Aus der Branche

Zurücksetzen
126 Ergebnisse
Schoeller Winter 2019/20 Fabric Collection – Focus on Lifestyle © Schoeller Textil AG
Multicolor
11.01.2018

Schoeller - Gewebekollektion Winter 2019/20 – Fokus Lifestyle

  • Metallischer Glanz und versteckte Sicherheit

Netzartige Strukturen, metallischer Glanz, versteckte Sicherheit, natürlich wärmende Gewebe mit aus Kaffee-Aktivkohle hergestelltem Nilit® Heat Garn sowie auf nachwachsenden Rohstoffen basierende PFC-freie Bio-Technologien sind nur einige Highlights der Schoeller-Winterkollektion 2019/20, die inmitten der Schweizer Berge entwickelt und produziert wird. Farbeffekte verleihen den Funktionstextilien metallisierte Oberflächen und spannende Multikolorits mit kontrastreichen Rückseiten.

METALLIC SHINE

  • Metallischer Glanz und versteckte Sicherheit

Netzartige Strukturen, metallischer Glanz, versteckte Sicherheit, natürlich wärmende Gewebe mit aus Kaffee-Aktivkohle hergestelltem Nilit® Heat Garn sowie auf nachwachsenden Rohstoffen basierende PFC-freie Bio-Technologien sind nur einige Highlights der Schoeller-Winterkollektion 2019/20, die inmitten der Schweizer Berge entwickelt und produziert wird. Farbeffekte verleihen den Funktionstextilien metallisierte Oberflächen und spannende Multikolorits mit kontrastreichen Rückseiten.

METALLIC SHINE

Die neuen schoeller®-spirit-Qualitäten sorgen im Winter 2019/20 für Glanz und Gloria. Die weich fliessende Kettwirkware spielt mit Transparenz und metallischem Look. In Waldgrün, Silber oder Kupfer mit alubedampfter Rückseite wird sich das Licht auf diesen Showpieces der Saison spiegeln. Ebenso mit dem Licht spielt das querelastische Leichtgewicht mit einem reflektierenden Punktedesign. Dieser coole Print mit versteckter Sicherheit in zweitonigem Silbergrau oder Khakigrün sorgt für hervorragende Sichtbarkeit in der Dämmerung. Für zusätzliche Wasserabweisung ist die fluorcarbonfreie ecorepel® Bio-Technologie verantwortlich, die auf nachwachsenden Rohstoffen basiert.

WARM FABRICS

Die neuen schoeller®-dryskin-Qualitäten sorgen im Winter 2019/20 für ein angenehm warmes Körperklima. Dank des wärmeisolierenden Nilit® Heat Garnes auf der Innenseite, das die eigene Körperwärme auffängt und speichert, wärmen diese Stoffe auf natürliche Weise. Dieses einzigartige Garn, das aus Kaffee-Aktivkohle hergestellt wird, besitzt auch antibakterielle Eigenschaften und bietet maximalen Tragekomfort bei winterlichen Temperaturen. Die verschieden schweren, kompakten Hosen- wie auch Jackenqualitäten in frischem Mandarine, sattem Aubergine, Petrol oder hellem Steingrau überzeugen zudem durch sehr gute Abrasionsresistenz, ein ideales Moisture-Management sowie zuverlässige Wasserabweisung dank PFC-freier ecorepel® Bio Technologie. Ebenso natürlich warm hält der flauschige schoeller®-naturetec aus waschbarer, Mulesing freier Wolle und ecorepel® Bio in dunklem Petrol, Marine oder Rost.

MULTI COLOR

Im Winter 2019/20 dominieren nebst Glanz und nachhaltigen Themen ausserdem Multikolorits. Die hochelastischen, mehrfarbigen schoeller®-prestige- und schoeller®-dryskin-Qualitäten ergeben ganz neue Farbeffekte und -nuancen. Von moosigen Grüntönen über dunkle Blau- und Grauvariationen bis hin zu gebranntem Henna und Schokolade entstehen immer wieder andere spannende Effekte und Farbkombinationen. Stets mit einer Kontrastfarbe auf der Rückseite ergeben sie wirkliche Hingucker, die selbstverständlich auch funktionell überzeugen. Zusätzlich sind die schoeller®-dryskin-Qualitäten mit der PFC-freien ecorepel® Bio-Technologie ausgerüstet.

Nilit® Heat is a registered trademark of NILIT Ltd.

ESF ESF
ESF
28.06.2017

Spitzenforschung in Sachsen: Symbiose der Hochtechnologiefelder „Leichtbau mit Carbon“ und „Energiespeicherung“

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.
Wissenschaftlern der TU Dresden (TUD) ist es gelungen, eine interdisziplinäre Nachwuchsforschergruppe „e -Carbon“ (ESF-SAB 100310387), bestehend aus Chemikern, Textilern und Kunststofftechnikern ins Leben zu rufen, die in den nächsten 3 Jahren, beginnend ab 1. Juli 2017, maßgeschneiderte und multifunktionale Kohlenstofffasern für die Speicherung hoher Energiedichten gemeinsam entwickeln wird. Dieses zukunftsträchtige Projekt wurde von der TU Dresden und der Sächsischen Aufbaubank SAB-ESF aus mehr als 40 Anträgen als zukunftsweisendes Projekt ausgewählt.

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.
Wissenschaftlern der TU Dresden (TUD) ist es gelungen, eine interdisziplinäre Nachwuchsforschergruppe „e -Carbon“ (ESF-SAB 100310387), bestehend aus Chemikern, Textilern und Kunststofftechnikern ins Leben zu rufen, die in den nächsten 3 Jahren, beginnend ab 1. Juli 2017, maßgeschneiderte und multifunktionale Kohlenstofffasern für die Speicherung hoher Energiedichten gemeinsam entwickeln wird. Dieses zukunftsträchtige Projekt wurde von der TU Dresden und der Sächsischen Aufbaubank SAB-ESF aus mehr als 40 Anträgen als zukunftsweisendes Projekt ausgewählt.
Die komplexe Themenstellung wird durch Nachwuchswissenschaftler der TUD vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), Institut für Leichtbau und Kunststofftechnik (ILK) sowie von der Professur für Anorganische Chemie I (AC1) bearbeitet. Durch die interdisziplinäre Ausrichtung des Konsortiums werden die besten Voraussetzungen mit weltweitem Alleinstellungsmerkmal für eine intensive wissenschaftliche und industrielle Vernetzung der Nachwuchsforscher in neuen Forschungsgebieten mit hoher praktischer Relevanz auf regionaler, nationaler und internationaler Ebene geschaffen. Das Hauptaugenmerk liegt dabei auf der Qualifizierung und Weiterbildung von Fachkräften für den sächsischen Arbeitsmarkt sowie auf der Ausgründung von Start-Ups und der Übernahme unternehmerischer Verantwortung in der Hochtechnologiebranche.
Professor Chokri Cherif, Koordinator der Nachwuchsforschergruppe und Direktor des ITM: „Die Arbeiten der Nachwuchsforschergruppe geben die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern. Wir werden einen neuen Maßstab in der Kohlenstofffaserentwicklung setzen und besondere Impulse weltweit ausstrahlen.“

 

Quelle:

Technische Universität Dresden

Carboncast Carboncast
Carboncast
20.06.2017

CHOMARAT AND ALTUS GROUP PRESENT CARBONCAST

At the “Future of Composites in Construction” trade show, CHOMARAT and ALTUS GROUP are presenting CarbonCast®, their flagship line of reinforced-concrete prefabricated wall panels, reinforced with CHOMARAT’s C-GRID® carbon-fiber grids. A recent army-hospital project in Greenville, South Carolina is another success story of this innovative product: 18,600 m² (200,000 sq.ft) of precast insulated panels were installed in record time. Come and learn more about it at the McCormick Place Lakeside Center, Chicago, Stand C 10, on 20-22 June 2017.
“Reducing installation time, improving the fire and safety performance, increasing the service life of structures, and cutting energy consumption are crucial criteria in the choice of a CarbonCast solution,” explains ALTUS GROUP Executive Director John CARSON. CarbonCast® panels are classified ASHRAE 90.1. Thanks to the low thermal conductivity of carbon fiber, C-GRID® reinforced panels offer excellent thermal performance, providing uniform insulation and, therefore, a comfortable, energy-efficient building.

At the “Future of Composites in Construction” trade show, CHOMARAT and ALTUS GROUP are presenting CarbonCast®, their flagship line of reinforced-concrete prefabricated wall panels, reinforced with CHOMARAT’s C-GRID® carbon-fiber grids. A recent army-hospital project in Greenville, South Carolina is another success story of this innovative product: 18,600 m² (200,000 sq.ft) of precast insulated panels were installed in record time. Come and learn more about it at the McCormick Place Lakeside Center, Chicago, Stand C 10, on 20-22 June 2017.
“Reducing installation time, improving the fire and safety performance, increasing the service life of structures, and cutting energy consumption are crucial criteria in the choice of a CarbonCast solution,” explains ALTUS GROUP Executive Director John CARSON. CarbonCast® panels are classified ASHRAE 90.1. Thanks to the low thermal conductivity of carbon fiber, C-GRID® reinforced panels offer excellent thermal performance, providing uniform insulation and, therefore, a comfortable, energy-efficient building.

Weitere Informationen:
Chomarat, Altus Group, Carboncast
Quelle:

AGENCE APOCOPE

ITM TU Dresden Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden
ITM TU Dresden
31.05.2017

Leichtbau leicht gemacht – Neuartiges Verfahren ermöglicht die Herstellung superstabiler Metallzellen auf Webmaschinen

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“

Ob im Maschinenbau, in der Automobilindustrie oder der Luft- und Raumfahrt – dem Leichtbau kommt für die Zukunft dieser Industriebereiche eine entscheidende Bedeutung zu. Leichtere und steifere Bauteile bewirken eine Verminderung des Treibstoffverbrauchs und führen zur Einsparung von Treibhausgasen. „In der Verarbeitung von Leichtmetallen wie Aluminium bei Gussverfahren sind wir heute allerdings an der Grenze des physikalisch Möglichen angelangt“, erläutert Cornelia Sennewald, Ingenieurin an der Fakultät Maschinenwesen der Technischen Universität Dresden. „Der nächste Qualitätssprung zu noch einmal deutlich leichteren und dabei 2 zugleich stabileren Strukturen führt über die Herstellung sogenannter metallischer Zellen. Dabei werden Drähte so ineinander verwoben, dass superfeste Verbindungen bei gleichzeitig minimalem Materialeinsatz entstehen.“


Die noch junge Werkstoffklasse der sogenannten zellularen metallischen Materialien besitzt außerordentliches Potenzial – wobei bislang das Problem bestand, diese Zellen kostengünstig und in industriellem Maßstab zu produzieren. Sennewald gelang es im Rahmen ihrer Doktorarbeit an der Technischen Universität Dresden, ein neuartiges Verfahren zu entwickeln und diese komplexen 3D-Strukturen auf handelsüblichen Webmaschinen herzustellen. „Dank des neuen Verfahrens konnte ich Metallfäden und -drähte statt in den üblichen 2D-Strukturen auch zu 3D-Strukturen verbinden, und zwar in ganz unterschiedlichen Größen und Formen“, erläutert Sennewald. „Außerdem gelang es mir – das war ein zweiter großer Schritt nach vorn –, andere Leichtbaustoffe wie Carbon-Fasern mit zu verweben, was ganz neue Einsatzmöglichkeiten eröffnet.“ Die hybride Verbindung von Metallen und Kunststoffen bietet ein weiteres breites Spektrum ableitbarer Anwendungen. „Wir denken an Crash-Elemente, die eine extrem hohe Steifigkeit besitzen und zudem hohe Temperaturen aushalten. Wir könnten auf diese Weise beispielsweise die Betonstrukturen von Gebäuden verstärken, um sie widerstandsfähiger gegen Erdbeben zu machen. Oder sie besser gegen Explosionen schützen. Bei bestehenden Gebäuden könnte hier ein entsprechender Materialauftrag infrage kommen, bei Neubauten könnten die von uns entwickelten zellularen Webstrukturen gleich mit in den Bau einbezogen werden.“

Quelle:

 Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden

Mezzo forte´s double bass Institut für Textiltechnik of RWTH Aachen University
Mezzo forte´s double bass
16.05.2017

ITA und mezzo-forte treffen den richtigen Ton mit einem zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.


Die eigentliche Innovation liegt darin, dass sowohl Verbindungsstelle als auch das Instrument aus CFK gefertigt sind und so keine klanglichen Einbußen durch einen Werkstoffwechsel in der Verbindungsstelle entstehen. Warum? Eine Verbindungstelle muss gleichzeitig sehr steif und robust sein. Hier stellt carbonfaserverstärkten Kunststoff das ideale Baumaterial für einen Kontrabass dar, da er eine hohe Steifigkeit und gute mechanische Eigenschaften besitzt. Wenn Instrument und Verbindungsstelle aus unterschiedlichen Werkstoffen sind, kann dies zu einer klanglich inaktiven Region im Instrument und damit zu einem schlechten Klang und einem instabilen Instrument führen.

Quelle:

Institut für Textiltechnik of RWTH Aachen University

ITM auf der Techtextil Technische Universität Dresden
ITM auf der Techtextil
05.05.2017

ITM auf der TECHTEXTIL und TEXPROCESS 2017

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.

Textilforscher der TU Dresden präsentieren neue Bandwebtechnik zur Herstellung hochkomplexer 3D-Gewebe, Struktur- und Prozesssimulationen für textile Hochleistungswerkstoffe und Fertigungsprozesse sowie eine dreidimensionale thermoaktive Raumtextilie.


Auf Basis einer neuen Spulenschützenbandwebtechnik mit einer integrierten Schützenwechseleinrichtung ist es gelungen, Carbongarne schädigungsarm zu verarbeiten sowie Profilbandgewebe mit über die Bauteillänge unterschiedlichem Querschnitt und vor allem in einem einzigen Fertigungsschritt gewebte komplexe rohrförmige Knotenelemente zu entwickeln. Das entwickelte Schützenwechselsystem demonstriert das ITM auf seinem Stand auf der Messe TECHTEXTIL an einem elektronisch gesteuerten Spulenschützen-Bandwebautomaten . Die Kombination der Spulenschützen-Bandwebtechnik mit der Jacquardtechnik ermöglicht eine ausgesprochen hohe Strukturvielfalt, die für die Entwicklung von gewebten rohrförmigen Knotenelementen in unterschiedlichster Geometrie genutzt wird. Die Rohrknotenelemente werden vor allem für die Eckverbinder von Leichtbaurahmen, z. B. in Fahrzeug- oder Fahrradrahmen, in Sportgeräten oder Roboterwerkzeugrahmen oder in der Architektur, benötigt. Am ITM wird in enger Zusammenarbeit mit der Firma MAGEBA Textilmaschinen GmbH & Co KG und durch die finanzielle Förderung von Forschungsprojekten durch das BMWi die gesamte Prozesskette vom CAD-Entwurf, über die strukturelle Entwicklung, die Erstellung der Maschinensteuerprogramme, die textiltechnische Umsetzung und die Bauteilkonsolidierung erfolgreich erarbeitet.


Als weiteres Highlight präsentiert das ITM der TU Dresden auf der TECHTEXTIL die vielfältigen Möglichkeiten, die die Struktur- und Prozesssimulation textiler Hochleistungswerkstoffe und textiler Fertigungsprozesse bietet und somit fester Bestandteil in allen Entwicklungen entlang der gesamten textilen Wertschöpfungskette vom Atom bis zum Produkt am ITM ist. Darüber hinaus offeriert das ITM als weiteren besonderen Blickfang ein 2,5 Meter hohes Rotorblatt aus einem Faserkunststoffverbund mit integrierten textilen Dehnungssensoren aus Carbonfasern zur In-Situ Strukturüberwachung.

Quelle:

 Technische Universität Dresden