Oberflächenprofilierte Carbongitter für Carbonbetonanwendungen
Gestricke & Gewirke Composites Textilmaschinenbau Nachhaltigkeit Technische Textilien
Zusammenfassung
Am ITM der TU Dresden wurden Verfahren entwickelt, die es ermöglichen, auf einer Multiaxial-Kettenwirkmaschine mit integrierter Tränkungs- und Aushärtemodul kontinuierlich oberflächenprofilierte Gitter in reproduzierbarer hoher Qualität für Carbonbetonanwendungen herzustellen. Im Lösungsansatz 1, der Profilierung durch Prägen der Verstärkungsfäden, kann der Schubfluss um mehr als 400 % gegenüber einem Glattgarn gesteigert werden. Die Skalierung und Steigerung der Produktivität dieser Technologie auf Industrieniveau wird Gegenstand zukünftiger Forschungsarbeiten sein. Im Lösungsansatz 2 wurde ein Wirkfaden grober Feinheit (> 150 tex) als profilgebende Komponente (Profilwirkfaden) verwendet und zur maschenbasierten Fixierung der Verstärkungsfäden genutzt. Weitere Forschungsperspektiven zur Steigerung der Verbundhaftung ergeben sich für diese Profilierungsvariante insbesondere in einer Erhöhung der Stoff- und Formschlussverbindung zwischen Profilwirk- und Verstärkungsfaden.
Eine Erhöhung des Schubflusses bzgl. des Verbundes zwischen der durch Prägen profilierten Textilbewehrung und dem Beton führt direkt zu einer Verringerung der Auszugslängen unter Last und damit zur Reduzierung der Überlappungslängen um bis zu 75 % bei der Verarbeitung von profilierten Carbonbetonbewehrungen. Damit wird eine Grundlage für eine kosten- und ressourceneffiziente Herstellung von Carbonbetonbauteilen geschaffen, da hierbei eine Vielzahl, von überlappenden Textilbewehrungsbereichen auftreten. Dieser Aspekt verbessert die Wirtschaftlichkeit von Carbonbetonanwendungen und trägt dazu bei, diese innovative und ressourcenschonende Art des Bauens weiter zu etablieren.
Bericht
Abstract
Die volle Substanzfestigkeit des Hochleistungsmaterials Carbon kann im Betonverbund immer noch nicht ausgenutzt werden kann. Das liegt in der geringen Festigkeit der stoffschlüssigen Verbindung zwischen Carbonfaden und Betonmatrix begründet. Hier setzte das erfolgreich abgeschlossene Forschungsprojekt IGF 21153 BR des ITM an. Der Fokus lag auf der Entwicklung und Umsetzung von Verfahren zur Integration von Formschlusselementen im Herstellungsprozess von textilen Bewehrungen zur Steigerung der Verbundfestigkeit zwischen Bewehrung und Beton. Es wurde nachgewiesen, dass der dadurch erreichte zusätzliche Formschluss auf Basis einer Oberflächenprofilierung, ähnlich dem gerippten Bewehrungsstahl, den Schubfluss vervierfacht, die erforderliche Überlappungslänge folglich viertelt und damit den Materialeinsatz erheblich reduziert. Zwei Vorzugsvarianten wurden herausgearbeitet, für deren erfolgreiche Umsetzung die Entwicklung von Inline-Temperatur- und Feuchtigkeitsmesssystem erforderlich war.
Ausgangssituation und Problemstellung
Beton ist weltweit der wichtigste und am häufigsten eingesetzte Baustoff und wird in nahezu allen Anwendungsbereichen in Kombination mit einer Bewehrung zur Aufnahme der Zugkräfte eingesetzt [1]. Durch die Kombination von Beton mit einem Bewehrungsmaterial wie Stahl, können Bauwerke errichtet werden, die höchsten Beanspruchungen standhalten können. Da Stahl jedoch ein korrosionsanfälliges Material ist, muss eine signifikante Deckschicht stark basischen Betons aufgewendet werden, um einen Verlust der Tragleistung durch Korrosion der Bewehrung zu verlangsamen [2]. Zur Abtragung der im Bauwerk wirkenden Drucklasten ist die Dicke der Deckschicht nicht erforderlich. Daher erfolgte in den letzten beiden Dekaden die Entwicklung und sukzessive Praxiseinführung von Textilbewehrungen, die aus hochleistungsfähigen Multifilamentgarnen aus Carbon oder alkaliresistentem Glas bestehen, die mit textilen Verfahren zu mehraxialen Gitterstrukturen verarbeitet und, um den inneren und äußeren Verbund sicherzustellen, getränkt werden [3–5]. Derartige Textilbewehrungen können bei einer Betonersparnis von bis zu 70 % (durch dünnwandige Bauweise) die gleichen Kräfte übertragen wie konventionelle Stahlbewehrungen. Textilbewehrungen sind korrosionsunempfindlich und ermöglichen eine sehr effiziente, betonsparende und dauerhafte Armierung von Betonbauwerken bzw. ‑bauteilen in den vielfältigsten Anwendungsgebieten [6, 7].
....
Technische Entwicklung und Umsetzung
Zur Lösung der beschriebenen Problemstellung wurden Verfahren zur prozessintegrierten Profilierung der Textilbewehrung entwickelt. Hierfür wurden zwei Lösungskonzepte entwickelt, erprobt und evaluiert, die durch unterschiedliche Prinzipien (Prägen und Profilwirkfaden) gezielt Profilierungen ausbilden und die zudem in die textile Fertigung integrierbar sind.
Zur Steigerung der Warenqualität und um den Trocknungs- und Aushärteprozess gezielt hinsichtlich der erreichbaren Zugfestigkeit mit geringer Streuung steuern zu können, wurde eine Inline-Temperaturüberwachung auf Basis taktiler, mitlaufender Temperatursensoren entwickelt. Die Überwachung der Gelegefeuchtigkeit erfolgte mit der NIR-Sensorik (Near Infrared). Die Streuung der Zugfestigkeit der Textilbewehrung in der Warenausgangskontrolle konnte aufgrund der Prozessüberwachung halbiert werden. Es konnte zudem gezeigt werden, dass bestimmte Parameter des Multiaxial-Kettenwirkprozesses einen moderaten Einfluss auf die Eigenschaften der Bewehrung und deren Verbund zum Beton haben, z. B. die Stichlänge und die Bindungsart.
...
Materialcharakterisierung und Ergebnisse
Im Anschluss an die konstruktive Entwicklung und Umsetzung der Lösungskonzepte zur prozessintegrierten Herstellung eines profilierten Multiaxialgitters erfolgte sowohl die Fertigung von textilen Musterstrukturen als auch von Betonverbundprüfkörpern. Zur Charakterisierung der Musterstrukturen wurde das Auszugverhalten der profilierten Multiaxialgitter untersucht. Die für die Fertigung der Bewehrungsstrukturen gewählten Material- und Prozessparameter sind in Tabelle 1 zusammengefasst. Während der Musterfertigung wurde zudem die Oberflächentemperatur mittels eines eigens dafür entwickelten mitlaufenden kontaktbasierten Temperaturmesssystems sowie die Feuchtigkeit der Musterstrukturen mittels Nah-Infrarotsensorik überwacht und die Temperatur in der Trocknungs- und Aushärtestrecke entsprechend angepasst.
...
Danksagung
Das IGF-Vorhaben 21153 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.
Die vollständige Veröffentlichung steht zum Download zur Verfügung.
Kontakt: konrad.zierold@tu-dresden.de
Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden