ENTWICKLUNG UND VALIDERUNG EINES AUF TEXTIL GEDRUCKTEN DRUCK-SENSORS, FÜR DIE ANWENDUNG BEI EXOSKELETTEN

19.10.2022

ENTWICKLUNG UND VALIDERUNG EINES AUF TEXTIL GEDRUCKTEN DRUCK-SENSORS, FÜR DIE ANWENDUNG BEI EXOSKELETTEN

Veredlung Sensorik Smart Textiles

Zusammenfassung

Der aktuelle Stand in der Steuerung von Exoskeletten unterstützt nicht die Anwendung der Exoskelette im Alltag. Die Steuerung erfolgt dabei entweder umständlich über Bedienknöpfe, sodass kein natürlicher Bewegungsablauf entsteht, oder über Sensoren, die direkten Hautkontakt erfordern. Letztere benötigen eine hohe Präzision bei der Platzierung der Elektroden, zusätzlich kann die direkte Platzierung auf der Haut als unangenehm empfunden werden.

Um dieses Problem zu lösen, wird ein Messsystem entwickelt, welches in der Lage ist, die Muskelaktivität des Oberschenkels zu messen und dabei über der Alltagskleidung getragen werden kann. Anhand der gemessenen Daten soll das Exoskelett gesteuert werden. Um einen hohen Tragekomfort zu gewährleisten werden textilbasierte Sensoren verwendet. Das Ziel des Forschungsansatz ist die Entwicklung eines gedruckten textilen Prototyps, welcher in der Lage ist, sowohl unterschiedliche Belastungen zu unterscheiden als auch die Belastung räumlich einzugrenzen. Dazu werden zunächst einzelne Drucksensoren hergestellt. Anschließend wird das Prinzip des einzelnen Drucksensors auf eine Drucksensormatrix übertragen.

 

Bericht

Einleitung

Exoskelette werden heutzutage in vielen Bereichen eingesetzt. Zum Heben von schweren Lasten, die ohne Exoskelett nicht zu bewältigen wären, bis zum Einsatz in der Rehabilitation von Patienten, die durch einen Unfall eine Einschränkung in ihrer Bewegungsunfähigkeit besitzen. Im Alltag jedoch finden Exoskelette kaum Anwendung. Ein Grund dafür ist unter anderem die umständliche Steuerung. Viele Modelle nutzen eine Auswahl an Bewegungsmodi, die durch Knopfdruck eingestellt werden. Dadurch lässt sich kein dynamischer Bewegungsablauf erreichen. Werden Sensoren für die Steuerung verwendet, sind diese entweder zu langsam, sodass kein natürlicher Bewegungsablauf möglich ist, oder es ist nötig Elektroden direkt auf der Haut zu platzieren. Das erfordert einerseits eine hohe Präzision bei der Anbringung der Elektroden und andererseits kann der direkte Hautkontakt als unangenehm empfunden werden. [1]

Experimentieller Teil

Das Ziel dieses Forschungsansatzes ist die Entwicklung einer Drucksensormatrix, die in der Lage ist, sowohl unterschiedliche Druckbelastungen zu unterscheiden als auch die Druckbelastung räumlich abzugrenzen. Dazu wird das kapazitive Drucksensorprinzip verwendet, siehe Abbildung 1.

Der Aufbau des kapazitiven Drucksensors basiert auf dem Prinzip des Plattenkondensators. Dabei fungiert das Textil als Dielektrikum. Auf dem Textil werden Kondensatorplatten aus leitfähiger Tinte auf das Textil gedruckt, sodass der Aufbau eines Plattenkondensators entsteht. Bei Ausübung von Druck auf den Aufbau verringert sich der Plattenabstand d, wodurch sich die gemessene Kapazität erhöht. Diese Kapazitätsänderung wird gemessen, um Rückschlüsse auf die ausgeübte Kraft zu ziehen.

Für die Drucksensormatrix wird die Entwicklung dieser in drei (I bis III) aufeinander aufbauende Schritte unterteilt, siehe Abbildung 2.

Im ersten Schritt (I) wird das Textil für die Herstellung der Drucksensoren ermittelt. Dazu wird die relative Permittivität von einer Auswahl an Textilien bestimmt und das Textil mit der höchsten relativen Permittivität ausgewählt. Mit dem ausgewählten Textil erfolgt im zweiten Schritt (II) die Validierung des Drucksensorprinzips, indem einzelne Drucksensoren hergestellt und ausgemessen werden. Zusätzlich dazu wird der Einfluss der Kondensatorplattengröße und Textildicke auf die gemessene Kapazität untersucht, indem diese variiert werden. Basierend auf diesen Ergebnissen wird im dritten Schritt (III) der einzelne Drucksensor auf eine Drucksensormatrix erweitert.

Ergebnisse

Durch die Erweiterung des einzelnes Drucksensors auf eine Drucksensormatrix ist es möglich, sowohl unterschiedlich starke Belastungen zu unterscheiden als auch diese räumlich abzugrenzen, siehe Abbildung 3.

Dabei wird das Feld 3|3 (oben rechts) stärker belastet als das Feld 3|1 (unten links), wie durch die unterschiedliche Größe der Gewichte veranschaulicht (Abbildung 3, links). In der Matrix (Abbildung 3, rechts) ist die Differenz zwischen dem unbelasteten Zustand dargestellt und dem belasteten Zustand dargestellt.

Diskussion

Die Ergebnisse der Drucksensormatrix zeigen, dass es möglich ist sowohl unterschiedliche Druckbelastungen zu erkennen als auch diese räumlich abzugrenzen. Allerdings ist auch ein Ausschlag bei einigen nicht belasteten Feldern zu beobachten. Ein Grund ist das die Felder sich untereinander beeinflussen. Zusätzlich ist kapazitive Kopplung zwischen den einzelnen Messkabeln zu beobachten, sodass sich durch eine relative Verschiebung dieser zueinander, die gemessene Kapazität verändert. Aus diesem Grund sind auch Ausschläge für unbelastete Felder zu beobachten.

Zusammenfassung

Im Rahmen dieser Arbeit wurde eine Drucksensormatrix entwickelt und die Funktionsweise validiert. Der Drucksensor ist in der Lage unterschiedliche Belastungen zu unterscheiden. Durch den Aufbau einer Drucksensormatrix ist es möglich die Belastung räumlich abzugrenzen.

Danksagung

Wir danken dem Bundesministerium für Wirtschaft und Klimaschutz für die Förderung des Forschungsprojektes im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM).

AutorInnen: Kevin Lengefeld, Autor, Tobias Lauwigi, Co-Autor, Robert Boich, Co-Autor, Institut für Textiltechnik der RWTH Aachen University Arbeitsgruppenleiter:Akram Idrissi – Institut für Textiltechnik der RWTH Aachen University

ITA Institut für Textiltechnik
Otto-Blumenthal-Str. 1
52074 Aachen

Mobiltech Smarttech Sensor

More entries from ITA Institut für Textiltechnik der RWTH Aachen University