Aus der Branche

Zurücksetzen
23 Ergebnisse
Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf © Fraunhofer UMSICHT
Ein Blick auf den Hochdruckreaktor, der bei der elektrochemischen Reduktion zum Einsatz kam.
28.10.2020

Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

Im Zentrum ihrer Überlegungen stand sogenanntes überkritisches Kohlendioxid. Kurz: scCO2. Dabei handelt es sich um Kohlenstoffdioxid in einem fluiden Zustand – sowohl über seiner kritischen Temperatur als auch über seinem kritischen Druck. »Jüngste Berichte haben gezeigt, dass die Entwicklung von Wasserstoff bei der elektrochemischen Reaktion signifikant unterdrückt werden kann, wenn aprotische Lösungsmittel mit wohldefiniertem Wassergehalt als Elektrolyt verwendet werden«, erläutert Ulf-Peter Apfel, Professor an der Ruhr-Universität Bochum und Wissenschaftler am Fraunhofer UMSICHT. »Da eine Erhöhung des CO2-Drucks zu einer höheren CO2-Konzentration in aprotischen Lösungsmitteln führt, schien die Verwendung von überkritischem Kohlendioxid als Lösungsmittel eine elegante Möglichkeit.«

In der Folge führten die Forschenden eine Vergleichsstudie durch: Sie beleuchteten die Katalyse sowohl unter normalen als auch unter überkritischen Bedingungen und setzten dabei auf kohlenstoffgeträgerte Kupferkatalysatoren als Benchmark-Systeme. »Wir konnten u.a. zeigen, dass die Verwendung von überkritischem Kohlendioxid zu einer Unterdrückung der Entwicklung von Wasserstoff und zur Bildung von Ameisensäure führt«, so Ulf-Peter Apfel. »Um die vorteilhaften Eigenschaften von scCO2 für die elektrochemische Reduktion von Kohlendioxid zu nutzen, wird sich die zukünftige Forschung auf die Untersuchung weiterer Katalysatoren für den Einsatz mit scCO2-Gemischen, alternativen Co-Lösungsmitteln und die Verbesserung der Elektrodenstabilität konzentrieren.«

Quelle:

Fraunhofer UMSICHT

DYNAFLEX® auf der e-World 2020 (c) Dynaflex
DYNAFLEX® auf der e-World 2020
23.01.2020

DYNAFLEX® auf der e-World 2020

Die Energiewende ist eine tragende Säule des Strukturwandels und erfordert ein Umdenken in vielen Bereichen. Damit in einem zunehmend dynamischen und volatilen Umfeld erfolgreiche Wirtschafts-Ökosysteme wachsen können, sind aufeinander abgestimmte, anpassungsfähige Lösungen an der Schnittstelle von Energie- und Stoffwirtschaft notwendig. Genau hier setzt das Leistungszentrum DYNAFLEX® an und entwickelt unter Federführung des Fraunhofer UMSICHT zukunftsfähige Lösungen. In Bad Langensalza entsteht zurzeit ein Pilotstandort, der als Vorreiter für cross-industrielle Netzwerke dienen soll und neue Wertschöpfungsketten erschließt.

Im Mittelpunkt aktueller Geschäftstätigkeiten und Unternehmensstrategien stehen zunehmend Technologien zur Effizienzsteigerung und zur Vermeidung von CO2-Emissionen. Eine nachhaltige und umweltschonende Wertschöpfung bedeutet zwar zunächst eine Umstellung für die Beteiligten, dient aber auch als klarer Wettbewerbsvorteil.

Die Energiewende ist eine tragende Säule des Strukturwandels und erfordert ein Umdenken in vielen Bereichen. Damit in einem zunehmend dynamischen und volatilen Umfeld erfolgreiche Wirtschafts-Ökosysteme wachsen können, sind aufeinander abgestimmte, anpassungsfähige Lösungen an der Schnittstelle von Energie- und Stoffwirtschaft notwendig. Genau hier setzt das Leistungszentrum DYNAFLEX® an und entwickelt unter Federführung des Fraunhofer UMSICHT zukunftsfähige Lösungen. In Bad Langensalza entsteht zurzeit ein Pilotstandort, der als Vorreiter für cross-industrielle Netzwerke dienen soll und neue Wertschöpfungsketten erschließt.

Im Mittelpunkt aktueller Geschäftstätigkeiten und Unternehmensstrategien stehen zunehmend Technologien zur Effizienzsteigerung und zur Vermeidung von CO2-Emissionen. Eine nachhaltige und umweltschonende Wertschöpfung bedeutet zwar zunächst eine Umstellung für die Beteiligten, dient aber auch als klarer Wettbewerbsvorteil.

Um den deutschen Mittelstand im Wettbewerb gut zu positionieren und die Herausforderungen für einzelne Unternehmen zu senken, sehen Experten die Zukunft in einem gemeinsamen Vorgehen der Akteure in regionalen cross-industriellen Netzwerken. »Wertschöpfungsketten müssen künftig über die bisherigen Sektor- und Branchengrenzen hinausgehen. Warum nicht gemeinsam lokale Stoff-und Energieströme bestmöglich vor Ort verwerten? So können entscheidende Vorteile durch regionale Synergien entstehen«, erklärt Dr. Georg Janicki vom Fraunhofer UMSICHT in seiner Funktion als Manager des Leistungszentrums DYNAFLEX®. Das Leistungszentrum plant in enger Zusammenarbeit von Wissenschaft und Unternehmen zukunftsfähige Schnittstellenprojekte für die Energie- und Grundstoffwirtschaft.
Dynamische Betriebsführung

Um die lokalen Energie- und Stoffströme nachhaltig zu gestalten, muss bereits die Energieversorgung entsprechend ausgelegt sein. Die Einbindung von Strom aus erneuerbaren Energien in z. B. Produktionsanlagen unterliegt jedoch zeitlichen und standortspezifischen Schwankungen – bedingt durch Tages-/Nachtzeit und Windaufkommen. Hinzu kommen Aspekte wie eine kundenspezifische Fertigung und damit variierende Anforderungen an Produkte, die zudem just-in-time gefertigt und geliefert werden müssen. Und auch variierende Rohstoffe aufgrund von sich verändernden Rahmenbedingungen (markt- und kundenseitig) und die Umstellung auf umweltfreundlichere Rohstoffe müssen berücksichtigt werden.

In einem Gewerbegebiet im thüringischen Bad Langensalza wird ein Pilotprojekt umgesetzt, in dem ein Netzwerk mit unterschiedlichen Akteuren auf Basis von regenerativen Energien und nachhaltigen Rohstoffen implementiert wird. Das Projekt nimmt eine nationale und internationale Vorreiterrolle bei der Umsetzung klimaschonender und sektorübergreifender Technologien ein. Verschiedene Partner aus der Wirtschaft wollen mit Unterstützung des Fraunhofer UMSICHT in einem gemeinsamen Vorhaben eine Freiflächen-Photovoltaikanlage errichten. Der produzierte Strom soll durch innovative und nachhaltige Konzepte direkt in bereits bestehende und neue Wertschöpfungsketten der benachbarten Wirtschaftsunternehmen eingebunden werden. Die Konzepte tragen zur Netzstabilität bei und ermöglichen den Aufbau eines neuen Technologieclusters auf Basis nachhaltiger Rohstoffe und Energieträger. Dadurch wiederum sollen sich neue Unternehmen in der Region ansiedeln.

Unabhängig von fossilen Rohstoffen
Forschende des Fraunhofer UMSICHT arbeiten des Weiteren an einem Power-to-Gas-Konzept. Mit PV-Strom betriebene Elektrolyseanlagen sollen Wasserstoff erzeugen, der direkt ins Erdgasnetz eingespeist und für Produktionsprozesse verwendet werden kann. Auch kann der Wasserstoff mit CO2 zu Methan veredelt bzw. zu Basisprodukten der chemischen Industrie, Kunststoffindustrie, Düngemittelindustrie oder Treibstoffindustrie weiterverarbeitet werden.

E-world: Cross-industrielle Netzwerke spielerisch verstehen
Das Leistungszentrum DYNAFLEX® präsentiert sich auf der E-world energy & water, vom 11. bis 13. Februar 2020 in Essen. Am Messestand können anhand eines Exponats verschiedene aktuelle Aspekte und Herausforderungen in der Energie- und Grundstoffwirtschaft spielerisch erfahren werden. Angelehnt an den bekannten »heißen Draht« werden modellhaft durch unterschiedliche Verläufe zweier Drähte die Komplexität der jeweiligen Akteure und deren Herausforderungen bei einer Sektorenkopplung nachgestellt. Auf diese Weise wird die Notwendigkeit cross-industrieller Netzwerke, wie sie z. B. in Bad Langensalza geplant sind, veranschaulicht.

Weitere Informationen:
Dynaflex e-World
Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik

 

Arbeit mit den Elementen: Chemisch-Technische Assistentin im Fachbereich Biomaterialien. (c) INNOVENT e.V.
Arbeit mit den Elementen: Chemisch-Technische Assistentin im Fachbereich Biomaterialien.
27.12.2018

Arbeit mit den Elementen: Zum Internationalen Jahr des Periodensystems

Es ist 150 Jahre jung, wächst weiter und hat ein faszinierendes Innenleben: Das Periodensystem der Elemente wird von den Vereinten Nationen wegen seines Stellenwerts für Wissenschaft und Wirtschaft 2019 mit einem Weltjahr geehrt. Viele Forschungsinstitute der Zuse-Gemeinschaft haben eine besondere Beziehung zum Periodensystem, denn sie sind spezialisiert auf innovative Anwendungen in Chemie, Physik und Materialwissenschaften.

Unabhängig voneinander ordneten Dmitri Mendelejew (1834–1907) und wenige Monate später Lothar Meyer (1830–1895) die chemischen Elemente nach ihren Eigenschaften so, dass Prognosen über noch nicht entdeckte Elemente leichter fielen. Derzeit listet das Periodensystem 118 verschiedene Elemente, beginnend mit Wasserstoff und auf heutigen Darstellungen meist endend mit dem erst 2005 entdeckten Element 118, dem Oganesson.

Es ist 150 Jahre jung, wächst weiter und hat ein faszinierendes Innenleben: Das Periodensystem der Elemente wird von den Vereinten Nationen wegen seines Stellenwerts für Wissenschaft und Wirtschaft 2019 mit einem Weltjahr geehrt. Viele Forschungsinstitute der Zuse-Gemeinschaft haben eine besondere Beziehung zum Periodensystem, denn sie sind spezialisiert auf innovative Anwendungen in Chemie, Physik und Materialwissenschaften.

Unabhängig voneinander ordneten Dmitri Mendelejew (1834–1907) und wenige Monate später Lothar Meyer (1830–1895) die chemischen Elemente nach ihren Eigenschaften so, dass Prognosen über noch nicht entdeckte Elemente leichter fielen. Derzeit listet das Periodensystem 118 verschiedene Elemente, beginnend mit Wasserstoff und auf heutigen Darstellungen meist endend mit dem erst 2005 entdeckten Element 118, dem Oganesson.

Menschen-Atome zu mehr als 99 Prozent Wasserstoff, Sauerstoff, Kohlenstoff, Stickstoff
Während die Grundlagenforschung im Periodensystem auf der Suche nach immer schwereren, neuen Elementen mit extrem kurzen Halbwertszeiten ist, gewinnt die anwendungsorientierte Forschung ihren Reiz auch aus der Arbeit mit der riesigen Vielfalt der Eigenschaften, welche die Verbindung verschiedener Elemente schafft. Mehr als 99 Prozent der Atome, aus denen der Mensch besteht, sind entweder Wasserstoff, Kohlenstoff, Stickstoff oder Sauerstoff. Jedes der Elemente im verbleibenden Prozent ist aber genauso wichtig, so z.B. Kalzium für den Knochenbau, Eisen für das Blutbild, oder Magnesium für Muskelfunktion und Eiweißsynthese.

Weitere Informationen:
Zuse-Gemeinschaft
Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.