Textination Newsline

from to
Zurücksetzen
1 Ergebnis
CO2 in stabile Kohlenstoff-Nanofasern umwandeln (c) Zhenhua Xie/Brookhaven National Laboratory und Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

CO2 in stabile Kohlenstoff-Nanofasern umwandeln

Die elektrokatalytisch-thermokatalytische Mehrfachumwandlung könnte dazu beitragen, die Emissionen eines starken Treibhausgases auszugleichen, indem Kohlenstoff in einem nützlichen Material eingeschlossen wird.

Die elektrokatalytisch-thermokatalytische Mehrfachumwandlung könnte dazu beitragen, die Emissionen eines starken Treibhausgases auszugleichen, indem Kohlenstoff in einem nützlichen Material eingeschlossen wird.

Wissenschaftler des Brookhaven National Laboratory des US-Energieministeriums (DOE) und der Columbia University haben eine Methode entwickelt, um Kohlendioxid (CO2), ein starkes Treibhausgas, in Kohlenstoff-Nanofasern umzuwandeln, Materialien mit einer breiten Palette einzigartiger Eigenschaften und vielen potenziellen langfristigen Einsatzmöglichkeiten. Ihre Strategie beruht auf einem Zusammenspiel von elektrochemischen und thermochemischen Reaktionen, die bei relativ niedrigen Temperaturen und Umgebungsdruck ablaufen. Wie die Wissenschaftler in der Fachzeitschrift Nature Catalysis beschreiben, könnte es mit diesem Ansatz gelingen, Kohlenstoff in einer nützlichen festen Form zu binden, um Kohlenstoffemissionen auszugleichen oder sogar negativ zu gestalten.

„Man kann die Kohlenstoff-Nanofasern in Zement einarbeiten, um ihn zu verstärken“, so Jingguang Chen, Professor für Chemieingenieurwesen an der Columbia University mit einer gleichzeitigen Anstellung am Brookhaven Lab, der die Forschungsarbeiten leitete. "Damit wäre der Kohlenstoff für mindestens 50 Jahre, möglicherweise sogar länger, im Beton eingeschlossen. Bis dahin sollte die Welt hauptsächlich auf erneuerbare Energiequellen umgestellt sein, die keinen Kohlenstoff freisetzen.

Als Bonus produziert das Verfahren auch Wasserstoffgas (H2), einen vielversprechenden alternativen Kraftstoff, der bei seiner Verwendung keine Emissionen verursacht.

Bindung oder Umwandlung von Kohlenstoff?
Die Idee, CO2 zu binden oder es in andere Stoffe umzuwandeln, um den Klimawandel zu bekämpfen, ist nicht neu. Aber die einfache Lagerung von CO2-Gas kann zu Lecks führen. Und bei vielen CO2-Umwandlungen werden Chemikalien oder Kraftstoffe auf Kohlenstoffbasis hergestellt, die sofort verwendet werden, wodurch das CO2 wieder in die Atmosphäre gelangt.

„Das Neue an dieser Arbeit ist, dass wir versuchen, CO2 in etwas umzuwandeln, das einen Mehrwert bietet, und zwar in einer festen, sinnvollen Form“, so Chen.

Solch feste Kohlenstoffmaterialien - einschließlich Kohlenstoff-Nanoröhren und Nanofasern mit Abmessungen im Milliardstel-Meter-Bereich - haben viele ansprechende Eigenschaften, darunter Festigkeit sowie thermische und elektrische Leitfähigkeit. Es ist jedoch keine einfache Angelegenheit, Kohlenstoff aus Kohlendioxid zu extrahieren und ihn zu diesen feinen Strukturen zusammenzufügen. Ein direkter, hitzegetriebener Prozess erfordert Temperaturen von über 1.000 Grad Celsius.

„Das ist für die CO2-Reduzierung in großem Maßstab sehr unrealistisch“, sagte Chen. „Im Gegensatz dazu haben wir einen Prozess gefunden, der bei etwa 400 Grad Celsius abläuft, was eine viel praktikablere, industriell erreichbare Temperatur ist.“

Der zweistufige Tandemprozess
Der Trick bestand darin, die Reaktion in mehrere Schritte aufzuteilen und zwei verschiedene Arten von Katalysatoren zu verwenden - Materialien, die es den Molekülen leichter machen, zusammenzukommen und zu reagieren.

„Wenn man die Reaktion in mehrere Teilschritte aufteilt, kann man verschiedene Arten von Energiezufuhr und Katalysatoren in Betracht ziehen, um jeden Teil der Reaktion zum Laufen zu bringen“, so Zhenhua Xie, Forscher am Brookhaven Lab und an der Columbia University, Hauptautor der Studie.

Die Wissenschaftler stellten zunächst fest, dass Kohlenmonoxid (CO) ein viel besseres Ausgangsmaterial als CO2 für die Herstellung von Kohlenstoff-Nanofasern (CNF) ist. Dann machten sie sich auf die Suche nach dem effizientesten Weg, um CO aus CO2 zu erzeugen.

Frühere Arbeiten ihrer Gruppe veranlassten sie, einen handelsüblichen Elektrokatalysator aus Palladium auf Kohlenstoffträgern zu verwenden. Elektrokatalysatoren treiben chemische Reaktionen mit Hilfe eines elektrischen Stroms an. In Gegenwart von fließenden Elektronen und Protonen spaltet der Katalysator sowohl CO2 als auch Wasser (H2O) in CO und H2 auf.

Für den zweiten Schritt wählten die Wissenschaftler einen hitzeaktivierten Thermokatalysator aus einer Eisen-Kobalt-Legierung. Er arbeitet bei Temperaturen um 400 Grad Celsius, also deutlich schonender als es eine direkte Umwandlung von CO2 in CNF erfordern würde. Sie entdeckten außerdem, dass die Zugabe von etwas zusätzlichem metallischem Kobalt die Bildung der Kohlenstoff-Nanofasern stark fördert.

„Durch die Kopplung von Elektrokatalyse und Thermokatalyse können wir mit diesem Tandemverfahren Dinge erreichen, die mit einem der beiden Verfahren allein nicht möglich sind“, so Chen.

Katalysator-Charakterisierung
Um herauszufinden, wie diese Katalysatoren im Detail funktionieren, führten die Wissenschaftler eine Vielzahl von Experimenten durch. Dazu gehörten computergestützte Modellierungsstudien, physikalische und chemische Charakterisierungsstudien an der Nationalen Synchrotronlichtquelle II (NSLS-II) des Brookhaven Labs - unter Verwendung der Quick X-ray Absorption and Scattering (QAS)- und Inner-Shell Spectroscopy (ISS)-Strahlführungen - sowie mikroskopische Aufnahmen in der Elektronenmikroskopie-Anlage des Center for Functional Nanomaterials (CFN) des Labs.

Bei der Modellierung verwendeten die Wissenschaftler Berechnungen der Dichtefunktionaltheorie (DFT), um die atomaren Anordnungen und andere Eigenschaften der Katalysatoren bei der Wechselwirkung mit der aktiven chemischen Umgebung zu analysieren.

"Wir untersuchen die Strukturen, um festzustellen, welches die stabilen Phasen des Katalysators unter den Reaktionsbedingungen sind", erklärte Studienmitautor Ping Liu von der Chemieabteilung in Brookhaven, der diese Berechnungen leitete. "Wir untersuchen die aktiven Stellen und wie sich diese Stellen mit den Reaktionszwischenprodukten verbinden. Indem wir die Barrieren oder Übergangszustände von einem Schritt zum anderen bestimmen, erfahren wir genau, wie der Katalysator während der Reaktion funktioniert."

Röntgenbeugungs- und Röntgenabsorptionsexperimente an der NSLS-II verfolgten, wie sich die Katalysatoren während der Reaktionen physikalisch und chemisch verändern. Die Synchrotron-Röntgenstrahlen zeigten beispielsweise, wie sich das metallische Palladium im Katalysator durch elektrischen Strom in Palladiumhydrid umwandelt, ein Metall, das für die Produktion von H2 und CO in der ersten Reaktionsstufe entscheidend ist.

Für die zweite Stufe „wollten wir wissen, wie die Struktur des Eisen-Kobalt-Systems unter den Reaktionsbedingungen aussieht und wie man den Eisen-Kobalt-Katalysator optimieren kann“, so Xie. Die Röntgenexperimente bestätigten, dass sowohl eine Legierung aus Eisen und Kobalt als auch zusätzliches metallisches Kobalt vorhanden sind und benötigt werden, um CO in Kohlenstoff-Nanofasern umzuwandeln.

„Die beiden arbeiten nacheinander zusammen“, sagte Liu, deren DFT-Berechnungen zur Erklärung des Prozesses beitrugen.

„Unserer Studie zufolge tragen die Kobalt-Eisen-Stellen in der Legierung dazu bei, die C-O-Bindungen des Kohlenmonoxids zu brechen. Dadurch wird atomarer Kohlenstoff verfügbar, der als Quelle für den Aufbau von Kohlenstoff-Nanofasern dient. Das zusätzliche Kobalt erleichtert dann die Bildung der C-C-Bindungen, die die Kohlenstoffatome miteinander verbinden", erklärte sie.

Recyclingfähig, kohlenstoffnegativ
„Die am CFN durchgeführten Analysen mit dem Transmissionselektronenmikroskop (TEM) zeigten die Morphologie, die Kristallstrukturen und die Elementverteilung in den Kohlenstoff-Nanofasern sowohl mit als auch ohne Katalysator“, sagt Sooyeon Hwang, Wissenschaftlerin am CFN und Mitautorin der Studie.

Die Bilder zeigen, dass der Katalysator beim Wachsen der Kohlenstoff-Nanofasern nach oben und von der Oberfläche weggeschoben wird. Das macht es einfach, das katalytische Metall zu recyceln, so Chen.

„Wir verwenden Säure, um das Metall auszulaugen, ohne die Kohlenstoff-Nanofaser zu zerstören, so dass wir die Metalle konzentrieren und recyceln können, um sie erneut als Katalysator zu verwenden“, führte er aus.

Diese einfache Wiederverwertung des Katalysators, die kommerzielle Verfügbarkeit der Katalysatoren und die relativ moderaten Reaktionsbedingungen für die zweite Reaktion tragen nach Ansicht der Forscher zu einer günstigen Bewertung der mit dem Verfahren verbundenen Energie- und sonstigen Kosten bei.

„Für praktische Anwendungen ist beides sehr wichtig - die Analyse des CO2-Fußabdrucks und die Wiederverwertbarkeit des Katalysators“, so Chen. „Unsere technischen Ergebnisse und diese anderen Analysen zeigen, dass diese Tandemstrategie eine Tür für die Dekarbonisierung von CO2 in wertvolle feste Kohlenstoffprodukte bei gleichzeitiger Erzeugung von erneuerbarem H2 öffnet."

Wenn diese Prozesse durch erneuerbare Energie angetrieben werden, wären die Ergebnisse wirklich kohlenstoffnegativ, was neue Möglichkeiten zur CO2-Minderung eröffnet.

Quelle:

Brookhaven National Laboratory
Übersetzung: Textination