Textination Newsline

from to
Zurücksetzen
2 Ergebnisse
offshore windpark Nicholas Doherty, unsplash
17.10.2023

Recyclinglösung für Faserverbundwerkstoffe durch Pyrolyse

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Nach 20 bis 30 Jahre haben Windenergieanlagen ihre Lebensdauer erreicht. Anschließend werden sie abgebaut und dem Recyclingverfahren zugeführt. Allerdings ist das Recycling der Faserverbundwerkstoffe, insbesondere aus dickwandigen Rotorblattteilen, bislang unzureichend. Stand der Technik ist die thermische oder mechanische Verwertung. Für einen nachhaltigen und ganzheitlichen Recyclingprozess bündelt ein Forschungskonsortium unter der Leitung des Fraunhofer IFAM ihr Know-how, um die eingesetzten Fasern durch Pyrolyse zurückzugewinnen. Eine anschließende Oberflächenbehandlung und Qualitätsprüfung der Rezyklate ermöglichen die erneute industrielle Anwendung.

Windenergieanlagen lassen sich bereits heute zu sehr großen Teilen sauber recyceln. Bei den Rotorblättern steht das Recycling jedoch erst am Anfang. Aufgrund der Nutzungsdauer von ca. 20 Jahren sind in den kommenden Jahren und Jahrzehnten steigende Rotorblattmengen zu erwarten, die einer möglichst hochwertigen Verwertung zugeführt werden müssen. Im Jahr 2000 wurden beispielsweise ca. 6.000 Windenergieanlagen in Deutschland errichtet, die jetzt einem nachhaltigen Recyclingverfahren zugeführt werden müssen. Insgesamt waren im Jahr 2022 allein in Deutschland etwa 30.000 Windenergieanlagen an Land und auf See mit einer Leistung von 65 Gigawatt im Einsatz. [1]

Da die Windenergie die wichtigste Säule für eine klimaneutrale Stromversorgung ist, hat sich die Bundesregierung zum Ziel gesetzt, den Ausbau bis 2030 mit größeren und moderneren Anlagen weiter zu steigern. Die Offshore-Rotorblätter werden länger, der Anteil an eingesetzten Kohlenstofffasern wird weiter steigen – und somit auch die Abfallmengen. Zudem ist für die Zukunft zu erwarten, dass der bestehende Materialmix in den Rotorblättern zunimmt und zum Recycling genaue Kenntnisse über den Aufbau der Komponenten noch wichtiger werden. Dies unterstreicht die Dringlichkeit, insbesondere für das Recycling der dickwandigen Faserverbundwerkstoffe in den Rotorblättern, nachhaltige Aufbereitungsverfahren zu entwickeln.

 
Ökonomische und ökologische Recyclinglösung für Faserverbundwerkstoffe in Sicht
Rotorblätter der jetzt zum Recycling anstehenden Windenergieanlagen setzen sich mit über 85 Gewichtsprozent aus glas- und kohlefaserverstärkten Duroplasten (GFK/CFK) zusammen. Ein großer Anteil dieser Materialien befindet sich im Flansch- und Wurzelbereich sowie innerhalb der faserverstärkten Gurte als dickwandige Laminate mit Wandstärken von bis zu 150 mm. Die Erforschung des hochwertigen stofflichen Faserrecyclings als Endlosfaser ist nicht zuletzt wegen des Energiebedarfs zur Kohlenstofffaserproduktion von besonderer Bedeutung. Hier setzt das vom Bundesministerium für Wirtschaft und Klimaschutz geförderte Projekt »Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen« – kurz »RE SORT« – an. Ziel des Projektteams ist das vollständige Recycling mittels Pyrolyse.

Voraussetzung für eine hochwertige Verwertung der Faserverbundwerkstoffe ist die Trennung der Fasern von der zumeist duroplastischen Matrix. Die Pyrolyse ist für diesen Prozess zwar ein geeignetes Verfahren, konnte sich aber bislang nicht durchsetzen. Innerhalb des Projekts untersuchen und entwickeln die Projektpartner daher Pyrolysetechnologien, die das Recycling von dickwandigen Faserverbundstrukturen wirtschaftlich ermöglichen und sich von den heute üblichen Verwertungsverfahren für Faserverbundwerkstoffe technisch unterscheiden. Dabei werden sowohl eine quasikontinuierliche Batch- als auch die Mikrowellen-Pyrolyse betrachtet.

Bei der Batch-Pyrolyse, die innerhalb des Vorhabens entwickelt wird, handelt es sich um einen Pyrolyseprozess, in dem die duroplastische Matrix dicker Faserverbundbauteile durch externe Erhitzung in ölige und vor allem gasförmige Kohlenwasserstoffverbindungen langsam zersetzt wird. Bei der Mikrowellenpyrolyse erfolgt die Energiezufuhr durch die Absorption von Mikrowellenstrahlung, sodass es zu einer inneren schnellen Wärmeentwicklung kommt. Die quasikontinuierliche Batch-Pyrolyse als auch die Mikrowellenpyrolyse erlauben die Abscheidung von Pyrolysegasen bzw. – ölen. Die geplante Durchlauf-Mikrowellenpyrolyse ermöglicht zudem den Erhalt und die Wiederverwendung der Fasern in ihrer gesamten Länge.

 
Wie die Kreislaufwirtschaft gelingt – ganzheitliche Verwertung der gewonnenen Recyclingprodukte
In einem nächsten Schritt werden die Oberflächen der zurückgewonnenen Rezyklatfasern mittels atmosphärischer Plasmen und nasschemischer Beschichtungen aufbereitet, um einer erneuten industriellen Anwendung zugeführt werden zu können. Anhand von Festigkeitsuntersuchungen lässt sich schließlich entscheiden, ob die Rezyklatfasern erneut in der Windenergie oder beispielsweise im Automobilbau oder im Sportartikelbereich Einsatz finden.

Die in der Batch- und Mikrowellenpyrolyse gewonnenen Pyrolyseöle und Pyrolysegase werden bezüglich der Nutzbarkeit als Rohstoff für die Polymersynthese (Pyrolyseöle) oder als Energiequelle zur energetischen Nutzung in Blockheizkraftwerken (BHKW) (Pyrolysegase) bewertet.

Sowohl die quasikontinuierliche Batch-Pyrolyse als auch die Durchlauf-Mikrowellenpyrolyse versprechen einen wirtschaftlichen Betrieb und eine maßgebliche Verringerung des ökologischen Fußabdrucks bei der Entsorgung von Windenergieanlagen. Daher stehen die Chancen für eine technische Umsetzung und Verwertung der Projektergebnisse sehr gut, sodass mit diesem Projekt ein entscheidender Beitrag zum Erreichen der Nachhaltigkeits- und Klimaziele der Bundesregierung geleistet werden kann.

Quelle:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Grafik: Pixabay
11.01.2022

Innovationsnetzwerk FIMATEC startet in die zweite Förderphase

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Das Netzwerk für die Entwicklung von faserbasierten Werkstofftechnologien für Anwendungen in der Medizin und im Sport wird für weitere zwei Jahre aus Mitteln des Zentralen Innovationsprogramm Mittelstand (ZIM) gefördert.

Einen entsprechenden Antrag hat das Bundesministerium für Wirtschaft und Energie (BMWi) im Dezember 2021 bewilligt. Damit werden bis Juni 2023 weiterhin Fördermittel für die Entwicklung von innovativen Funktionsfasern, smarten Textilien und anwendungsoptimierten Faserverbundmaterialien zur Verfügung gestellt und die technologische Wettbewerbsfähigkeit und Innovationskraft von kleinen und mittleren Unternehmen (KMU) gestärkt.

Hierfür bündelt das Innovationsnetzwerk FIMATEC Kompetenzen aus unterschiedlichen ingenieurs- und naturwissenschaftlichen Fachrichtungen mit kleinen und mittelständischen Herstellern und Dienstleistern aus den Zielbranchen in Medizin und Sport (z. B. Orthopädie, Prothetik, Chirurgie, Smarte Textilien) sowie Akteuren der Textil- und Kunststoffbranche zusammen. 

Diese interdisziplinäre Zusammensetzung aus industriellen Partnern sowie anwendungsnahen Forschungseinrichtungen erhöht die Wettbewerbsfähigkeit und ermöglicht den Akteuren, ihre technischen Forschungs- und Entwicklungsvorhaben schnell und zielgerichtet zu realisieren. Im Mittelpunkt für die gemeinsamen F&E-Vorhaben der Unternehmen und Forschungseinrichtungen stehen die Entwicklung innovativer Materialien und effizienter Fertigungstechnologien.        
          
Faserbasierte Materialien sind aus vielen Anwendungen in der Medizin und im Sport nicht mehr wegzudenken. Als reine Faser, verarbeitet zum Textil oder als Faserverbundkunststoff bieten sie eine nahezu beliebige Vielfalt zur Einstellung von Eigenschafts- und Funktionsprofilen. Dabei steigen die Anforderungen an Funktionsumfang, Leistungsfähigkeit und Wirtschaftlichkeit stetig, sodass ein großes Potential für Innovationen vorhanden ist. Die Entwicklungen werden dabei zum einen durch neue Materialien und Fertigungsverfahren, zum anderen durch innovative Anwendungen getrieben. Produkte mit neuen und überlegenen Funktionen schaffen einen technologischen Vorsprung gegenüber der internationalen Konkurrenz und ermöglichen höhere Verkaufserlöse. Darüber hinaus führen effiziente Verfahren, anwendungsoptimierte Materialien oder auch die Funktionsintegration in die Grundstruktur textiler Werkstoffe perspektivisch zu geringeren Produktionskosten und verbesserten Vermarktungsmöglichkeiten.
Für Entwicklungen in diesem Kontext haben sich die Partner im Innovationsnetzwerk fimatec zusammengeschlossen und bündeln so ihre Kompetenzen. Innerhalb des Netzwerkes werden auf diese Weise zu den nachfolgenden Themenbereichen gemeinsam innovative Materialien und Verfahren entwickelt und in zukunftsweisenden Produkten und Dienstleistungen erprobt:

  • Funktionsfasern
    Innovative Fasermaterialien mit integrierten Funktionalitäten.    
  • Preforming
    Hochgradig lastpfadoptimierte Faserorientierungen für komplexe Faserverbundbauteile.    
  • Smarte Textilien
    Textilbasierte Sensorik und Aktorik.
  • Hybride Werkstoff- und Fertigungstechnologien
    Anwendungsoptimierte Bauteile durch technologieübergreifende Lösungsansätze.    
  • Faserverbundwerkstoffe
    Intelligente Matrixsysteme und funktionsoptimierte Fasermaterialien.    
  • Faserverstärkter 3D-Druck
    Hochqualitative additive Fertigungsverfahren für die effiziente Herstellung individualisierter Produkte.

 
17 Netzwerkpartner forschen an faserbasierten Werkstoffen für Medizin- und Sporttechnik
Aktuell sind zehn Unternehmen und sieben Forschungseinrichtungen an FIMATEC beteiligt. Interessierte Unternehmen und Forschungseinrichtungen sowie potenzielle Anwender können weiterhin an dem Kooperationsnetzwerk oder F&E-Projekten partizipieren. Im Zuge der Mitgliedschaft werden die Partner aktiv bei der Identifizierung und Initiierung von Innovationsprojekten sowie der Sicherstellung von Finanzierungen durch Fördermittelakquise unterstützt.

Ziel des bereits bewilligten Projektes „CFKadapt“ ist die Entwicklung eines thermoformbaren Faser-Kunststoff-Verbundmaterials für optimal adaptierbare orthopädische Hilfsmittel wie Prothesen und Orthesen. Im Projekt „Modul3Rad“ wollen die Projektpartner ein modulares Leichtbau-Rahmensystem für den Aufbau von nutzerfreundlichen, alltagstauglichen Therapiedreirädern für schwer- und schwerstbehinderte Kinder entwickeln. Drei weitere Kooperationsvorhaben sind bereits in der Planung.

Der Technologie- und Wissenstransfer ermöglicht insbesondere kleinen und mittelständischen Unternehmen (KMU) den Zugang zu technologischer Spitzenforschung, besonders diesen bleibt der Zugang zu Innovationen oftmals aufgrund des Fehlens eigener Forschungsabteilungen versagt. Die IWS GmbH hat das Netzwerkmanagement für FIMATEC übernommen und unterstützt die Partner von der ersten Idee über die Suche nach passenden Projektpartnern bis zur Ausarbeitung und Koordination von Förderanträgen. Angestrebt wird eine Förderung durch das Zentrale Innovationsprogramm Mittelstand (ZIM), das Unternehmen in Kooperation mit Forschungseinrichtungen Fördermöglichkeiten für eine breite Palette an technischen Innovationsvorhaben bietet.

FIMATEC-Netzwerkpartner
all ahead composites GmbH | Veitshöchheim | www.bike-ahead-composites.de
Altropol Kunststoff GmbH | Stockelsdorf | www.altropol.de
Diondo GmbH | Hattingen | www.diondo.com
Mailinger innovative fiber solutions GmbH | Sontra | www.mailinger.de
Sanitätshaus Manfred Klein GmbH & Co. KG | Stade | www.klein-sanitaetshaus.de
STREHL GmbH & Co KG | Bremervörde | www.rehastrehl.de
WESOM Textil GmbH | Olbersdorf | www.wesom-textil.de
Faserinstitut Bremen e.V. (FIBRE) | www.faserinstitut.de
E.F.M. GmbH | Olbersdorf | www.efm-gmbh.de
REHA-OT Lüneburg Melchior und Fittkau GmbH | Olbersdorf | www.rehaot.de
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM | Bremen | www.ifam.fraunhofer.de
Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) | www.ipfdd.de
Institut für Polymertechnologien Wismar e.V. (IPT) | www.ipt-wismar.de
Institut für Verbundwerkstoffe GmbH | Kaiserslautern | www.ivw.uni-kl.de
Assoziierte Netzwerkpartner
9T Labs AG | Zürich, Schweiz | www.9tlabs.com
Fachhochschule Nordwestschweiz, Institut für Kunststofftechnik (FHNW) | www.fhnw.ch
KATZ - Kunststoff Ausbildungs- und Technologie-Zentrum | Aarau, Schweiz | www.katz.ch

Quelle:

Textination / IWS Innovations- und Wissensstrategien GmbH