Aus der Branche

Zurücksetzen
54 Ergebnisse
(c) Lectra
Lectra Modaris V8R2
09.07.2019

Lectra-Software sorgt für kürzere Markteinführungszeiten von Kollektionen

  • Empowering customers through industrial intelligence
  • Neue Version von Modaris macht 3D-Prototyping noch realitätsnäher

Ismaning/Paris – Lectra bringt Modaris V8R2 auf den Markt, eine neue Version seiner 2D/3D-Lösung für Modellerstellung, Gradierung und Prototyping. Das Upgrade, der von führenden Modeund
Bekleidungsherstellern weltweit meistgenutzten Modellerstellungslösung, sorgt für noch mehr Geschwindigkeit, Effizienz und Präzision in der Produktentwicklung. Dank leistungsstarker Tools für die 3D-Simulation und der verbesserten Zusammenarbeit wird die Modellentwicklung und Entscheidungsfindung noch weiter beschleunigt. Durch weniger – oder sogar gar keine physischen Prototypen senken Modeunternehmen die Entwicklungskosten und neue Produkte können möglichst zeitnah nach Trenderkennung auf dem Markt eingeführt werden.

Optimierte Zusammenarbeit

  • Empowering customers through industrial intelligence
  • Neue Version von Modaris macht 3D-Prototyping noch realitätsnäher

Ismaning/Paris – Lectra bringt Modaris V8R2 auf den Markt, eine neue Version seiner 2D/3D-Lösung für Modellerstellung, Gradierung und Prototyping. Das Upgrade, der von führenden Modeund
Bekleidungsherstellern weltweit meistgenutzten Modellerstellungslösung, sorgt für noch mehr Geschwindigkeit, Effizienz und Präzision in der Produktentwicklung. Dank leistungsstarker Tools für die 3D-Simulation und der verbesserten Zusammenarbeit wird die Modellentwicklung und Entscheidungsfindung noch weiter beschleunigt. Durch weniger – oder sogar gar keine physischen Prototypen senken Modeunternehmen die Entwicklungskosten und neue Produkte können möglichst zeitnah nach Trenderkennung auf dem Markt eingeführt werden.

Optimierte Zusammenarbeit

Modellmacher können mit der neuen Version von jedem Gerät aus mit ihren Partnern 360-Grad-Videos austauschen. Im Gegenzug können Designer mit dem neuen 3D Style-Modul Modell und Passform
anzeigen, kommentieren und genehmigen.

Schnellere Modellerstellung

Die Upgrades von Modaris V8R2 reduzieren die physischen Prototypen um bis zu 50 %. Sie bieten eine noch bessere Qualität der 3D-Simulationen und eine erweiterte Biblioth ek mit mehreren neuen Funktionen - von 3D-Absteppungen, über Beleuchtungsoptionen bis hin zu Pantone und Natural Color Systemen. Die Lösung ist mit dem hochwertigen Vizoo Scanner kompatibel, der für realistischer aussehende Stoffmuster sorgt. Zudem ermöglichen weitere 3D-Komponenten, wie Maya, 3DS Max oder Iray, realitätsgetreuere und genauere digitale Renderings der Prototypen. Mit der neuen Abnäherfunktion von Modaris V8R2 können Modellersteller den Modellen problemlos Abmessungen hinzufügen und für die Änderung eines Abnähers ist nur noch halb so viel Zeit erforderlich.

Garantiert die richtige Größe

Des Weiteren ermöglicht die Lösung die Verwaltung unterschiedlicher Maßeinheiten und trägt damit den Anforderungen der globalen Arbeitskräfte der Modebranche Rechnung. Mit Lectras Modaris V8R2
können Modellmacher und externe Lieferanten die Übereinstimmung von Größen garantieren, ungeachtet der in den Herstellungsländern verwendeten Maßsysteme. Mit Modaris V8R2 baut Lectra seine Position als führender Anbieter von Produktentwicklungssoftware weiter aus und die neue Version wird bereits bei Pilotkunden, wie dem italienischen Modeunternehmen GGZ positiv aufgenommen: „GGZ ist ein Fast-Fashion-Unternehmen - Zeit und Qualität sind für uns von ausschlaggebender Bedeutung. Mit der neuen Abnäherfunktion von Modaris können wir Modelländerungen in der Hälfte der Zeit durchführen. Darüber hinaus können wir durch das 3DPrototyping schon frühzeitig sicherstellen, dass die Größen und Proportionen der Modelle den Erwartungen der Designer entsprechen und die Vorlaufzeiten deutlich reduzieren“, sagt Majla Gottardo, Modellerstellerin, GGZ.

„Im Informationszeitalter reagieren wir mit unseren Lösungen auf die Bedürfnisse von Modellerstellern, die den unterschiedlichen Vorlieben, Körperformen und Größen der Verbraucher gerecht werden müssen. Modellmacher müssen eine Vielzahl von Kollektionen liefern und können sich keine Fehler leisten. Wir möchten ihre alltägliche Arbeit erleichtern und ihnen helfen, den Entwicklungsprozess zu rationalisieren und die Anzahl von Nacharbeiten zu reduzieren, damit sie gleich von Anfang an die richtige Passform erzielen“, erklärt Céline Choussy, Chief Marketing & Communications Officer, Lectra. „All das ist mit Modaris V8R2 möglich.“

Weitere Informationen:
Lectra, PLM Fashion Mode 3D-software Modaris
Quelle:

Lectra Deutschland GmbH

(c) ITA
3D braiding machine
05.06.2019

Institut für Textiltechnik der RWTH Aachen University (ITA) auf der ITMA

  • Neue 3D-Flechtmaschine und Mixed-Reality-Lernumgebung für den Webprozess

Das Institut für Textiltechnik der RWTH Aachen University (ITA) zeigt auf der ITMA im Under Linkway Stand D221 (UL D221) unter anderem das digitale Retrofitting einer 3D-Flechtmaschine zur Herstellung von dreidimensional verstärkten keramischen Turbinenkomponenten und eine Mixed-Reality-Lernumgebung für einen Webprozess zur Qualifizierung neuer und bestehender Mitarbeiter.

  • Neue 3D-Flechtmaschine und Mixed-Reality-Lernumgebung für den Webprozess

Das Institut für Textiltechnik der RWTH Aachen University (ITA) zeigt auf der ITMA im Under Linkway Stand D221 (UL D221) unter anderem das digitale Retrofitting einer 3D-Flechtmaschine zur Herstellung von dreidimensional verstärkten keramischen Turbinenkomponenten und eine Mixed-Reality-Lernumgebung für einen Webprozess zur Qualifizierung neuer und bestehender Mitarbeiter.

Digitales Retrofitting einer 3D-Flechtmaschine zur Produktion dreidimensional verstärkter keramischer Turbinenkomponenten
Basierend auf einer vorhandenen konventionellen Mechanik wurde eine 3D-Flechtmaschine digitalisiert und nach Industrie 4.0-Standard neu aufgebaut. Somit wird zum Beispiel das Prototyping und die Produktion dreidimensional verstärkter keramischer Turbi-nenkomponenten ermöglicht. Als virtuelle Mikrofabrik kann in einer entsprechenden Software-Umgebung die Verarbeitung sehr empfindlicher beziehungsweise spröder Fasermaterialien simuliert werden. Anschließend werden die Prozessdaten generiert und die Produktion in der realen Maschine abgebildet. Die Prozessstabilität wird somit auf annähernd 100 Prozent gesteigert, die Maschinengeschwindigkeit konnte um 150 Prozent erhöht werden. Die ortsunabhängige Simulations- und Steuerungssoftware (Open Source) erlaubt eine äußerst flexible Prozessplanung und –steuerung der Prozesskette mit einem mobilen Endgerät – im konkreten Anwendungsfall für die Herstellung eines textilen Preforms für eine keramische Komponente im Turbinenbau.

Mixed-Reality Lernumgebung für den Webprozess
Ausbildung und Qualifizierung von neuen und bestehenden Mitarbeitern sind gerade für Maschinen- und Textilhersteller wichtige Voraussetzungen für den Unternehmenserfolg. Das ITA hat hierfür eine  Lernumgebung an einem 3D-Modell einer-Bandwebmaschine entwickelt, die auf der Mixed-Reality-Technologie basiert. Unter Mixed-Reality versteht man die Vermischung von Daten aus der Realität und aus künstlichen 2D- oder 3D-Objekten (virtuelle Realität).

Das 3D-Modell einer Breitwebmaschine wird zur Veranschaulichung per Mixed-Reality-Technologie für den Mitarbeiter im Raum dargestellt. Eine Mixed-Reality-Brille überträgt schrittweise Arbeitsanweisungen zum Rüsten der Maschine auf reale Maschinenkomponenten. Nun kann der Mitarbeiter beispielsweise einen Prozessfehler, der zum Maschinenstillstand geführt hat, interaktiv an dem 3D-Modell beheben, ohne dass eine weitere Hilfestellung notwendig ist. Im konkreten Fall handelt es sich um den Bruch eines Schussfadens.

 

Quelle:

ITA

16.04.2019

Anleitung für Textilunternehmen auf dem Weg der Digitalisierung

Seit knapp einem Jahr gibt es das Schaufenster „Vertikale Integration und vernetzte Produktionsketten“ des Mittelstand 4.0-Kompetenzzentrums Textil vernetzt am Sächsischen Textilforschungsinstitut e. V. Seitdem erhielten schon viele KMU im Rahmen verschiedener Veranstaltungsformate nähere Einblicke zu Themen wie Digitalisierung, Industrie 4.0, Optimierung und Standardisierung von Produktionsprozessen, Maschinenparknachrüstung sowie Kompetenzentwicklung bei Mitarbeitern. Dabei stehen die individuellen Herausforderungen der Unternehmen im Fokus.

Seit knapp einem Jahr gibt es das Schaufenster „Vertikale Integration und vernetzte Produktionsketten“ des Mittelstand 4.0-Kompetenzzentrums Textil vernetzt am Sächsischen Textilforschungsinstitut e. V. Seitdem erhielten schon viele KMU im Rahmen verschiedener Veranstaltungsformate nähere Einblicke zu Themen wie Digitalisierung, Industrie 4.0, Optimierung und Standardisierung von Produktionsprozessen, Maschinenparknachrüstung sowie Kompetenzentwicklung bei Mitarbeitern. Dabei stehen die individuellen Herausforderungen der Unternehmen im Fokus.

Die Firma Otto Markert & Sohn GmbH aus Neumünster in Schleswig-Holstein produziert individuelle Maschinenfilter aus technischen Textilien für die industrielle Fest/Flüssig-Trennung: Die meisten Fertigungsabläufe sind bereits stark automatisiert. Im Rahmen eines Workshops konnte Textil vernetzt vor Ort Fragen zum aktuellen Status-Quo der Digitalisierung im Unternehmen erörtern. Das STFI-Team gab zudem einen Einblick in die Themen grafische Programmierung mit Node-RED, Robotersimulation sowie Materialflusssteuerungssysteme. Anschließend wurden mehrere Ideen für Mikroprojekte identifiziert: sowohl die Themen Retrofit als auch das Auslesen von Daten aus Maschinen werden in den kommenden Monaten gemeinsam bearbeitet.

Ein zehnköpfiges Team der thoenes® Dichtungstechnik GmbH aus Klipphausen nutzte die Möglichkeit, sich am STFI-Schaufenster über die vernetzte Produktion zu informieren. Im Workshop beleuchteten Geschäftsführer Thomas Zocher und seine Mitarbeiter gemeinsam mit dem Textil vernetzt-Team die Industrie 4.0-Dimensionen Strategie und Organisation, Smart Factory, Smart Operations, Smart Products, Data-driven Services und Mitarbeiter. Deutlich wurde, in welchen Unternehmensbereichen bereits Maßnahmen eingeleitet wurden, woran in naher Zukunft gearbeitet und wo eventuell externe Unterstützung notwendig werden wird.

Auch Robert Wild, Betriebsleiter bei Norafin Industries (Germany) GmbH, ist vom Mittelstand 4.0-Kompetenzzentrum Textil vernetzt am STFI überzeugt: „Das STFI hat in seinem Schaufenster einige kostengünstige Tools auf ihre Eignung untersucht. Auch praktikable unkonventionelle Lösungen zur Digitalisierung werden gezeigt, welche leicht für das eigene Unternehmen adaptierbar sind. Das STFI-Schaufenster bietet somit für das interessierte Unternehmen Inspiration und praktische Anleitung, um die ersten Schritte Richtung Digitalisierung zu gehen. Auch für Fortgeschrittene bietet das STFI Lösungen an und ist jederzeit ein kompetenter Ansprech- und Diskussionspartner.“

Das Ziel von Textil vernetzt ist es, mit den kleinen und mittleren Unternehmen der Textilbranche praktische Lösungen zu erarbeiten. Dies kann unter anderem im Rahmen von Labtouren oder Mikroprojekten erfolgen. Die Mikroprojekte sind kleine Machbarkeitsstudien, die gemeinsam vom Unternehmen und dem Textil vernetzt-Team durchgeführt werden, um individuelle Digitalisierungsprojekte weiter auszugestalten.

 

Weitere Informationen:
Textil vernetzt
Quelle:

Mittelstand 4.0-Kompetenzzentrum Textil vernetzt

Die Gewinner des Epson Roboter-Wettbewerbes 2018 stehen fest (c) Epson
Epson Roboter
10.04.2019

Die Gewinner des Epson Roboter-Wettbewerbes 2018 stehen fest

  • Sechs Projekte aus den Bereichen Cobotics, Lebensmitteltechnik, Augmented Reality, Landwirtschaft, Deep Learning und Produktion siegreich.

Meerbusch – Die Gewinner des ersten Epson „Win-A-Robot“-Wettbewerbes für die Region EMEAR stehen fest. Es sind allesamt Projekte, in denen auf besonders innovative Weise Gebrauch von den Maschinen sowie der dazugehörigen Automatisierungstechnik gemacht wird. Die siegreichen Projekte entstammen Forschungs- und Lehrinstituten der Länder Ungarn, Irland, Deutschland, Italien und England.

  • Sechs Projekte aus den Bereichen Cobotics, Lebensmitteltechnik, Augmented Reality, Landwirtschaft, Deep Learning und Produktion siegreich.

Meerbusch – Die Gewinner des ersten Epson „Win-A-Robot“-Wettbewerbes für die Region EMEAR stehen fest. Es sind allesamt Projekte, in denen auf besonders innovative Weise Gebrauch von den Maschinen sowie der dazugehörigen Automatisierungstechnik gemacht wird. Die siegreichen Projekte entstammen Forschungs- und Lehrinstituten der Länder Ungarn, Irland, Deutschland, Italien und England.

„Für Unternehmen in Europa sind Robotik und Automatisierung Schlüsseltechnologien, um sich auch in Zukunft erfolgreich im internationalen Wettbewerb zu behaupten“, erklärt Volker Spanier, Head of Robotics Solutions von Epson in Europa. "Studierende der unterschiedlichen Richtungen müssen auf diese Entwicklung vorbereitet werden und sich den daraus entstehenden Herausforderungen stellen. Epson freut sich sehr, mit diesen jungen Talenten zusammenzuarbeiten und sie durch Bereitstellung interessanter Projekte bei der Entwicklung ihres Fachwissens zu unterstützen. Wir sehen die Bekanntgabe der Gewinnerprojekte sowie Lieferung der Maschinen daher nur als den Beginn einer langfristigen und fruchtbaren Beziehung zu den unterschiedlichen Lehr- und Forschungsinstituten.“

Herr Jörg Gleißner, Leiter Heinz-Nixdorf-Berufskolleg, ergänzt: „Der Einsatz des Epson Roboters in unserem Projekt demonstriert state-of-the-art Industrie 4.0-Technologie. Hierdurch werden unseren Schülerinnen, Schülern und Studierenden spannende und herausfordernde Lernmöglichkeiten an einem realen eigenentwickeltem Automatisierungsprozess geboten. Die Integration von hocheffizienten Robotern und Maschinen zur individuellen Produktfertigung erweckt den Industrie 4.0-Prozess zum Leben. Mit unserem Projekt und dem Einsatz des Epson Roboters können wir schon heute Möglichkeiten aufzeigen, wie in Zukunft eine flexible Fertigung unter Einbezug von Fertigungs- und Produktionsdaten angewendet wird. Unser Team freut sich sehr auf den Einsatz des Roboters.“

Das sind die sechs Gewinner des Epson „Win-A-Robot“-Wettbewerbes 2018:

• Heinz-Nixdorf-Berufskolleg in Essen, Deutschland, mit dem Projekt „Simulation of an Online Trade Using the Example of a Candy Filling Plant“
• Universität Pécs, Ungarn, mit dem Projekt „Robot Control with Augmented Reality Glass“
• Technological University Dublin (vormals Institute of Technology Tallaght and Institute of Technology Blanchardstown), Republik Irland, mit dem Projekt „Robotics, Food Production and Harvesting“
• Universität Plymouth, Großbritannien, mit dem Projekt „Self-Adaptable Robot Assisted Manufacturing in Intelligent Sustainable Work Cells“
• Universität Padua, Italien, mit dem Projekt „ChocoBot – Energy-efficient Customized Decoration of Celebration Cakes and Rapid Prototyping of Big Chocolate Structures“
• University Pavia, Italien, mit dem Projekt „Deep Learning for Safe Physical Human-Robot Interaction“

Die Gewinner wurden durch eine fünfköpfige Jury, bestehend aus Experten der Bereiche Politik, Wirtschaft und Wissenschaft, ausgewählt. Die Jurymitglieder, Professor Darwin Caldwell, italienisches Institut für Technologie, Eva Kaili, Mitglied des Europäischen Parlaments, Dr. Imre Paniti, Ungarische Akademie der Wissenschaften, Patrick Schwarzkopf, Geschäftsführer VDMA Robotik und Automation, sowie Yoshifumi Yoshida, Leiter der Abteilung Robotics Solutions Operations Division von Epson, folgten bei der Bewertung strengen Kriterien, nach denen die eingereichten Projekte gemäß den Punkten Innovation, Bildung und Weiterbildung, Nachhaltigkeit sowie ungewöhnlicher Einsatz eines Roboters bewertet wurden. Alle Projekteinreichungen belegten durch die ihnen innewohnende Kreativität und hohe Expertise die hohe Begabung der heranwachsenden Generation, der es obliegt, die zukünftigen Aufgaben innerhalb der europäischen Industrie zu bewältigen.

Epson wird in den kommenden Monaten, nach Installation der neuen Maschinen, eng mit den ausgewählten Instituten zusammenarbeiten, sodass neben den Gewinnerteams auch die anderen Studierenden lernen, Roboter für ihre Zwecke optimal einsetzen. Bis zum Jahr 2025 soll die Robotikbranche weltweit ein Geschäftsvolumen von mehr als eine Billionen Euro erreichen – vor diesem Hintergrund baut Epson die möglichen Einsatzgebiete seiner Roboter stetig aus, sodass sich Epson Automatisierungstechnik zukünftig in vielen unterschiedlichen Situationen wiederfindet. Ein Fokus liegt dazu auf der Bereitstellung leistungsfähiger, die Anforderungen des Marktes bedienende und trotzdem kostengünstiger Lösungen. Der „Win-A-Robot“-Wettbewerb von Epson bringt Lehr- und Forschungsinstituten Automatisierung näher und unterstützt die Ausbildung der kommenden Generation, sodass er ebenfalls zur Entwicklung neuer Lösungen beiträgt.

Quelle:

Epson Deutschland GmbH
Presse & Kommunikation

 

MIPS: Umfassender Schutz im Helm (c) MIPS
20.02.2019

MIPS: Umfassender Schutz im Helm

Mit der Mips-Technologie erreicht die Sicherheit durch Helme ein bisher unerreichtes Niveau.

Der Helm ist ein elementarer Bestandteil der Schutzausrüstung beim Motorradfahren, Radfahren, Skifahren und bei allen Aktivitäten, bei denen das Tragen eines Helmes die Regel ist. Ein unverzichtbarer Begleiter beim Sport. Doch in vielen Fällen ist der Standardschutz nicht genug und bewahrt Träger nicht hinreichend vor Hirnverletzungen durch schwere Schläge im Falle eines Sturzes. Denn die aktuelle Gesetzgebung (DIN bzw. ECE Norm) von Helmen geht zwar auf den Schutz des Schädels ein, verzichtet aber auf den Schutz vor Drehbewegungen beim Aufprall. Dies wird nicht in allen gängigen offiziellen Prüfnormen gemessen.

Mit der Mips-Technologie erreicht die Sicherheit durch Helme ein bisher unerreichtes Niveau.

Der Helm ist ein elementarer Bestandteil der Schutzausrüstung beim Motorradfahren, Radfahren, Skifahren und bei allen Aktivitäten, bei denen das Tragen eines Helmes die Regel ist. Ein unverzichtbarer Begleiter beim Sport. Doch in vielen Fällen ist der Standardschutz nicht genug und bewahrt Träger nicht hinreichend vor Hirnverletzungen durch schwere Schläge im Falle eines Sturzes. Denn die aktuelle Gesetzgebung (DIN bzw. ECE Norm) von Helmen geht zwar auf den Schutz des Schädels ein, verzichtet aber auf den Schutz vor Drehbewegungen beim Aufprall. Dies wird nicht in allen gängigen offiziellen Prüfnormen gemessen.

Genau diesen Aspekt nahm der schwedische Neurochirurg Hans von Holst zum Anlass, den Zusammenhang zwischen Hirnverletzungen und Helmkonstruktion zu untersuchen. Nach mehr als 20 Jahren Forschung ist es Professor von Holst gemeinsam mit Peter Halldin, Forscher am Swedish Royal Institute of Technology, gelungen, eine revolutionäre Technologie zu entwickeln, die den Schutz des Gehirns im Falle eines Aufpralls deutlich verbessert. Ihr Ziel war es, einen besseren Schutz vor Drehbewegungen zu entwickeln. Diese wirken, wenn der Kopf bei einem Aufprall schräg und nicht durch einen geraden Stoß getroffen wird. Denn ein schräger Aufprall ist bei Stürzen die Regel. Sie entwickelten eine Innovation, die die Grundlagen der traditionellen Helm-Technologien neu definiert. Bis dahin basierten diese auf Tests, bei deren Standardsimulationen der Helm senkrecht auf eine ebene Fläche fällt.

WAS IST MIPS?

Der Grundgedanke des MIPS-Systems (Multi-Directional Impact Protection System) ist einfach: Erleichtert man die Gleitbewegung zwischen zwei Oberflächen in einem Helm, könnte dies die auftretende Drehbewegung im Falle eines Sturzes reduzieren. Aus diesem Axiom wurde MIPS entwickelt: ein Gleitsystem (10-15mm), das dazu bestimmt ist, sich innerhalb des Helmes in alle Richtungen zu drehen. Kurz gesagt, ein multidirektionales Aufprallschutzsystem. Dies ermöglicht es, die Energiemenge, die auf Kopf und Gehirn übertragen wird, zu reduzieren und zu verlangsamen, und folglich die durch Drehbewegungen verursachten Verletzungen zu verringern.

WARUM IST MIPS WICHTIG

Wenn der Kopf in einem schrägen Winkel fällt und durch einen Aufprall plötzlich gebremst wird, können die auftretenden Rotationskräfte zu einer hohen Belastung des Hirngewebes führen. Die durch diese Bewegungen verursachte Dehnung des Gewebes kann zu verschiedenen Arten von Hirnverletzungen führen. MIPS wurde mit der Absicht entwickelt, die durch den Aufprall erzeugte Drehbewegung zu dämpfen.

WIE FUNKTIONIERT MIPS?

Ein mit MIPS-Technologie ausgestatteter Helm besteht aus drei Hauptkomponenten: der Polystyrol-Schale (EPS) und der reibungsarmen Schicht. In der Regel werden diese beiden Komponenten durch ein Verbindungssystem aus Elastomeren zusammengehalten. Bei einem abgewinkelten Aufprall ermöglicht das Befestigungssystem aus Elastomeren, dass sich die EPS-Schale unabhängig um den Kopf dreht.
Wie viel bewegt sich das System? 10-15 Millimeter während der entscheidenden Millisekunden eines Aufpralls. MIPS verwendet im Wesentlichen ein Gleitsystem, das sich innerhalb des Helmes bewegt und das das körpereigene Schutzsystem des Gehirns imitiert. Diese Schicht ist so konzipiert, dass sie sich im Inneren des Helmes dreht, um die Energiemenge, die auf den Schädel übertragen wird, zu verlangsamen und zu reduzieren und so das Risiko von Hirnverletzungen zu verringern.

Bis heute haben zirka 80% der weltweit führenden Helm-Marken schon mit MIPS zusammengearbeitet, um einen besseren Schutz zu gewährleisten. “Der Erfolg der MIPS-Technologie und folglich der häufige Einsatz bei der Konstruktion von Helmen ist auf die anhaltende Konzentration auf Forschung, Entwicklung und Kommunikation über die Gefahren von Verletzungen durch Rotationsbewegungen zurückzuführen. Deshalb ist es die Mission von MIPS, Partnern und Verbrauchern die Vorteile des MIPS-Systems zusammen mit dem zunehmenden allgemeinen Bewusstsein für die Gefahren von Rotationsbewegungen für das Gehirn, näher zu bringen”, sagt Johan Thiel, CEO von MIPS.

(c) PrimaLoft GmbH
13.11.2018

PrimaLoft erweitert biologisch abbaubare Technologien

  • PrimaLoft® Bio™ Performance Fabric – der erste Funktionsstoff aus 100% recycelten, biologisch abbaubaren Fasern

LATHAM, NY - MÜNCHEN: PrimaLoft, Inc., weltweit führendes Unternehmen für innovative Materialtechnologien, hat sein Portfolio an biologisch abbaubaren* Technologien erweitert. Mit der Einführung von PrimaLoft® Bio™ Performance Fabric, dem ersten zu 100% recycelten und biologisch abbaubaren synthetischen Funktionsstoff ergänzt das Unternehmen die kürzlich vorgestellte PrimaLoft® Bio™ Insulation, die ebenfalls die erste Technologie ihrer Art ist. Grundlage beider Innovationen ist eine technisch weiter entwickelte Fasertechnologie, die einen stark beschleunigten biologischen Abbau unter bestimmten Umweltbedingungen ermöglicht und so ein potentiell wichtiger Faktor bei der Problematik von Mikroplastik in den Meeren werden könnte. Sowohl PrimaLoft® Bio™ Performance Fabric als auch PrimaLoft® Bio™ Insulation sollen ab Herbst 2020 im Handel verfügbar sein.

  • PrimaLoft® Bio™ Performance Fabric – der erste Funktionsstoff aus 100% recycelten, biologisch abbaubaren Fasern

LATHAM, NY - MÜNCHEN: PrimaLoft, Inc., weltweit führendes Unternehmen für innovative Materialtechnologien, hat sein Portfolio an biologisch abbaubaren* Technologien erweitert. Mit der Einführung von PrimaLoft® Bio™ Performance Fabric, dem ersten zu 100% recycelten und biologisch abbaubaren synthetischen Funktionsstoff ergänzt das Unternehmen die kürzlich vorgestellte PrimaLoft® Bio™ Insulation, die ebenfalls die erste Technologie ihrer Art ist. Grundlage beider Innovationen ist eine technisch weiter entwickelte Fasertechnologie, die einen stark beschleunigten biologischen Abbau unter bestimmten Umweltbedingungen ermöglicht und so ein potentiell wichtiger Faktor bei der Problematik von Mikroplastik in den Meeren werden könnte. Sowohl PrimaLoft® Bio™ Performance Fabric als auch PrimaLoft® Bio™ Insulation sollen ab Herbst 2020 im Handel verfügbar sein.

„Seit Beginn der Entwicklung unserer biologisch abbaubaren Materialien waren Funktionsstoffe ein wichtiger Bestandteil für uns. Dank dieses Durchbruchs können Kleidungstücke ab sofort komplett den Weg zurück in die Natur finden“, sagte Mike Joyce, Präsident und CEO von PrimaLoft. „Da wir bei der Leistung keine Abstriche machen, mussten wir sicherstellen, dass unsere biologisch abbaubaren Fasern dem Herstellungsprozess von Hochleistungs-Funktionsstoffen standhalten und gleichzeitig ihre Fähigkeit zum biologischen Abbau behalten.  Diese Entwicklung öffnet uns neue Horizonte und wir wollen damit Maßstäbe setzen, um die Umweltauswirkungen der Textilindustrie erheblich zu verringern.“

PrimaLoft® Bio™-Fasern bestehen zu 100% aus Recyclingfasern, die sich unter bestimmten Gegebenheiten wie sie in einer Mülldeponie oder im Meerwasser vorherrschen, biologisch abbauen. PrimaLoft hat diese Fasern weiterentwickelt, um sie attraktiver für dort natürlich vorkommende Mikroben zu machen. Diese Mikroben verdauen die Fasern schneller und sorgen dafür, dass der Funktionsstoff zersetzt wird und am Ende lediglich die natürlichen Elemente Wasser, Methan, CO2 und Biomasse zurückbleiben. Die neue Technologie wird dabei  helfen, das wachsende Problem von Mikroplastik in den Ozeanen zu verringern – ein bedeutendes Thema für die Textilindustrie und andere Industriezweige. Laut Schätzungen der Ellen Macarthur Foundation landen jährlich rund eine halbe Million Tonnen Mikrofasern beim Waschen von Textilien auf Kunststoffbasis wie Polyester, Nylon oder Acryl im Meer. PrimaLoft® Bio™-Fasern werden nur abgebaut, wenn sie in Kontakt mit natürlich vorkommenden Mikroben auf Mülldeponien oder im Meer kommen. Dadurch bleiben die Fasern während der gesamten Produktlebenszeit des Kleidungsstücks gewohnt dauerhaft strapazierfähig.

Spezifische Testergebnisse zeigen einen biologischen Abbau von 84,1% in 423 Tagen unter ASTM D5511- Bedingungen* (beschleunigte Deponiesimulation) und 55,1% biologischen Abbau in 409 Tagen unter ASTM D6691- Bedingungen** (beschleunigte Meerwassersimulation). „Wir haben Recycling nie als die endgültige Lösung gesehen. Mit PrimaLoft® Bio™ haben wir nicht nur den Code zur biologischen Abbaubarkeit unserer Fasern geknackt, sondern gehen auch den nächsten Schritt in Sachen Nachhaltigkeit“, sagt Joyce. „Mit neuen Fasertechnologien wie dieser versuchen wir unseren negativen Umwelteinfluss so gering wie möglich zu halten. Das ist Teil unserer Selbstverpflichtung, jeden Tag aufs Neue Verantwortung zu übernehmen. “

Bis heute hat PrimaLoft mehr als 90 Millionen Plastikflaschen wiederaufbereitet und daraus Premium- Isolationen hergestellt. Anfang dieses Jahres präsentierte PrimaLoft bereits seine ersten Isolationen aus 100% recyceltem Material. Bis 2020 werden 90% der PrimaLoft-Isolationsprodukte aus mindestens 50% recyceltem Material (PCR = Post Consumer Recycled) bestehen, ohne dabei Einbußen bei der Leistung aufzuweisen.

PrimaLoft plant, mit einem ähnlichen Bekenntnis zu biologisch abbaubaren Technologien in seinem gesamten Produktportfolio, die Branche weiter voranzutreiben. Mehr Informationen zu PrimaLoft Bio gibt es auch hier: http://primaloft.com/primaloftbio

* Standardtestmethode zur Bestimmung des anaeroben biologischen Abbaus von Kunststoffmaterialien unter anaeroben Verdauungsbedingungen mit hohem Feststoffgehalt
** Standardtestmethode zur Bestimmung des aeroben biologischen Abbaus von Kunststoffmaterialien in maritimer Umgebung durch ein definiertes mikrobielles Konsortium oder ein natürliches Meerwasser-Inokulum

(c) Hochschule Niederrhein
Kleid Vidya Award 2018 von Alla Teske
02.08.2018

Für beste 3D-Bekleidungssimulation: Masterstudentin der Hochschule Niederrhein gewinnt Vidya Award

Alla Teske, Masterstudentin am Fachbereich Textil- und Bekleidungstechnik der Hochschule Niederrhein, hat den Vidya Award 2018 gewonnen.

Der mit 1000 Euro dotierte Preis wird jährlich von der Assyst GmbH ausgeschrieben. Teilnehmen können Schulen und Hochschulen, welche die 3D-Simulationsoftware Vidya einsetzen. Die Nachwuchsdesignerinnen und -designer sollen frühzeitig lernen, Bekleidung realitätsnah zu visualisieren.

Aufgabe war es, ein Sommerkleid zu entwerfen, in 3D zu simulieren und es anschließend anzufertigen. Das Kleid sollte passend zum Motto „Sommermode von Santorini bis Saint-Tropez“ gestaltet werden. „Die Herausforderung für mich war das virtuelle Kleid so realitätsnah wie möglich umzusetzen und das reelle Kleid gut zu verarbeiten“, sagt die Preisträgerin. Alla Teske überzeugte die Jury mit einem Sommerkleid mit aufwändiger und schwer zu simulierender Volantpartie.

Alla Teske, Masterstudentin am Fachbereich Textil- und Bekleidungstechnik der Hochschule Niederrhein, hat den Vidya Award 2018 gewonnen.

Der mit 1000 Euro dotierte Preis wird jährlich von der Assyst GmbH ausgeschrieben. Teilnehmen können Schulen und Hochschulen, welche die 3D-Simulationsoftware Vidya einsetzen. Die Nachwuchsdesignerinnen und -designer sollen frühzeitig lernen, Bekleidung realitätsnah zu visualisieren.

Aufgabe war es, ein Sommerkleid zu entwerfen, in 3D zu simulieren und es anschließend anzufertigen. Das Kleid sollte passend zum Motto „Sommermode von Santorini bis Saint-Tropez“ gestaltet werden. „Die Herausforderung für mich war das virtuelle Kleid so realitätsnah wie möglich umzusetzen und das reelle Kleid gut zu verarbeiten“, sagt die Preisträgerin. Alla Teske überzeugte die Jury mit einem Sommerkleid mit aufwändiger und schwer zu simulierender Volantpartie.

Seit 2015 studiert die 39- Jährige den Masterstudiengang Textile Produkte mit dem Schwerpunkt Bekleidung. Die Studienrichtung qualifiziert Studierende für die Entwicklung und Umsetzung von Produkt- und Verfahrensinnovationen. „3D-Bekleidungssimulation ist ein sehr interessanter Bereich. Durch die Teilnahme am Wettbewerb konnte ich meine Kenntnisse stark erweitern. Die virtuelle Produktentwicklung möchte ich auch in meine Abschlussarbeit einbinden, um mich mit 3D noch intensiver zu befassen“, sagt Alla Teske.

Betreut wurde die Arbeit im Rahmen des Wahlpflichtfaches „3D Produktentwicklung mit Vidya“ von Professor  Dr. Michael Ernst und der wissenschaftlichen Mitarbeiterin Antje Christophersen. „Frau Teske hat nicht nur die Simulationssoftware sehr gut eingesetzt, sondern auch weitere innovative Ausstattung des Virtual Lab am Fachbereich Textil- und Bekleidungstechnik  genutzt, um das Gesamtbild einer realistischen Simulation zu erzeugen“, erklärt Antje Christophersen.

Quelle:

Referat Hochschulkommunikation der Hochschule Niederrhein

Schaffung einer neuen Werkstoffklasse „Interaktive Faser-Elastomer-Verbunde“ © ITM/TUD
08.05.2018

Bewilligung des DFG-Graduiertenkollegs 2430 „Interaktive Faser-Elastomer-Verbunde“

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 11 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.

Dresden - Dresdner Forscher wollen eine völlig neue Werkstoffklasse entwickeln, bei der Aktoren und Sensoren in flexible Faserverbundwerkstoffe integriert werden. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte dazu das neue Graduiertenkolleg 2430 „Interaktive Faser-Elastomer-Verbunde“ an der TU Dresden in Kooperation mit dem Leibniz-Institut für Polymerforschung Dresden. Sprecher ist Prof. Chokri Cherif vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden. In den nächsten 4,5 Jahren werden neben Sach- und Projektmittel insgesamt 11 Doktorandinnen und Doktoranden in 11 interdisziplinären Teilprojekten gefördert.
Ziel ist die simulationsgestützte Entwicklung intelligenter Werkstoffkombinationen für sogenannte autarke Faserverbundwerkstoffe. Dabei werden Aktoren und Sensoren in die Strukturen integriert und müssen nicht mehr wie bisher nachträglich platziert werden. So werden die Systeme robuster, komplexe Vorformungsmuster lassen sich an der gewünschten Stelle maßgeschneidert einstellen – und zwar reversibel und berührungslos. Zu diesem Themenbereich wird an der TU Dresden und insbesondere auch am ITM seit Jahren intensiv geforscht.

Faserverbundwerkstoffe werden aufgrund der hohen spezifischen Steifigkeiten und Festigkeiten sowie der Möglichkeit zur maßgeschneiderten Einstellung dieser Eigenschaften immer stärker in bewegten Komponenten eingesetzt. Durch die Integration adaptiver Funktionalitäten in derartige Werkstoffe, entfällt die Notwendigkeit einer nachträglichen Aktorplatzierung und die Robustheit des Systems wird signifikant verbessert. Besonders vielversprechend sind dabei Aktoren und Sensoren auf textiler Basis, wie sie am ITM erforscht und entwickelt werden, da diese direkt im Fertigungsprozess in die Faserverbundwerkstoffe integriert werden können.

Der innovative Ansatz besteht darin, die heute nicht verfügbare Werkstoffklasse der interaktiven Faser-Elastomer-Verbunde (I-FEV) mit strukturintegrierter Aktorik und Sensorik zu schaffen und wissenschaftlich zu durchdringen. Die Entwicklung von I-FEV erlaubt beispielsweise die geometrischen Verformungsfreiheitsgrade von mechanischen Bauteilen reversibel und berührungslos einzustellen und so sehr schnell und präzise auf variable Anforderungen der Umwelt zu reagieren.

Mit ihren innovativen Eigenschaften sind interaktive Faser-Elastomer-Verbunde für zahlreiche Anwendungsfelder im Maschinen- und Fahrzeugbau, in der Robotik, Architektur, Orthetik und Prothetik prädestiniert: Beispiele sind Systeme für präzise Greif- und Transportvorgänge (z.B. bei Handprothesen, Verschlüssen und verformbaren Membranen) und Bauteile (z.B. Trimmklappen für Land- und Wasserfahrzeuge).

Weitere Informationen:
TU Dresden Graduiertenkolleg ITM
Quelle:

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

01.03.2018

ITM auf der JEC 2018

Das ITM wird den Besuchern der JEC einen umfassenden Einblick in die aktuellen Arbeiten auf dem Gebiet der Maschinen- und Produktentwicklungen entlang der gesamten textilen Prozesskette geben.
Ein Highlight auf der JEC 2018 ist die Präsentation der vielfältigen Möglichkeiten, die die Struktur- und Prozesssimulation textiler Hochleistungswerkstoffe und textiler Fertigungsprozesse bietet.

Mittels skalenübergreifender Modellierung und Simulation wird am ITM ein tiefgreifendes Material- und Prozessverständnis erreicht. Dazu wurden Finite-Element-Modelle auf der Mikro-, Meso- und Makroskala entwickelt und validiert. Beispiele aus aktuellen Forschungsprojekten des ITM demonstrieren die vielseitigen Möglichkeiten und Einsatzbereiche der modernen Simulationsmethoden auf dem Gebiet der Textilmaschinen.

Das ITM wird den Besuchern der JEC einen umfassenden Einblick in die aktuellen Arbeiten auf dem Gebiet der Maschinen- und Produktentwicklungen entlang der gesamten textilen Prozesskette geben.
Ein Highlight auf der JEC 2018 ist die Präsentation der vielfältigen Möglichkeiten, die die Struktur- und Prozesssimulation textiler Hochleistungswerkstoffe und textiler Fertigungsprozesse bietet.

Mittels skalenübergreifender Modellierung und Simulation wird am ITM ein tiefgreifendes Material- und Prozessverständnis erreicht. Dazu wurden Finite-Element-Modelle auf der Mikro-, Meso- und Makroskala entwickelt und validiert. Beispiele aus aktuellen Forschungsprojekten des ITM demonstrieren die vielseitigen Möglichkeiten und Einsatzbereiche der modernen Simulationsmethoden auf dem Gebiet der Textilmaschinen.

Weiterhin werden beispielhafte innovative konstruktive Highlights aus dem Bereich der Flachstricktechnologie durch das ITM vorgestellt. Eine besondere Herausforderung bei der Verwendung von Faserkunststoffverbunden (FKV) mit komplexen Freiformflächen ist neben der belastungsgerechten Auslegung eine wirtschaftliche und produktive Fertigung, wofür am ITM innovative, hochdrapierbare und anforderungsgerechte textile Halbzeuge entwickelt werden. Konstruktive Neu- und Weiterentwicklungen im Bereich Textilmaschinen erfolgen dabei in enger Zusammenarbeit mit namenhaften Textilmaschinenherstellern, wie u.a. Stoll, Steiger und Shima Seiki.  

Im Rahmen einer Projektbearbeitung konnte am ITM ein innovatives Verfahren für die kontinuierliche und damit hochproduktive Fertigung von komplexen, schalenförmigen und hohlprofilförmigen 3D-Preforms aus Hochleistungsfaserstoffen entwickelt und erfolgreich umgesetzt werden. Durch die prozessintegrierte Strukturfixierung eignen sich die Preforms hervorragend für die Weiterverarbeitung zu FKV-Bauteilen. Hierbei arbeitet das neue Umformverfahren ohne aufwändige, bewegte bzw. aktiv angetriebene Elemente. Daher ist die Ausformung komplexer Geometrien bei engen Bauraumsituationen besonders gut zu realisieren. Damit gelingt erstmals die kontinuierliche und reproduzierbare Herstellung geschlossener hohlprofilförmiger 3D-Preforms mit sehr guter und reproduzierbarer Qualität, die zur JEC ausgestellt werden.

Ein am ITM erfolgreich etablierter Entwicklungsschwerpunkt sind 3D-Strukturen in Form von Near Net Shape Preformen, die zur JEC präsentiert werden. Dazu gehören z.B. ebene und gekrümmte Bauteile mit integrierten Rippen für die Steigerung der Biegesteifigkeit von hoch tragenden Bauteilen, die am ITM kontinuierlich in einem simulationsgestützten Verarbeitungsprozess gefertigt werden. Eine besondere Herausforderung ist die Entwicklung von dringend benötigten anforderungsgerechten Knotenverbindungselementen aus Glas- und Carbon-Filamentgarnen, die mittels hochkomplexer simulationsgestützter Bindungskonstruktionen auf modernsten computergesteuerten Textilmaschinen am ITM hergestellt werden. Für diese Entwicklungen wurde das ITM mehrfach international ausgezeichnet.

Zum Thema Multimaterialcomposites auf Basis von textilen Halbzeugen und Metallblech werden Ergebnisse anhand von Technologiedemonstratoren offeriert, die im Rahmen interdisziplinärer und institutsübergreifender Forschung entlang der gesamten Prozesskette erfolgreich umgesetzt wurden. Im Rahmen mehrerer Forschungsprojekte wurde eine Prozesskette entwickelt, die eine kostengünstige und großserientaugliche Bauteilfertigung von FKV-Metallblech-Verbunden durch in-Situ-Umfom-Fügen aus den Halbzeugen erlaubt.  

Auf der JEC stellt das ITM auch exemplarische Demonstratorstrukturen wie Near Net Shape Preforms und textile Bewehrungen für Carbonbetonanwendungen vor, die mittels der am ITM fest etablierten Multiaxial-Kettenwirktechnologie, gefertigt worden sind. Durch eigene Weiterentwicklungen beim individuellen Kettfadenzulieferungs, -versatz und abzugssystem, bei der Fertigung thermoplastischer Hybridspreizbänder sowie bei dem online-Beschichtungssystem für textile Bewehrungen können maßgeschneiderte Halbzeuge hergestellt und neue Anwendungsfelder erschlossen werden.  

Weiterhin wird am ITM die Entwicklung und Umsetzung von neuartigen Garnkonstruktionen aus recycelten Carbonfasern (rCF) für neue Verbundwerkstoffe erfolgreich vorangetrieben. Mit einer sogenannten Spezialkrempelanlage werden recycelten Fasern aufgelöst, vereinzelt und zu einem breiten gleichmäßigen Band zusammengeführt. Anschließend können daraus auf Basis verschiedener Spinntechnologien neuartige Hybridgarnkonstruktionen aus gleichmäßig vermischten recycelten Carbon- und Thermoplastfasern gefertigt werden. Ausgewählte Garnkonstruktionen und daraus gefertige Demonstratoren werden den Besuchern zur JEC präsentiert.

Weitere Informationen:
ITM JEC
Quelle:

Technische Universität Dresden, Dipl.-Ing. Annett Dörfel

imm Cologne 2018 Foto: Koelnmesse
31.01.2018

imm cologne: Schwungvoller Start ins Möbeljahr 2018

  • 125.000 Besucher aus 138 Ländern
  • Internationalität der Fachbesucher steigt
  • imm cologne fördert das Exportgeschäft
  • Trendthemen Licht, Bad und Smart Home

Mit einer positiven Bilanz ging am Sonntag, 21. Januar 2018, die imm cologne zu Ende. Insgesamt informierten sich rd. 125.000 Besucher (inkl. Schätzung für den letzten Messetag), über die Trends und Neuheiten der Branche. Damit erreichte die imm cologne - trotz des Orkans „Friederike“ am Donnerstag mit schwierigen Verkehrsverhältnissen - ein leichtes Besucherplus gegenüber der vergleichbaren Veranstaltung aus 2016. Mehr Fachbesucher kamen aus Europa und Asien, den Exportmärkten Nr.1 der deutschen und europäischen Möbelindustrie.

  • 125.000 Besucher aus 138 Ländern
  • Internationalität der Fachbesucher steigt
  • imm cologne fördert das Exportgeschäft
  • Trendthemen Licht, Bad und Smart Home

Mit einer positiven Bilanz ging am Sonntag, 21. Januar 2018, die imm cologne zu Ende. Insgesamt informierten sich rd. 125.000 Besucher (inkl. Schätzung für den letzten Messetag), über die Trends und Neuheiten der Branche. Damit erreichte die imm cologne - trotz des Orkans „Friederike“ am Donnerstag mit schwierigen Verkehrsverhältnissen - ein leichtes Besucherplus gegenüber der vergleichbaren Veranstaltung aus 2016. Mehr Fachbesucher kamen aus Europa und Asien, den Exportmärkten Nr.1 der deutschen und europäischen Möbelindustrie.

„Die imm cologne ist eine exzellente und effiziente Plattform für das internationale Business“, so Gerald Böse, Vorsitzender der Geschäftsführung der Koelnmesse. „Jedes Jahr aufs Neue setzt die Messe wichtige Absatzimpulse für die Industrie in den entscheidenden Exportmärkten dieser Welt“, so Böse weiter. Auch der Präsident des Verbandes der Deutschen Möbelindustrie, Axel Schramm, zog ein positives Fazit: „Die deutsche Möbelindustrie freut sich über eine äußerst gut gelaufene imm cologne und damit über einen sehr guten Start ins Jahr 2018. Wir hoffen, dass der Schwung, den wir aus Köln mitnehmen, uns durch das Möbeljahr 2018 trägt. Der Messeerfolg wird uns Möbelherstellern dabei helfen, unsere Exporterfolge zu steigern und auf dem schwierigen Inlandsmarkt zu punkten“, so Schramm. 

Auf Wachstumskurs: Internationalität der Besucher steigt

Nicht nur bei den Ausstellern sondern auch bei den Besuchern ist die imm cologne in Punkto Internationalität auf Wachstumskurs. Der Auslandsanteil stieg auf rund 50 Prozent (2016: 46 Prozent) bezogen auf die Fachbesuchertage. In Europa konnten Steigerungen vor allem aus Spanien (+31 Prozent), Belgien (+16 Prozent), Frankreich (+11 Prozent), Niederlande (+1 Prozent) und Osteuropa (+54 Prozent), hier besonders Russland (+69 Prozent), verzeichnet werden. Deutlich mehr Besucher kamen auch aus Asien (+50 Prozent), hier besonders aus China (+82 Prozent) und Japan (+63 Prozent), aus Nahost (+15 Prozent), Australien/Ozeanien (+51 Prozent), Nordamerika (+12 Prozent) und Mittelamerika (+21 Prozent).

imm cologne als starke Businessplattform für Top-Entscheider aus dem Handel

Neben der hohen Internationalität, die das Bild der Messe an allen Tagen prägte, wurde insbesondere die Qualität der Besucher von den Ausstellern als überragend bewertet. So wurden Fachhändler und internationale Top-Besucher des Einrichtungsfachhandels und des Interior Designs registriert, viele davon aus den Top-30-Handelsketten weltweit. Darüber hinaus kamen auch die Entscheider der großen Online-Plattformen und der internationalen Kaufhausketten zur imm cologne, darunter u.a. Alinea aus Frankreich, John Lewis aus Großbritannien, Lars Larsen aus Dänemark sowie El Corte Inglés aus Spanien, Nitori aus Japan und Ashley aus den USA. Auch die Branchengrößen im Online-Handel − hier u.a. Amazon, die Otto Group und Wayfair − nutzten sehr intensiv die Veranstaltung für ihre Geschäfte. Für den Pure-Bereich besuchte eine Delegation 80 designorientierter Einrichtungshäuser aus den USA und Kanada die imm cologne, darunter Luminaire aus Miami und DDC aus New York. „Es gibt keinen besseren Beweis dafür, dass unser umfassendes VIP-Programm erfolgreich und die imm cologne auch in den ‚Nicht-Küchenjahren‘ eine exzellente Businessplattform ist“, so Katharina C. Hamma, Geschäftsführerin der  Koelnmesse.

Neue Themen punkten bei den Besuchern

Neben den gezeigten Produkten zählte einmal mehr „Das Haus“, die begehbare Wohnhaus-Simulation, die in diesem Jahr von Lucie Koldova gestaltet wurde, im wahrsten Sinne des Wortes zu den Highlights der Messe. Hier spielte das Thema Licht die Hauptrolle. Licht und Bad waren in diesem Jahr neben „Smart Home“ die Focus-Themen, die schwerpunktmäßig in der Konzepthalle Pure Architects gezeigt wurden. Als 360-Grad-Messe widmete sich die imm cologne damit drei wichtigen Zukunftsthemen, die im Zusammenspiel mit dem Thema Einrichten immer mehr an Bedeutung gewinnen.

CETEX - Wechsel in der Geschäftsführung (c) Cetex Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH
24.01.2018

Cetex: Wechsel in der Geschäftsleitung

Mit Wirkung zum 01.01.2018 übernahm Sebastian Nendel, bisher Geschäftsführer Forschung und Entwicklung, als Geschäftsführender Direktor die Leitung des operativen Geschäftes des Cetex Institutes. Herr Hans-Jürgen Heinrich scheidet nach 27 Jahren aus der Geschäftsleitung aus, steht dem Institut mit seinen langjährigen Erfahrungen aber weiterhin für fachliche Aufgaben zur Verfügung. Univ.-Prof. Dr.-Ing. habil. Prof. h. c. Dr. h. c. Prof. Lothar Kroll bleibt Institutsdirektor.

Als neuer Leiter Forschung und Entwicklung konnte Herr Marcel Meyer gewonnen werden, der bisher als Fachgruppenleiter im Bereich Kunststofftechnologien und Maschinenkonstruktion an der Technischen Universität Chemnitz, Professur Strukturleichtbau und Kunststoffverarbeitung tätig war.

Die Forschungsschwerpunkte des Cetex Institutes liegen heute im Bereich der Entwicklung neuer Technologien und Maschinen für technische Textilien sowie von großserientauglichen Verfahren und Maschinen für multifunktionale textile Verstärkungsstrukturen für den Leichtbau.

Mit Wirkung zum 01.01.2018 übernahm Sebastian Nendel, bisher Geschäftsführer Forschung und Entwicklung, als Geschäftsführender Direktor die Leitung des operativen Geschäftes des Cetex Institutes. Herr Hans-Jürgen Heinrich scheidet nach 27 Jahren aus der Geschäftsleitung aus, steht dem Institut mit seinen langjährigen Erfahrungen aber weiterhin für fachliche Aufgaben zur Verfügung. Univ.-Prof. Dr.-Ing. habil. Prof. h. c. Dr. h. c. Prof. Lothar Kroll bleibt Institutsdirektor.

Als neuer Leiter Forschung und Entwicklung konnte Herr Marcel Meyer gewonnen werden, der bisher als Fachgruppenleiter im Bereich Kunststofftechnologien und Maschinenkonstruktion an der Technischen Universität Chemnitz, Professur Strukturleichtbau und Kunststoffverarbeitung tätig war.

Die Forschungsschwerpunkte des Cetex Institutes liegen heute im Bereich der Entwicklung neuer Technologien und Maschinen für technische Textilien sowie von großserientauglichen Verfahren und Maschinen für multifunktionale textile Verstärkungsstrukturen für den Leichtbau.

Kurzvita Sebastian Nendel
Sebastian Nendel hat an der Technischen Universität Chemnitz Wirtschaftsingenieurwesen / Maschinenbau studiert.
Von 2009 bis 2013 war er als wissenschaftlicher Mitarbeiter an der Professur Strukturleichtbau und Kunststoffverarbeitung der TU Chemnitz tätig.
Seit Juli 2013 verstärkt er die Geschäftsleitung des Cetex Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH zunächst als Leiter Forschung und Entwicklung und zuletzt als Geschäftsführer Forschung und Entwicklung. Im Januar 2018 hat er als Geschäftsführender Direktor die Leitung des operativen Geschäftes des Institutes übernommen.

Kurzvita Marcel Meyer
Marcel Meyer hat an der Technischen Universität Chemnitz Maschinenbau mit den Fachrichtungen Konstruktion und Kunststofftechnik studiert.
Von 2007 bis 2017 war er als wissenschaftlicher Mitarbeiter an der Professur Strukturleichtbau und Kunststoffverarbeitung der TU Chemnitz tätig. Dort leitete er von 2009 bis 2012 die Arbeitsgruppe Werkzeugsysteme und Simulation. Ab 2012 bis Ende 2017 war er Leiter der Arbeitsgruppe Integrative Kunststofftechnologien und Prozesssimulation im Forschungsbereich Kunststofftechnologien und Verarbeitungsmaschinen.
Seit Juli 2017 verstärkt er das Team des Cetex Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH zunächst als wissenschaftlicher Mitarbeiter. Im Januar 2018 hat er die Leitung des Bereiches Forschung und Entwicklung des Institutes übernommen.

 

Weitere Informationen:
Cetex
Quelle:

Cetex Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH

Die Verfahrensingenieure des Cetex Institutes forschen an der Optimierung des gassenfreien Spreizens sowie des Imprägnierens einer Basaltfaser mit einer Kunststoffmatrix. Basaltfaser bieten großes Potential als eine moderne Werkstoffalternative für die Bereiche Maschinen-bau, Bau, Energietechnik, Luft- und Raumfahrt sowie die Automobil- und Textilindustrie. ©Wolfgang Schmidt
Basaltfaser Cetex
15.11.2017

16. Chemnitzer Textiltechnik-Tagung: „Technologievorsprung durch Textiltechnik“

  • Einladung und Call for Papers
  • „Technologievorsprung durch Textiltechnik“ lautet das Motto der 16. Chemnitzer Textiltechnik-Tagung (CTT) am 28. und 29. Mai 2018.

Die Tagung bietet eine ideale Plattform, um aktuelle Forschungsergebnisse und Trends aus den Bereichen Maschinenbau, Textilindustrie und Leichtbau zu präsentieren. Veranstaltungsort ist die Messe Chemnitz.

Folgende Schwerpunkte werden thematisiert: Ressourceneffiziente Textilmaschinen und Verfahren, Halbzeuge und Preformen und Smart Textiles, Biologisierung in der Fertigung, Verbundbauteile in Leichtbauweise, Prozess- und Struktursimulation, Nachhaltigkeit textiler Prozesse und Recycling sowie Kooperationen und Netzwerke.

Bis zum 20. Dezember 2017 können unter https://www.chemtextiles.de Vorträge angemeldet werden. Weiterhin bestehen Werbemöglichkeiten in Form von Anzeigen im Tagungsband oder der Beteiligung an der begleitenden Firmen- und Posterausstellung.

  • Einladung und Call for Papers
  • „Technologievorsprung durch Textiltechnik“ lautet das Motto der 16. Chemnitzer Textiltechnik-Tagung (CTT) am 28. und 29. Mai 2018.

Die Tagung bietet eine ideale Plattform, um aktuelle Forschungsergebnisse und Trends aus den Bereichen Maschinenbau, Textilindustrie und Leichtbau zu präsentieren. Veranstaltungsort ist die Messe Chemnitz.

Folgende Schwerpunkte werden thematisiert: Ressourceneffiziente Textilmaschinen und Verfahren, Halbzeuge und Preformen und Smart Textiles, Biologisierung in der Fertigung, Verbundbauteile in Leichtbauweise, Prozess- und Struktursimulation, Nachhaltigkeit textiler Prozesse und Recycling sowie Kooperationen und Netzwerke.

Bis zum 20. Dezember 2017 können unter https://www.chemtextiles.de Vorträge angemeldet werden. Weiterhin bestehen Werbemöglichkeiten in Form von Anzeigen im Tagungsband oder der Beteiligung an der begleitenden Firmen- und Posterausstellung.

„Neue textile Technologien erlauben es, das Verstärkungsgerüst bei Hochleistungsstrukturen noch besser an die Lasten anzupassen und so den Leichtbaugrad deutlich zu steigern. Dafür ist die interdisziplinäre Zusammenarbeit zwischen Unternehmen und Forschungsinstitutionen im Spannungsfeld von Textil-, Kunststoff- und Faserverbundtechnik von hohem Stellenwert.

Am Standort Chemnitz findet derzeit eine Renaissance der Textiltechnologien und -maschinen statt, wobei die Allianz Textiler Leichtbau (ATL) mit vier Forschungseinrichtungen eine Vorreiterrolle einnimmt. Bei Großserienanwendungen kann damit das Potential der Ressourceneffizienz voll ausgeschöpft werden, wodurch die Kosten im Sinne eines bezahlbaren Leichtbaus reduziert werden“, erläutert Univ.-Prof. Dr.-Ing. habil. Hon.-Prof. Lothar Kroll, Mit-glied des Vorstands des Cetex-Vereins, Direktor der Instituts IST und des An-Instituts Cetex sowie Sprecher des Bundesexzellenzclusters MERGE.

Der Förderverein Cetex Chemnitzer Textilmaschinenentwicklung e. V. veranstaltet die CTT gemeinsam mit dem Institut für Strukturleichtbau der TU Chemnitz, dem Sächsischen Textil-forschungsinstitut e.V. (STFI) und dem Verband der Nord-Ostdeutschen Textil- und Bekleidungsindustrie e.V. (vti). Zur 15. CTT waren am 31.05. und 01.06.2016 insgesamt 230 Wissenschaftler und Industrievertreter nach Chemnitz gekommen.

Vom 29. bis 30. Mai 2018 finden im Chemnitzer Messegelände die „mtex+“ sowie die Chemnitzer Leichtbaumesse „LiMA“ statt; Details s. www.mtex-chemnitz.de; www.lima-chemnitz.de

Weitere Informationen:
Chemnitzer Textiltechnik-Tagung
Quelle:

Förderverein Cetex Chemnitzer
Textilmaschinenentwicklung e.V.

 

ITM auf der Techtextil Technische Universität Dresden
ITM auf der Techtextil
05.05.2017

ITM auf der TECHTEXTIL und TEXPROCESS 2017

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.


Auf Basis einer neuen Spulenschützenbandwebtechnik mit einer integrierten Schützenwechseleinrichtung ist es gelungen, Carbongarne schädigungsarm zu verarbeiten sowie Profilbandgewebe mit über die Bauteillänge unterschiedlichem Querschnitt und vor allem in einem einzigen Fertigungsschritt gewebte komplexe rohrförmige Knotenelemente zu entwickeln. Das entwickelte Schützenwechselsystem demonstriert das ITM auf seinem Stand auf der Messe TECHTEXTIL an einem elektronisch gesteuerten Spulenschützen-Bandwebautomaten . Die Kombination der Spulenschützen-Bandwebtechnik mit der Jacquardtechnik ermöglicht eine ausgesprochen hohe Strukturvielfalt, die für die Entwicklung von gewebten rohrförmigen Knotenelementen in unterschiedlichster Geometrie genutzt wird. Die Rohrknotenelemente werden vor allem für die Eckverbinder von Leichtbaurahmen, z. B. in Fahrzeug- oder Fahrradrahmen, in Sportgeräten oder Roboterwerkzeugrahmen oder in der Architektur, benötigt. Am ITM wird in enger Zusammenarbeit mit der Firma MAGEBA Textilmaschinen GmbH & Co KG und durch die finanzielle Förderung von Forschungsprojekten durch das BMWi die gesamte Prozesskette vom CAD-Entwurf, über die strukturelle Entwicklung, die Erstellung der Maschinensteuerprogramme, die textiltechnische Umsetzung und die Bauteilkonsolidierung erfolgreich erarbeitet.


Als weiteres Highlight präsentiert das ITM der TU Dresden auf der TECHTEXTIL die vielfältigen Möglichkeiten, die die Struktur- und Prozesssimulation textiler Hochleistungswerkstoffe und textiler Fertigungsprozesse bietet und somit fester Bestandteil in allen Entwicklungen entlang der gesamten textilen Wertschöpfungskette vom Atom bis zum Produkt am ITM ist. Darüber hinaus offeriert das ITM als weiteren besonderen Blickfang ein 2,5 Meter hohes Rotorblatt aus einem Faserkunststoffverbund mit integrierten textilen Dehnungssensoren aus Carbonfasern zur In-Situ Strukturüberwachung.

Quelle:

 Technische Universität Dresden

Techtextil 2017 Referat Hochschulkommunikation Hochschule Niederrhein
Techtextil 2017
05.05.2017

Hochschule Niederrhein mit Stand, Stoffen und Studierenden auf der Techtextil

Die Hochschule Niederrhein präsentiert ab heute ihre breitgefächerte textile Kompetenz auf der Techtextil 2017 in Frankfurt, der Leitmesse für technische Textilien und Vliesstoffe. Auf einem eigenen Stand präsentieren Prof. Dr. Eberhard Janssen und Prof. Dr. Lutz Vossebein den Fachbereich Textil- und Bekleidungstechnik, das Forschungsinstitut für Textil und Bekleidung und die Öffentliche Prüfstelle.

Die Hochschule Niederrhein präsentiert ab heute ihre breitgefächerte textile Kompetenz auf der Techtextil 2017 in Frankfurt, der Leitmesse für technische Textilien und Vliesstoffe. Auf einem eigenen Stand präsentieren Prof. Dr. Eberhard Janssen und Prof. Dr. Lutz Vossebein den Fachbereich Textil- und Bekleidungstechnik, das Forschungsinstitut für Textil und Bekleidung und die Öffentliche Prüfstelle.


Von heute, 9. Mai, bis Freitag, 12. Mai, zeigt die Hochschule an ihrem Stand (Halle 3.1 Stand A39) neue Entwicklungen wie Durchstichsensoren, leuchtende Fassaden, 3D-Simulation oder Kernmantelverbundwerkstoffe. Daneben geht es auch um allgemeine Informationen zu den Studiengängen am Fachbereich Textil- und Bekleidungstechnik. Den 60 Quadratmeter großen Stand teilt sich die Hochschule Niederrhein mit dem Mönchengladbacher Unternehmen Textechno und dem österreichischen Unternehmen Lenzing Instruments, beides Hersteller von Mess- und Prüfgeräten für Fasern.
Außerdem ist Prof. Dr. Michael Ernst mit dem Virtual Lab des Fachbereichs in Halle 4 mit einem eigenen Stand vertreten und zeigt die nächste Generation der Produktentwicklung, die zunehmend digital geprägt ist. Die Bereiche Avatargestaltung mittels Body-Scanning-Technologien, Erfassung von Materialparametern für die Simulation, virtuelles Prototyping und die Implementierung der Technologien in einen industriellen Produktentwicklungsprozess stehen hierbei im Fokus und werden mit neuesten 2D und 3D CAD-Technologien umgesetzt.

Quelle:

Referat Hochschulkommunikation Hochschule Niederrhein