Textination Newsline

Zurücksetzen
2 Ergebnisse
Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten. (c) : Muh Amdadul Hoque. Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten.
27.09.2023

Künstliche Muskelfasern als Zellgerüst

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

„Wir haben festgestellt, dass unser Faserrobot ein sehr geeignetes Gerüst für Zellen ist. Um eine geeignetere Umgebung für die Zellen zu schaffen, können wir die Frequenz und das Kontraktionsverhältnis verändern,“ sagte Muh Amdadul Hoque, Doktorand in Textiltechnik, Chemie und Wissenschaft an der NC State. „Dies waren Proof-of-Concept-Studien; letztendlich ist es unser Ziel, herauszufinden, ob wir diese Fasern als Gerüst für Stammzellen nutzen oder sie in zukünftigen Studien zur Entwicklung künstlicher Organe verwenden können.“
 
Die Forscher stellten die formverändernden Fasern her, indem sie einen ballonartigen Schlauch aus einem gummiähnlichen Material in eine geflochtene Textilhülle einkapselten. Wird der im Innern befindliche Ballon mit einer Luftpumpe aufgeblasen, dehnt sich der geflochtene Mantel aus, wodurch er sich verkürzt.

Die Forschenden maßen die Kraft und die Kontraktionsraten von Fasern aus verschiedenen Materialien, um den Zusammenhang zwischen Material und Performance zu verstehen. Sie stellten fest, dass stärkere Garne mit größerem Querschnitt eine stärkere Kontraktionskraft erzeugen. Darüber hinaus fanden sie heraus, dass das für die Herstellung des Ballons verwendete Material einen Einfluss auf die Stärke der Kontraktion und die erzeugte Kraft ausübte.
 
„Wir haben nachgewiesen, dass wir die Materialeigenschaften an die erforderliche Leistung des Geräts anpassen können“, so Xiaomeng Fang, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State. "Wir haben auch gezeigt, dass wir dieses Gerät klein genug machen können, so dass wir es potenziell bei der Herstellung von Textilien und anderen Textilanwendungen einsetzen können, unter anderem in Wearables und Hilfsmitteln."
 
In einer Folgestudie untersuchten die Forschenden, ob sie die formverändernden Fasern als Gerüst für Fibroblasten verwenden könnten, eine Zellart, die in Bindegeweben vorkommt und andere Gewebe oder Organe stützt.

„Die Dehnung soll die dynamischen Bewegungen des Körpers imitieren“, sagt Jessica Gluck, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State University und Mitautorin der Studie.

Die Wissenschaftler untersuchten die Reaktion der Zellen auf die Bewegung der formverändernden Fasern sowie auf die verschiedenen Materialien, die bei der Faserstruktur verwendet wurden. Sie fanden heraus, dass die Zellen in der Lage waren, die Flechthülle des Faserrobots zu bedecken und sogar zu durchdringen, stellten jedoch eine Abnahme der Stoffwechselaktivität der Zellen fest, wenn die Kontraktion des Faserrobots über ein bestimmtes Maß hinaus anhielt, im Vergleich zu einer Einheit aus demselben Material, die sie stationär hielten.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
Die Ergebnisse sollen weiter ausgebaut werden, um zu sehen, ob die Fasern als biologisches 3D-Modell verwenden werden können, und weiter, um zu untersuchen, ob die Bewegung die Zellteilung beeinflussen würde. Ihr Modell wäre ein Fortschritt gegenüber anderen experimentellen Modellen, die entwickelt wurden, um die Reaktion von Zellen auf zweidimensionale Dehnung und andere Bewegungen zu zeigen.
 
„Wenn man Zellen dehnen oder belasten will, legt man sie normalerweise auf eine Kunststoffschale und dehnt sie in eine oder zwei Richtungen“, sagte Gluck. „In dieser Studie konnten wir zeigen, dass die Zellen in dieser dynamischen 3D-Kultur bis zu 72 Stunden überleben können.“

„Dies ist besonders nützlich für Stammzellen“, fügte Gluck hinzu. „In Zukunft könnten wir untersuchen, was auf zellulärer Ebene bei mechanischer Belastung passiert. Man könnte Muskelzellen betrachten und sehen, wie sie sich entwickeln, oder analysieren, wie die mechanische Einwirkung zur Zellteilung beitragen würde.“

Die Studie „Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” wurde am 18. März in Actuators veröffentlicht. Emily Petersen war Mitautorin. Die Studie wurde durch eine Anschubfinanzierung gefördert, die Fang vom Department of Textile Engineering, Chemistry and Science der NC State University erhielt.

Die Studie mit dem Titel „Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System“ (Entwicklung eines pneumatisch angetriebenen faserförmigen Robotgerüsts zur Verwendung als komplexes dynamisches 3D-Kultursystem) wurde am 21. April online in Biomimetics veröffentlicht. Neben Gluck, Hoque und Fang gehörten Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen und Shane Harrington zu den Co-Autoren. Die Studie wurde vom NC State Wilson College of Textiles, der Abteilung für Textiltechnik, -chemie und -wissenschaft sowie dem Wilson College of Textiles Research Opportunity Seed Fund Program finanziert.

Quelle:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

Foto: Claude Huniade
11.07.2023

Ionisch leitfähige Fasern als neuer Weg für intelligente und Funktionstextilien

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

WEAFING steht für Wearable Electroactive Fabrics Integrated in Garments. Das Projekt startete am 1. Januar 2019 und endete am 30. Juni 2023.

Diese Wearables basieren auf einer neuen Art von Textilmuskeln, deren Garne mit elektromechanisch aktiven Polymeren beschichtet sind und sich zusammenziehen, wenn eine niedrige Spannung angelegt wird. Textilmuskeln bieten eine völlig neue und sehr unterschiedliche Qualität haptischer Empfindungen und sprechen auch Rezeptoren unseres taktilen Sinnessystems an, die nicht auf Vibration, sondern auf sanften Druck oder Schlag reagieren.

Da es sich um textile Materialien handelt, bieten sie zudem eine neue Möglichkeit, tragbare Haptik zu entwerfen und herzustellen. Sie können nahtlos in Stoffe und Kleidungsstücke integriert werden. Für diese neuartige Form der textilen Muskeln ist eine große Bandbreite an haptischen Anwendungsmöglichkeiten abzusehen: für Ergonomie, Bewegungscoaching im Sport oder Wellness, zur Unterstützung von Virtual- oder Augmented-Reality-Anwendungen in Spielen oder zu Trainingszwecken, zur Inklusion von sehbehinderten Menschen durch Informationen über ihre Umgebung, zur Stressreduktion oder sozialen Kommunikation, für anpassungsfähige Möbel, die Automobilindustrie und vieles mehr.

Im Projekt von Claude Huniade geht es darum, leitfähige Garne ohne leitfähige Metalle herzustellen.

„In meiner Forschung geht es um die Herstellung elektrisch leitfähiger Textilfasern - letzendlich von Garnen - durch die nachhaltige Beschichtung handelsüblicher Garne mit Nicht-Metallen. Die größte Herausforderung besteht darin, ein Gleichgewicht zwischen der Beibehaltung der textilen Eigenschaften und dem Hinzufügen der leitenden Eigenschaft zu finden“, so Claude Huniade.

Ionofasern könnten als Sensoren verwendet werden, da ionische Flüssigkeiten empfindlich auf ihre Umgebung reagieren. So können die Ionenfasern beispielsweise Änderungen der Luftfeuchtigkeit, aber auch jede Dehnung oder jeden Druck, dem sie ausgesetzt sind, wahrnehmen.

„Ionofasern könnten wirklich herausragen, wenn sie mit anderen Materialien oder Geräten kombiniert werden, die Elektrolyte benötigen. Ionofasern ermöglichen es, dass bestimmte Phänomene, die derzeit nur in Flüssigkeiten möglich sind, auch in der Luft auf leichtgewichtige Weise realisiert werden können. Die Anwendungsmöglichkeiten sind vielfältig und einzigartig, zum Beispiel für Textilbatterien, textile Displays oder textile Muskeln“, so Claude Huniade.

Weitere Forschung ist erforderlich
Es sind noch weitere Forschungsarbeiten erforderlich, um die Ionenfasern mit anderen funktionellen Fasern zu kombinieren und spezielle textile Produkte herzustellen.

Wie unterscheiden sie sich von herkömmlichen elektronisch leitfähigen Fasern?

„Im Vergleich zu elektronisch leitfähigen Fasern unterscheiden sich Ionofasern dadurch, wie sie Elektrizität leiten. Sie sind weniger leitfähig, bringen aber andere Eigenschaften mit, die elektronisch leitfähigen Fasern oft fehlen. Ionofasern sind flexibler und haltbarer und entsprechen der Art der Leitung, die unser Körper verwendet. Sie entsprechen sogar besser als elektronisch leitende Fasern der Art, wie Elektrizität in der Natur vorkommt“, schloss er.

Derzeit liegt die Einzigartigkeit seiner Forschung in den Beschichtungsstrategien. Diese Methoden umfassen sowohl die Verfahren als auch die verwendeten Materialien.

Verwendung von ionischen Flüssigkeiten
Eine der Spuren, die er verfolgt, betrifft eine neue Art von Material als Textilbeschichtung, nämlich ionische Flüssigkeiten in Kombination mit handelsüblichen Textilfasern. Genau wie Salzwasser leiten sie Strom, aber ohne Wasser. Ionische Flüssigkeiten sind stabilere Elektrolyte als Salzwasser, da nichts verdunstet.

„Der Faktor der Verarbeitbarkeit ist eine wichtige Voraussetzung, da die Textilproduktion Fasern stark beansprucht, vor allem, wenn sie in größerem Maßstab eingesetzt werden. Die Fasern können auch zu Geweben oder Gewirken verarbeitet werden, ohne dass sie mechanisch beschädigt werden, wobei ihre Leitfähigkeit erhalten bleibt. Überraschenderweise ließen sie sich sogar glatter zu Stoffen verarbeiten als die handelsüblichen Garne, aus denen sie hergestellt werden“, erklärte Claude Huniade.

Quelle:

University of Borås