feyerabend, F.; Willumeit-Römer, R.:
Magnesium-based implants: a mini-review
Magnesium research Band:27 (2014)      H. 4, S. 142–154

[Mer23a]     Merkord, F.:
Evaluierung automatisierter Verfahren zur Herstellung drahtbasiert geflochtener Stentimplantate.
1. AuflageAufl.- Düren: Shaker, 2023

[Mer23b]     Merkord, F.:
Magnesium Wire in Medical Application - A Glimpse Into Future (2023)

[MLM+20]   Martins, J. A.; Lach, A. A.; Morris, H. L.; Carr, A. J.; Mouthuy, P.-A.:
Polydioxanone implants: A systematic review on safety and performance in patients
Journal of biomaterials applications Band:34 (2020)        H. 7, S. 902–916

[OTO+21]   Ochijewicz, D.; Tomaniak, M.; Opolski, G.; Kochman, J.:
Inflammation as a determinant of healing response after coronary stent implantation
The international journal of cardiovascular imaging Band:37 (2021) H. 3, S. 791–801

[PRW+22]   Prasadh, S.; Raguraman, S.; Wong, R.; Gupta, M.:
Current Status and Outlook of Temporary Implants (Magnesium/Zinc) in Cardiovascular Applications
Metals Band:12 (2022)     H. 6, S. 999

[Psc20]       Pschyrembel: Transplantation, 2020, https://www.pschyrembel.de/Transplantation/K0MU4, Zugriff am 17.07.2023

[SSA+15]    Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K.:
Implant biomaterials: A comprehensive review
World journal of clinical cases Band:3 (2015)      H. 1, S. 52–57

[Syn19]       Syntellix AG: Bioresorbierbare Magnesiumschrauben (MgYREZr) in der orthopädischen Chirurgie, 2019, https://wehrmed.de/humanmedizin/bioresorbierbare-magnesiumschrauben-mgyrezr-in-der-orthopaedischen-chirurgie-3832.html, Zugriff am 18.07.2023

[WXH+20]        Wang, J.-L.; Xu, J.-K.; Hopkins, C.; Chow, D. H.-K.; Qin, L.:
Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives: Advanced science (Weinheim, Baden-Wurttemberg, Germany) Band:7 (2020) H. 8, S. 1902443

AutorInnen: Merkord, Felix Newroly, Bendewar Gerber, Dennis Gries, Thomas

Institut für Textiltechnik der RWTH Aachen, Otto-Blumenthal-Str. 1, 52074 Aachen

Flechten Implantate Stent Magnesium Geflecht

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

Patientenindividuelle Textilimplantate: Gewirkte Maschenwaren in Losgröße 1-Fertigung

Gestricke & Gewirke Technische Textilien

Zusammenfassung

Die patientenorientierte Gesundheitsversorgung macht die Individualisierung der Medizin unabdingbar. Dies erfordert Fortschritte in der Patientenindividualisierung, insbesondere durch die Medizintechnik, um den gewünschten Therapieerfolg zu erzielen. Dem steht aus technischer und wirtschaftlicher Sicht die Forderung nach einer wirtschaftlichen und reproduzierbaren Herstellung von Produkten mit der Losgröße 1 gegenüber, die mit innovativen textilen Herstellungsverfahren erfüllt werden kann. Es fehlt jedoch an einem grundlegenden Verständnis von Produktdesign, Endprodukteigenschaften und zwischengeschalteten Herstellungsprozessen sowie an geeigneten Werkzeugen für die Umsetzung dieser patientenindividuellen Ansätze.

Ziel des Projekts ist es, einen Herstellungsprozess für patientenindividuelle Textilimplantate zu implementieren, um Patienten eine optimal auf ihre Bedürfnisse zugeschnittene Therapie zu ermöglichen. Als Anwendungsbeispiel dienen Implantate zur Behandlung von Aortenaneurysmen, da dies ein sowohl klinisch als auch wirtschaftlich äußerst relevantes Einsatzgebiet für patientenindividuelle Implantatstrukturen ist.

Um das Projektziel zu erreichen, wurden Ansätze zur geometrischen und strukturellen Patientenindividualisierung von textilen Implantatstrukturen untersucht. Über eine durchgängige digitale Prozesskette wurde ein datenbankgestütztes virtuelles Modell zur Produktgestaltung entwickelt. Die Wechselwirkungen zwischen dem virtuellen Produktdesign, den Prozessparametern des Fertigungsprozesses und den resultierenden Implantateigenschaften wurden sowohl inline als auch offline ermittelt. Für die Inline-Erfassung der Prozessparameter wurden geeignete Werkzeuge entwickelt und implementiert. Diese erfassten Daten werden in die virtuelle Modelldatenbank zurückgespielt und verbessern so kontinuierlich die Genauigkeit und Robustheit der patientenindividuellen Konstruktion und Fertigung von Implantatstrukturen. Auf diese Weise kann eine wirtschaftliche und reproduzierbare Produktion von textilen Implantaten mit einer Losgröße von 1 realisiert werden, die eine optimal auf den Patienten zugeschnittene Therapie ermöglicht.

Bericht

Einleitung
Der demografische Wandel und ein zunehmend ungesunder Lebensstil in der westlichen Welt führen zu einer stetig steigenden Zahl von Patienten mit Herz-Kreislauf-Erkrankungen und stellen die moderne Medizin vor große Herausforderungen. Mit der zunehmenden Zahl von Behandlungen steigt auch die Zahl der Patienten, die aufgrund ihrer individuellen Anatomie oder Physiologie für eine Behandlung mit Standardprodukten nicht geeignet sind. Dies betrifft etwa 40% aller Patienten der jährlich in Deutschland durchgeführten rund 21.000 endovaskulären Behandlungen von Aortenaneurysmen. Eine patientenorientierte Gesundheitsversorgung macht daher eine Individualisierung der Medizin notwendig [2]. Dies erfordert auch ein Fortschreiten der Patientenindividualisierung durch die Medizintechnik, um den gewünschten Therapieerfolg zu erzielen. Diese individualisierten Implantate sollten exakt auf die spezifische Anatomie des Patienten zugeschnitten sein und auf Basis eines medizinischen Bilddatensatzes in Losgröße 1 hergestellt werden. Auf diese Weise wird eine Versorgung der lebenswichtigen Abgänge der Aorta gewährleistet. Aus technischer und wirtschaftlicher Sicht steht der Individualisierung die Bedingung einer wirtschaftlichen und reproduzierbaren Herstellung von Produkten mit Losgröße 1 gegenüber. Diese Anforderungen können mit innovativen textilen Fertigungsverfahren erfüllt werden. Die Kettenwirktechnik im Allgemeinen und die Jacquard-Wirktechnik im Besonderen erfüllen die notwendigen Anforderungen, sind aber in hohem Maße bedienerabhängig. Das enorme Potenzial der Jacquard-Wirktechnologie für die Herstellung von textilen Implantaten wird derzeit nicht genutzt, da keine Erfahrungen über die Zusammenhänge des Wirkprozesses vorliegen und keine Konstruktionswerkzeuge existieren, die diese Zusammenhänge adäquat beschreiben. Die am Institut für Textiltechnik der RWTH Aachen (ITA) im Projekt "IndiTexPlant" erzielten Ergebnisse bieten erstmals die Möglichkeit, das virtuelle Produktdesign in Kombination mit der Jacquard-Stricktechnologie in eine digitale Produktentwicklung vom medizinischen Bilddatensatz über das Topologiemodell der rekonstruierten Produktgeometrie bis hin zur Ableitung der Musterung für das textile Produkt zu übertragen (siehe Abbildung 1).

AutorInnen: Tobias Lauwigi Author, Kai-Chieh Kuo Co-Author

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Medtech Textilimplantat Medizin

More entries from ITA Institut für Textiltechnik der RWTH Aachen University