Aus der Branche

Zurücksetzen
22 Ergebnisse
(c) ITA - RWTH Institut für Textiltechnik
03.04.2024

ITA: Forschungsprojekte zu biobasierten Textilien

Wissenschaftsteams des Instituts für Textiltechnik der RWTH Aachen University (ITA) forschen gemeinsam mit Partnern aus der Industrie und außeruniversitären Forschungseinrichtungen gefördert vom Bundesministerium für Bildung und Forschung (BMBF) an Wegen, die Textilindustrie von fossilen auf biobasierte Rohstoffe, Ausrüstungen sowie neue umweltfreundliche Verfahren umzustellen, um auf diese Weise, die gesamte textile Wertschöpfungskette zu transformieren.

Die Fäden dafür laufen im Innovationsraum BIOTEXFUTURE mit einer Vielzahl an einzelnen Textilforschungsprojekten zusammen. Die enge Verknüpfung von universitärer mit anwendungsnaher Forschung und marktrelevanter Umsetzung mit Wirtschaftsunternehmen soll dazu führen, dass der Textilindustrie die Wende zu einem zukunftsfähigen biobasierten Wirtschaften zielgerichtet gelingen kann.

Wissenschaftsteams des Instituts für Textiltechnik der RWTH Aachen University (ITA) forschen gemeinsam mit Partnern aus der Industrie und außeruniversitären Forschungseinrichtungen gefördert vom Bundesministerium für Bildung und Forschung (BMBF) an Wegen, die Textilindustrie von fossilen auf biobasierte Rohstoffe, Ausrüstungen sowie neue umweltfreundliche Verfahren umzustellen, um auf diese Weise, die gesamte textile Wertschöpfungskette zu transformieren.

Die Fäden dafür laufen im Innovationsraum BIOTEXFUTURE mit einer Vielzahl an einzelnen Textilforschungsprojekten zusammen. Die enge Verknüpfung von universitärer mit anwendungsnaher Forschung und marktrelevanter Umsetzung mit Wirtschaftsunternehmen soll dazu führen, dass der Textilindustrie die Wende zu einem zukunftsfähigen biobasierten Wirtschaften zielgerichtet gelingen kann.

Erste konkrete Ergebnisse ausgewählter Projekte präsentiert BIOTEXFUTURE auf den Gemeinschaftsstand Bioökonomie des BMBF auf der Hannover Messe (22. bis 26.4.2024) sowie auf der fast zeitgleich stattfindenden Internationalen Leitmesse für technische Textilien und Vliesstoffe, Techtextil, in Frankfurt / Main (23. bis 26.4.2024). Folgende Projekte werden vorgestellt:

  • BioTurf: der Kunstrasen der Zukunft ist grün (Hannover Messe / Techtextil)
  • CO2Tex: innovative elastische Garne binden CO2 (Hannover Messe / Techtextil)
  • DegraTex: biologisch abbaubare Geotextilien (Techtextil)
  • BioBase: Textilien für Innenräume, Sport, Auto und Technik werden bio (Hannover Messe / Techtextil)

BioTurf: der Kunstrasen der Zukunft ist grün
Die Forscher*innen des Projekts BioTurf arbeiten an der Lösung eines Problems, mit dem hunderte von Städten und Gemeinden konfrontiert sind. Ziel ist es, eine Kunstrasenstruktur aus Bio-Polyethylen (PE) zu entwickeln, das sich qualitativ nicht von erdölbasiertem PE unterscheidet. Diese Monomaterial-Struktur soll ein hochwertiges Materialrecycling ermöglichen. Eine wichtige Basis für die spätere Kreislaufführung des Produktes. Darüber hinaus wird die neuartige Kunstrasenstruktur ohne die Zugabe von Einstreu-Granulat auskommen und damit das aktuelle Mikroplastik-Problem von Kunstrasenplätzen lösen. Es existiert bereits ein BioTurf-Fußballplatz in Aachen als Demonstrationsspielfeld, auf denen Sportler*innen spielen und trainieren, und dadurch die Forscher*innen regelmäßig Rückmeldung bekommen. Man befindet sich in der Phase der Feinjustierung, um das Ziel zu erreichen den Kunstrasen der Zukunft aus 100% biobasiertem Polyethylen herstellen zu können.

CO2Tex: innovative elastische Garne binden CO2
Die Textilwissenschaftler*innen des BIOTEXFUTURE Projekts CO2Tex entwickeln elastische Filament-Garne, in deren Ausgangsmaterial das für die Erderwärmung mitverantwortliche Treibhausgas CO2 gebunden ist. Gleichzeitig verwenden sie für die Garnherstellung Schmelzspinnprozesse, für die keine giftigen und umweltschädlichen Lösungsmittel notwendig sind. Den Forscher*innen ist es zudem gelungen, die Elastizität der auf thermoplastischen Polyurethanen (TPU) beruhenden Entwicklung für bestimmte Garntypen an das Leistungsvermögen der konventionellen Elastane heranzuschrauben. Das Projekt-Konsortium erwartet, dass für die entwickelten CO2-haltigen elastischen TPU-Filament-Garne eine Hochskalierung der Produktionsprozesse auf eine massentaugliche Fertigung im Industriemaßstab in absehbarer Zeit möglich sein wird. Dabei hält das CO2Tex-Team vergleichbare Herstellungskosten wie bei konventionellen Garnen sowie leichte Vorteile bei der Energiebilanz gegenüber bestehenden Prozessen für möglich.

DegraTex: biologisch abbaubare Geotextilien
Das Ziel von DegraTex ist die Entwicklung biobasierter, abbaubarer Geotextilien für kurzfristige Anwendungen wie die zeitlich begrenzte Sicherung von Erdstrukturen oder für den Vegetationsschutz. Die Materialien erfüllen ihre Funktion, bis sie von natürlichen Komponenten, wie z.B. bodenstabilisierenden oder bodendeckenden Pflanzen, übernommen werden oder simpel einfach nicht mehr benötigt werden. Es geht darum, konventionelle, erdölbasierte Geotextilien in technisch und ökologisch sinnvollem Rahmen durch biobasierte und abbaubare Produktlösungen zu ersetzen. Das Forschungsteam des ITA hat bereits erste Demonstratoren auf Basis von Biopolymeren im Außeneinsatz.

BioBase: Textilien für Innenräume, Sport, Auto und Technik werden bio
Im BioBase-Projekt wird die gesamte textile Wertschöpfungskette der jeweiligen Produkte abgebildet und in jedem Prozessschritt der technologische Reifegrad für die industrielle Produktion von biobasierten und nachhaltigen Chemiefasern schrittweise erhöht. Zunächst entstehen hierbei in Kooperation zwischen den Forschungseinrichtungen und Industriepartner*innen industriell gefertigte Anschauungsmodelle (Demonstratoren), die das Potenzial der am Markt verfügbaren biobasierten Polymere demonstrieren sollen. Die Herstellung der Polymere, Garne und textilen Flächen, orientiert sich sehr anwendungsbezogen an den existierenden technischen Anforderungen in den unterschiedlichen Industrie-Sektoren.
Das Team in Aachen beschäftigt sich mit der Herstellung von Chemiefasergarnen und betrachtet dabei die Arbeitsschritte Schmelzspinnen und Texturieren der Wertschöpfungskette und teilweise auch die Flächenherstellung. Die Forschungen zeigen, dass biobasierte Polymere existieren, die auf bestehenden Anlagen entlang der textilen Prozesskette bis zum Demonstrator verarbeitbar sind, wobei die Garn- und Textileigenschaften je nach Anforderungsprofil angepasst werden können.

Quelle:

ITA – Institut für Textiltechnik der RWTH Aachen University

Wickler des Herstellers Comoli Fermo S.r.l., Paruzzaro, Italien Foto: ITA – Institut für Textiltechnik of RWTH Aachen University
Wickler des Herstellers Comoli Fermo S.r.l., Paruzzaro, Italien
06.03.2024

ITA: Einzigartiger Wickler für elastische Filamentgarne

Seit dem 01.03.2024 ist das Technikum des Instituts für Textiltechnik der RWTH Aachen University (ITA) mit einem weiteren, weltweit einzigartigen Wickler ausgestattet.
 
Der Wickler des Herstellers Comoli Fermo S.r.l., Paruzzaro, Italien, ermöglicht die Entwicklung elastischer Garne für zahlreiche und innovative Anwendungsbereiche. Mono- und Multifilamentgarne können in einem Geschwindigkeitsbereich von 100 bis 3.200 m/min auf Hülsen mit einer industriellen Standardgröße von 73,6 mm x 83,8 mm x 115,5 mm gesponnen werden.

Der Einsatz dieser Spulen ermöglicht eine unmittelbare Weiterverarbeitung entlang der textilen Prozesskette, zum Beispiel zur Herstellung elastischer Kombinationsgarne oder in Strickereien. Durch die hohe Flexibilität dieses Wicklers in Kombination mit den am ITA vorhandenen Spinnanlagen sind Versuche mit Materialmengen von wenigen hundert Gramm bis zu mehreren hundert Kilogramm möglich.

Seit dem 01.03.2024 ist das Technikum des Instituts für Textiltechnik der RWTH Aachen University (ITA) mit einem weiteren, weltweit einzigartigen Wickler ausgestattet.
 
Der Wickler des Herstellers Comoli Fermo S.r.l., Paruzzaro, Italien, ermöglicht die Entwicklung elastischer Garne für zahlreiche und innovative Anwendungsbereiche. Mono- und Multifilamentgarne können in einem Geschwindigkeitsbereich von 100 bis 3.200 m/min auf Hülsen mit einer industriellen Standardgröße von 73,6 mm x 83,8 mm x 115,5 mm gesponnen werden.

Der Einsatz dieser Spulen ermöglicht eine unmittelbare Weiterverarbeitung entlang der textilen Prozesskette, zum Beispiel zur Herstellung elastischer Kombinationsgarne oder in Strickereien. Durch die hohe Flexibilität dieses Wicklers in Kombination mit den am ITA vorhandenen Spinnanlagen sind Versuche mit Materialmengen von wenigen hundert Gramm bis zu mehreren hundert Kilogramm möglich.

Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University

 37. International Cotton Conference Bremen: Programmthemen Foto: Axel Trede, CSI
06.03.2024

37. International Cotton Conference Bremen: Programmthemen

Am 20. März startet die 37. International Cotton Conference Bremen (20.-22. März). Auf die etwa 400 Tagungsteilnehmer wartet in Bremen wie online eine Mischung von wissenschaftlichen und praxisnahen Themen mit dem Fokus Baumwollqualität aus der internationalen Baumwolllieferkette.

Programmthemen auf der International Cotton Conference Bremen:
Mahmud Hossain vom Institut für Textilmaschinen und Hochleistungsmaterialien an der Technischen Universität Dresden stellt ein gemeinsam mit dem Leibnitz-Institut Dresden entwickeltes Verfahren vor, welches die Reibung beim Verzwirnen von Spinnfäden eliminiert, so dass selbst bei hohen Verarbeitungsgeschwindigkeiten von bis zu 50.000 U/min hochwertige Garne aus Natur- und Chemiefasern hergestellt werden können.

Im Zuge der Nachhaltigkeitsdebatten gewinnt das Verspinnen von Hanf in der Mischung mit Baumwollfasern mehr und mehr an Bedeutung. Ralf Müller vom Textilmaschinenhersteller Trützschler, Mönchengladbach, verdeutlicht in seiner Präsentation, wie die Naturfasern gemeinsam zu Qualitätsgarnen versponnen werden können.

Am 20. März startet die 37. International Cotton Conference Bremen (20.-22. März). Auf die etwa 400 Tagungsteilnehmer wartet in Bremen wie online eine Mischung von wissenschaftlichen und praxisnahen Themen mit dem Fokus Baumwollqualität aus der internationalen Baumwolllieferkette.

Programmthemen auf der International Cotton Conference Bremen:
Mahmud Hossain vom Institut für Textilmaschinen und Hochleistungsmaterialien an der Technischen Universität Dresden stellt ein gemeinsam mit dem Leibnitz-Institut Dresden entwickeltes Verfahren vor, welches die Reibung beim Verzwirnen von Spinnfäden eliminiert, so dass selbst bei hohen Verarbeitungsgeschwindigkeiten von bis zu 50.000 U/min hochwertige Garne aus Natur- und Chemiefasern hergestellt werden können.

Im Zuge der Nachhaltigkeitsdebatten gewinnt das Verspinnen von Hanf in der Mischung mit Baumwollfasern mehr und mehr an Bedeutung. Ralf Müller vom Textilmaschinenhersteller Trützschler, Mönchengladbach, verdeutlicht in seiner Präsentation, wie die Naturfasern gemeinsam zu Qualitätsgarnen versponnen werden können.

Jaswinder Bedi, einer der führenden Köpfe diverser Textilverbände des afrikanischen Kontinents, geschäftsführender Direktor der Bedi Investments Ltd. und Excecutive Director der Fine Spinners Uganda Ltd., hält auch einen Vortrag. Im Rahmen seiner Tätigkeit arbeitet er stetig an der Entwicklung von vertikal integrierten Strategien vom Baumwollanbau bis zum fertigen Produkt. Dadurch generiert er Exportchancen für hochwertige Textilprodukte, hergestellt in afrikanischen Ländern.

Seit Jahren nimmt die Bedeutung der Forschung an Methoden zur exakten Feststellung des Klebrigkeitsgrades von Baumwolle zu. Hier hat sich das International Committee on Cotton Testing Methods (ICCTM) einen Namen gemacht hat. Jean-Paul Gourlot vom Zentrum für internationale Zusammenarbeit in der Agrarforschung und Entwicklung (CIRAD) im französischen Montpellier präsentiert als Mitglied im ICCTM die neusten Ergebnisse.

Mourad Krifa von der Kent State University, Oklahoma, USA macht deutlich, wie typische Verunreinigungen von Saatbaumwolle z. B. durch Blatt- und Borkenreste, Gras oder Saatschalenreste sowie Schmutz die Prüfergebnisse von High Volume Instrument-Tests beeinträchtigen können.

Deninson Lima vom brasilianischen Baumwollverband ABRAPA in Brasilia berichtet über die Entwicklung des ‚Standard Brazil HVI-Programms‘ (SBRHVI).

Efstratios Fragkotsinos vom Prüfinstrumentenhersteller Uster Technologies aus der Schweiz hebt die Bedeutung des Baumwollballenmanagement in Spinnereien hervor.

Justin Kühn vom Institut für Textiltechnik an der RWTH Aachen Universität stellt die Frage, ob die Methoden zur Regulierung der Feuchtigkeit des Rohstoffs in der Spinnereivorstufe oder im Entkörnungsprozess einen entscheidenden Einfluss auf die Faserqualität haben.

Marinus van der Sluijs von Textile Technical Services in Australien vergleicht in seiner Präsentation die Resultate der Reinigung von Baumwolle auf der Stufe der Entkörnung mit denen innerhalb der Vorstufen in der Spinnerei.

Derek Whitelock vom USDA-ARS Southwestern Cotton Ginning Research Laboratory La Cruces, New Mexico, USA stellt in einem Vortrag die Ergebnisse neuerer Tests seines Institutes mit unterschiedlichen Typen von Entkörnungsmaschinen zur Verfügung.

Jaya Shankar Tumuluru vom Southwestern Cotton Ginning Research Laboratory des USDA-ARS klärt im Rahmen einer Studie darüber auf, wie sich der Einsatz eines pneumatischen Fraktionierers für die Baumwollentkörnung auf die Faserqualität von Upland-Baumwolle auswirkt.

Weitere Informationen:
International Cotton Conference cotton
Übergabe der Urkunde für den 1. Platz des Businessplan Wettbewerbs KUER.NRW 2023 an das RWTH Start-Up SA-Dynamics; von links nach rechts: Oliver Krischer (Minister für Umwelt, Naturschutz und Verkehr des Landes NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics) © Business Angels Deutschland e. V. (BAND)
Übergabe der Urkunde für den 1. Platz des Businessplan Wettbewerbs KUER.NRW 2023 an das RWTH Start-Up SA-Dynamics; von links nach rechts: Oliver Krischer (Minister für Umwelt, Naturschutz und Verkehr des Landes NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics)
26.01.2024

Startup: Biobasierte Aerogelfasern statt synthetischer Dämmstoffe

Das Aachener Startup SA-Dynamics entwickelt nachhaltige, biobasierte und biologisch abbaubare Isolationsmaterialen aus Aerogelfasern und setzt damit neue Maßstäbe beim ressourcenschonenden Bauen. Dafür wurden die an der RWTH Aachen ausgebildeten Gründer Dr. Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr. Jens Hofer (ITA Postdoc) und Dr. Christian Schwotzer (Institut für Ofenbau und Wärmetechnik IOB) mit dem ersten Platz des KUER.NRW Businessplan Wettbewerbs 2023 und einem Preisgeld in Höhe von 6.000 € prämiert.

SA-Dynamics setzt auf die beeindruckenden Eigenschaften von Aerogelfasern: Sie verfügen über hervorragende Dämmeigenschaften, sind leicht, langlebig, robust, vielseitig einsetzbar und durch ihre Flexibilität sehr gut auf herkömmlichen Textilmaschinen zu verarbeiten. Damit sind sie vergleichbar mit Styropor, aber dennoch nachhaltig, denn SA Dynamics verwendet biobasierte und biologisch-abbaubare Rohstoffe.

Das Aachener Startup SA-Dynamics entwickelt nachhaltige, biobasierte und biologisch abbaubare Isolationsmaterialen aus Aerogelfasern und setzt damit neue Maßstäbe beim ressourcenschonenden Bauen. Dafür wurden die an der RWTH Aachen ausgebildeten Gründer Dr. Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr. Jens Hofer (ITA Postdoc) und Dr. Christian Schwotzer (Institut für Ofenbau und Wärmetechnik IOB) mit dem ersten Platz des KUER.NRW Businessplan Wettbewerbs 2023 und einem Preisgeld in Höhe von 6.000 € prämiert.

SA-Dynamics setzt auf die beeindruckenden Eigenschaften von Aerogelfasern: Sie verfügen über hervorragende Dämmeigenschaften, sind leicht, langlebig, robust, vielseitig einsetzbar und durch ihre Flexibilität sehr gut auf herkömmlichen Textilmaschinen zu verarbeiten. Damit sind sie vergleichbar mit Styropor, aber dennoch nachhaltig, denn SA Dynamics verwendet biobasierte und biologisch-abbaubare Rohstoffe.

„Mit biobasierten Aerogelfasern können wir die Bauwelt revolutionieren“, erläutert ITA-Gründer Dr. Sascha Schriever. „Wenn alle Dämmmaterialien im Bau auf biobasierte Aerogelfasern umgestellt werden, können alle Bauherren ihrem Traum von einem nachhaltigen Haus verwirklichen.“

SA Dynamics ist ihrem Gründungsziel mit dem Gewinn des KUER.NRW 2023-Businessplan-Wettbewerbs ein gutes Stück nähergekommen. Die Ausgründung des Instituts für Textiltechnik (ITA) und des Instituts für Industrieofenbau und Wärmetechnik (IOB) der RWTH Aachen soll im Frühjahr 2025 erfolgen.

Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University

Prof. Dr. Tae Jin Kang (Seoul National University), Dr. Musa Akdere (CarboScreen), Dr. Christian P. Schindler (ITMF), von links nach rechts. Quelle: ITMF
Prof. Dr. Tae Jin Kang (Seoul National University), Dr. Musa Akdere (CarboScreen), Dr. Christian P. Schindler (ITMF), von links nach rechts.
01.12.2023

Schnellere und günstigere Carbonfaserproduktion durch CarboScreen

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen lassen die Carbonfaserproduktion durch Sensortechnologie überwachen und erreichen so mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 auf 30 m/min und dadurch eine Umsatzsteigerung von bis zum 37,5 Mio. € pro Jahr und Anlage. Diese Entwicklung überzeugte auch die Jury der ITMF und wurde mit dem ITMF StartUp Award 2023 auf der diesjährigen ITMF Annual Conference in Keqiao (China) ausgezeichnet.

Dr. Musa Akdere nahm den Preis stellvertretend für das CarboScreen-Gründerteam entgegen.

Kohlenstofffasern können ihr volles Potenzial nur dann entfalten, wenn sie bei der Herstellung und Weiterverarbeitung nicht beschädigt werden. Zwei Arten von Faserschädigungen treten bei der Faserherstellung verstärkt auf: Oberflächliche oder mechanische Schäden an den Fasern oder Schäden an der chemischen Struktur.

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen lassen die Carbonfaserproduktion durch Sensortechnologie überwachen und erreichen so mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 auf 30 m/min und dadurch eine Umsatzsteigerung von bis zum 37,5 Mio. € pro Jahr und Anlage. Diese Entwicklung überzeugte auch die Jury der ITMF und wurde mit dem ITMF StartUp Award 2023 auf der diesjährigen ITMF Annual Conference in Keqiao (China) ausgezeichnet.

Dr. Musa Akdere nahm den Preis stellvertretend für das CarboScreen-Gründerteam entgegen.

Kohlenstofffasern können ihr volles Potenzial nur dann entfalten, wenn sie bei der Herstellung und Weiterverarbeitung nicht beschädigt werden. Zwei Arten von Faserschädigungen treten bei der Faserherstellung verstärkt auf: Oberflächliche oder mechanische Schäden an den Fasern oder Schäden an der chemischen Struktur.

Beide Schäden können durch die derzeitigen Mittel nicht optimal erkannt werden oder fallen erst nach der Produktion auf, um nur zwei Beispiele zu nennen. Dies führt zu höheren Produktionskosten. Eine fehlerhafte Produktion kann im Ernstfall sogar zu Anlagenbränden führen. Deshalb und um eine gute Produktionsqualität zu gewährleisten, wird die Anlage sicherheitshalber mit 15 m/min unter ihrer Produktionskapazität gefahren. Möglich wären jedoch 30 m/min oder mehr. Durch die sensorbasierte Online-Überwachung von CarboScreen kann die Produktionskapazität auf 30 m/min verdoppelt werden. Dies würde zu einer höheren Produktion, dadurch sinkenden Herstellkosten und einem breiteren Einsatz von Carbonfasern in Massenmärkten wie Automotive, Luft- und Raumfahrt und Windenergie führen.

Weitere Informationen:
Carbonfasern Sensortechnik Startup
Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University
 

Gerhard Lettl (AVK-Vorstand, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr. Jens Ridzewski (AVK-Vorstand, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), von links nach rechts © AVK
Gerhard Lettl (AVK-Vorstand, C.F. Maier Europlast GmbH & Co. KG), Felix Pohlmeyer (ITA), Prof. Dr. Jens Ridzewski (AVK-Vorstand, IMA Materialforschung und Anwendungstechnik GmbH), Tim Röding (ITA), von links nach rechts.
23.11.2023

CarboScreen: Sensor-Überwachung für komplexe Carbonfaserproduktion

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen University entwickeln mit ihrem Start-Up CarboScreen GmbH eine Technologie, die die komplexe Carbonfaserproduktion durch Sensor-Überwachung beherrschbar macht. Mithilfe der CarboScreen-Technologie soll mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 m/min auf 30 m/min möglich sein. Allein durch die Verdopplung der Produktionsgeschwindigkeit ist eine Umsatzsteigerung von bis zu 37,5 Millionen € pro Jahr und Produktionsanlage möglich. Für diese bahnbrechende Entwicklung wurden Felix Pohlkemper und Tim Röding mit dem dritten Platz des AVK-Innovationspreises 2023 in der Kategorie Prozesse und Verfahren ausgezeichnet. Die Preisverleihung fand während des JEC Dach Forums in Salzburg, Österreich, statt.

Felix Pohlkemper und Tim Röding vom Institut für Textiltechnik (ITA) der RWTH Aachen University entwickeln mit ihrem Start-Up CarboScreen GmbH eine Technologie, die die komplexe Carbonfaserproduktion durch Sensor-Überwachung beherrschbar macht. Mithilfe der CarboScreen-Technologie soll mittelfristig eine Verdopplung der Produktionsgeschwindigkeit von derzeit 15 m/min auf 30 m/min möglich sein. Allein durch die Verdopplung der Produktionsgeschwindigkeit ist eine Umsatzsteigerung von bis zu 37,5 Millionen € pro Jahr und Produktionsanlage möglich. Für diese bahnbrechende Entwicklung wurden Felix Pohlkemper und Tim Röding mit dem dritten Platz des AVK-Innovationspreises 2023 in der Kategorie Prozesse und Verfahren ausgezeichnet. Die Preisverleihung fand während des JEC Dach Forums in Salzburg, Österreich, statt.

Die Herstellung von Carbonfasern ist hochkomplex. Eine Überwachung des Herstellungsprozess erfolgt im Stand der Technik allerdings lediglich manuell durch angelernte Fachkräfte. Bereits minimale Faserschädigungen während der Herstellung führen jedoch einer verminderung der Qualität der Carbonfaser. Darüber hinaus kann es im Extremfall zu Anlagenbränden führen. Um die Produktionsqualität zu gewährleisten, ist die Produktionsgeschwindigkeit zurzeit auf maximal 15 m/min begrenzt. Tatsächlich könnte die Produktionsgeschwindigkeit der Anlagen darüber liegen. Die sensorbasierte Online-Überwachung von Carbo-Screen ermöglicht mittelfristig die Erhöhung der Produktionsgeschwindigkeit auf 30 m/min. Infolge der gesteigerten Produktionsmenge pro Anlage reduzieren sich die spezifischen Herstellungskosten der Carbonfaser, was in günstigeren Preisen resultieren kann.

Ein reduzierter Verkaufspreis würde einen noch breiteren Einsatz von Carbonfasern und ihren Verbundwerkstoffen in klassischen Märkten wie der Luft- und Raumfahrttechnik sowie der Windenergie, aber auch den Großserieneinsatz in der Automobilindustrie möglich machen.

Das CarboScreen-Online-Überwachungssystem befindet sich momentan in der Entwicklung für den industriellen Einsatz. Es soll in 2024 an einer Industrieanlage validiert werden.

Die CarboScreen GmbH wurde im Rahmen einer EXIST-Förderung gegründet und bietet KI-gestützte Sensorsystem für die Carbonfaserherstellung an. Durch die Sensortechnologie wird die Faser über die gesamte Herstellung hindurch kontinuierlich überwacht. Abweichungen werden automatisch ermittelt.

Die Sieger des AVK-Innovationspreises werden jährlich von der AVK-Industrievereinigung Verstärkte Kunststoffe vergeben. Ausgezeichnet werden Unternehmen, Institute und deren Partner in den drei Kategorien Produkte und Anwendungen, Prozesse und Verfahren sowie Forschung und Wissenschaft.

Gewinner des AVK-Innovationspreis 2023 (c) AVK
Gewinner des AVK-Innovationspreis 2023
25.10.2023

Gewinner des AVK-Innovationspreis 2023

Die Gewinner des renommierten Innovationspreises für Faserverbundkunststoffe der AVK– Industrievereinigung Verstärkte Kunststoffe wurden in diesem Jahr in Salzburg präsentiert. Der Preis geht an Unternehmen, Institute und deren Partner jeweils in den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ für herausragende Composites-Innovationen. Eine Fachjury aus Ingenieuren, Wissenschaftlern und Fachjournalisten bewertet die Einreichungen in den drei Kategorien anhand von Kriterien wie Innovationshöhe, Realisierungsgrad und Nachhaltigkeit.

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Isolierende Kupplungswelle für Schienenfahrzeuge“ – Leichtbauzentrum Sachsen GmbH, Partner: KWD Kupplungswerk Dresden GmbH

2. Platz: „Elektroauto-Batteriegehäuse-Komponenten auf Basis von innovativen endlosfaserverstärkten Phenolharz-Verbundwerkstoffen“ – SGL Carbon

Die Gewinner des renommierten Innovationspreises für Faserverbundkunststoffe der AVK– Industrievereinigung Verstärkte Kunststoffe wurden in diesem Jahr in Salzburg präsentiert. Der Preis geht an Unternehmen, Institute und deren Partner jeweils in den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ für herausragende Composites-Innovationen. Eine Fachjury aus Ingenieuren, Wissenschaftlern und Fachjournalisten bewertet die Einreichungen in den drei Kategorien anhand von Kriterien wie Innovationshöhe, Realisierungsgrad und Nachhaltigkeit.

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Isolierende Kupplungswelle für Schienenfahrzeuge“ – Leichtbauzentrum Sachsen GmbH, Partner: KWD Kupplungswerk Dresden GmbH

2. Platz: „Elektroauto-Batteriegehäuse-Komponenten auf Basis von innovativen endlosfaserverstärkten Phenolharz-Verbundwerkstoffen“ – SGL Carbon

3. Platz: „HiPeR High Performance Recycled Carbon Fiber Materials” – Composites Technology Center GmbH (CTC GmbH), Partner: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Kategorie „Innovative Prozesse und Verfahren“
1. Platz: „Chopped Fiber Direct Processing (CFP)“ – KraussMaffei Technologies GmbH, Partner: Wirthwein SE

2. Platz: „CIRC – Complete Inhouse Recycling of Thermoplastic Compounds“ – Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), Partner: Schindler Handhabetechnik GmbH, Vision & Control GmbH

3. Platz: „CarboScreen – Sensorgestützte Überwachung der Carbonfaserproduktion“ – CarboScreen GmbH, Partner: Institut für Textiltechnik der RWTH Aachen

Kategorie „Forschung und Wissenschaft“
1. Platz: „Entwicklung eines Stereokomplex-PLA-Blends im Technikumsmaßstab“ – Faserinstitut Bremen e. V.

2. Platz: „Faserverstärktes Salz als robustes, verlorenes Kernmaterial“ – Technische Universität München, Lehrstuhl für Carbon Composites, Partner: Appex GmbH, Haas Metallguss GmbH

3. Platz: „VliesSMC – rezyklierte Carbonfasern mit zweitem Leben im SMC-Prozess‘“ – Sächsisches Textilforschungsinstitut e.V. (STFI), Partner: Fraunhofer-Institut für Chemische Technologie (ICT)

 

Die Ausschreibung für den Innovationspreis 2024 startet im Januar 2024

Quelle:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Professor Dr. Gries mit dem Preisträger Flávio André Marter Diniz Hanns-Voith-Stiftung, Oliver Voge
Professor Dr. Gries mit dem Preisträger Flávio André Marter Diniz
11.07.2023

Künftig Kostensenkung durch ultradünne PE-Carbonfasern

  • ITA-Masterabsolvent gewinnt Hanns-Voith-Stiftungspreis 2023

Der Masterabsolvent Flávio André Marter Diniz des Instituts für Textiltechnik der RWTH Aachen (ITA) entwickelte in seiner Masterarbeit ultradünne Poly-Ethylen (PE)-Carbonfasern mit einem 2-3mal kleineren Filament-Durchmesser als üblich. Dazu kann mit dem Einsatz von PE-basierten Precursoren der Carbonfaser-Preis zukünftig um 50 Prozent gesenkt werden und eröffnet damit vielfältige weitere Anwendungsmöglichkeiten in Schlüsselbranchen wie Windkraft, Luft- und Raumfahrt und Automotive. Für diese bahnbrechende Entwicklung wurde Marter Diniz mit dem Hanns-Voith-Stiftungspreis in der Kategorie „Neue Werkstoffe“ ausgezeichnet. Der Preis ist mit 5.000 € Preisgeld dotiert.

Flávio André Marter Diniz gewann den Preis in der Kategorie „Neue Werkstoffe“ für seine Masterarbeit mit dem Titel „Untersuchung des Stabilisierungs- und Carbonisierungsprozesses für die Herstellung von ultra-dünnen polyethylenbasierten Carbonfasern“.

  • ITA-Masterabsolvent gewinnt Hanns-Voith-Stiftungspreis 2023

Der Masterabsolvent Flávio André Marter Diniz des Instituts für Textiltechnik der RWTH Aachen (ITA) entwickelte in seiner Masterarbeit ultradünne Poly-Ethylen (PE)-Carbonfasern mit einem 2-3mal kleineren Filament-Durchmesser als üblich. Dazu kann mit dem Einsatz von PE-basierten Precursoren der Carbonfaser-Preis zukünftig um 50 Prozent gesenkt werden und eröffnet damit vielfältige weitere Anwendungsmöglichkeiten in Schlüsselbranchen wie Windkraft, Luft- und Raumfahrt und Automotive. Für diese bahnbrechende Entwicklung wurde Marter Diniz mit dem Hanns-Voith-Stiftungspreis in der Kategorie „Neue Werkstoffe“ ausgezeichnet. Der Preis ist mit 5.000 € Preisgeld dotiert.

Flávio André Marter Diniz gewann den Preis in der Kategorie „Neue Werkstoffe“ für seine Masterarbeit mit dem Titel „Untersuchung des Stabilisierungs- und Carbonisierungsprozesses für die Herstellung von ultra-dünnen polyethylenbasierten Carbonfasern“.

Der Einsatz von Carbonfasern in hochbeanspruchten Leichtbaulösungen wie z.B. den aktuellen Wachstumsanwendungen von Windkraftanlagen oder Drucktanks ist wegen hervorragender mechanischer Eigenschaften bei gleichzeitig geringer Dichte heute nicht mehr wegzudenken. Hohe Herstellkosten konventioneller PAN-Präkursor-basierter Carbonfasern machen den Werkstoff sehr kostenintensiv. Dazu ist er nicht ausreichend verfügbar. Neue Fertigungsansätze, die alternative Rohmaterialien und Herstellprozesse erarbeiten, können ein Schlüssel und Wachstumsmotor für weitere industrielle Composites Anwendungen sein.

Ziel der Arbeit war die Entwicklung eines neuen und kostengünstigen Herstellprozesses für qualitativ hochwertige ultra-dünne Carbonfasern durch einen Polyethylen-Präkursor. Dazu sollte der heute zeitlich aufwändige Sulfonisierungsprozess deutlich verkürzt werden. Als Ergebnis stellte Marter Diniz neuartige ultra-dünne polyethylenbasierte Carbonfasern mit einem Filament-Durchmesser < 3 μm mit einer hervorragenden Oberflächenqualität der Fasern ohne erkennbare strukturelle Defekte her. Der Faserdurchmesser ist 2-3-mal kleiner als bei herkömmlichen PAN-basierten CF. Damit ist die Grundlage für mechanisch hochwertige Materialeigenschaften gegeben. Parallel konnte die Sulfonisierungsdauer um 25 Prozent gesenkt werden. Das entwickelte Material und die Technologie setzten wichtige Meilensteine auf dem Weg zu günstigeren Carbonfasern. Mit PE-basierten Precursoren kann der Preis von CF um 50 Prozent gesenkt werden, im Vergleich zu herkömmlichen PAN-basierten CF.

Insgesamt wurden fünf weitere Nachwuchswissenschaftler in sechs Kategorien (Antriebstechnik, Innovation & Technology/Künstliche Intelligenz, Neue Werkstoffe, Papier, Wasserkraft und Wirtschaftswissenschaften vergeben. Die Hanns-Voith-Stiftung hat in diesem Jahr zum 10. Mal herausragende Nachwuchswissenschaftler mit dem Hanns-Voith-Preis ausgezeichnet.

Quelle:

ITA Institut für Textiltechnik of RWTH Aachen University

DITF: Textilstrukturen regeln Wasserführung bei "Rain-retaining Living Wall" (c) DITF
Außendemonstrator am ForschungsKUBUS. Oben befindet sich der textile Wasserspeicher mit allen Ein- und Ausgängen und textilem Ventil zur Schnellentleerung. Darunter sind die Substratblöcke mit integrierten hydraulischen Textilien angeordnet.
30.06.2023

DITF: Textilstrukturen regeln Wasserführung bei "Rain-retaining Living Wall"

Durch den Klimawandel steigen die Temperaturen und Unwetter nehmen zu. Vor allem in den Innenstädten werden die Sommer für die Menschen zur Belastung. Durch Nachverdichtung wird zwar bestehende Infrastruktur genutzt und Zersiedelung vermieden, aber es steigt der Anteil an versiegelten Flächen. Das wirkt sich negativ auf Umwelt und Klima aus. Fassadenbegrünungen bringen hier mehr Grün in die Städte. Werden textile Speicherstrukturen eingesetzt, können sie sogar aktiv zum Hochwasserschutz beizutragen. Die Deutschen Institute für Textil- und Faserforschung (DITF) haben eine entsprechende „Living Wall“ entwickelt.

Die Pflanzen auf den grünen Fassaden werden über ein automatisches Bewässerungssystem mit Wasser und Nährstoffen versorgt. Die „Living Walls“ arbeiten weitgehend autonom. Sensorische Garne erfassen den Wasser- und Nährstoffgehalt. Der Aufwand für Pflege und Wartung ist gering.

Durch den Klimawandel steigen die Temperaturen und Unwetter nehmen zu. Vor allem in den Innenstädten werden die Sommer für die Menschen zur Belastung. Durch Nachverdichtung wird zwar bestehende Infrastruktur genutzt und Zersiedelung vermieden, aber es steigt der Anteil an versiegelten Flächen. Das wirkt sich negativ auf Umwelt und Klima aus. Fassadenbegrünungen bringen hier mehr Grün in die Städte. Werden textile Speicherstrukturen eingesetzt, können sie sogar aktiv zum Hochwasserschutz beizutragen. Die Deutschen Institute für Textil- und Faserforschung (DITF) haben eine entsprechende „Living Wall“ entwickelt.

Die Pflanzen auf den grünen Fassaden werden über ein automatisches Bewässerungssystem mit Wasser und Nährstoffen versorgt. Die „Living Walls“ arbeiten weitgehend autonom. Sensorische Garne erfassen den Wasser- und Nährstoffgehalt. Der Aufwand für Pflege und Wartung ist gering.

Über neuartige hydraulische Textilstrukturen wird die Wasserführung geregelt. Das Pflanzsubstrat aus Steinwolleauf dem die Pflanzen wachsen, verfügt durch seine Struktur über ein großes Volumen auf engem Raum. Je nachdem, wie stark die Niederschläge sind, wird das Regenwasser in einer textilen Struktur gespeichert und später zur Bewässerung der Pflanzen genutzt. Bei Starkregen wird das überschüssige Wasser mit zeitlicher Verzögerung in die Kanalisation eingeleitet. Die an den DITF entwickelten „Living Walls“ helfen auf diese Weise, in nachverdichteten Ballungsräumen die Ressource Wasser effizient zu nutzen.

Im Forschungsprojekt wurde auch die Kühlleistung einer Fassadenbegrünung wissenschaftlich untersucht. Moderne Textiltechnik im Trägermaterial fördert die „Transpiration“ der Pflanzen. Dadurch entsteht Verdunstungskälte und die Temperaturen in der Umgebung sinken.

Zur Arbeit des Denkendorfer Forschungsteams gehörte auch eine Kosten-Nutzen-Rechnung und eine Life-Cycle-Analyse. Auf der Basis der Untersuchungen im Labor und im Außenbereich wurde ein „Grünwert“ definiert, mit dem sich die Wirkung von Gebäudebegrünungen als Ganzes bewerten und vergleichen lassen.

Recyclinggarn (c) ITA Aachen
05.05.2023

ITA auf der ITMA: Smarte Kreislaufwirtschaft

„ITA Aachen und ITA Augsburg sind Teil der ITA Group International Centre for Sustainable Textiles. Erleben Sie unsere textilen Innovationen anschaulich auf zwei Messeständen,“ erläutert ITA-Institutsdirektor Professor Dr. Thomas Gries. „Sehen Sie am Stand H3-B304 unseren Ringspinntester, der Recyclingfasern nachhaltig und individuell in einer bisher nicht gekannten Feinheit verspinnt. Zudem erfolgt eine digitale Garnüberwachung, was neue Marktpotentiale ermöglicht. Machen Sie sich am Stand H3-A207 ein Bild vom Recycling Atelier des ITA Augsburg und sehen Sie den textilen Kreislauf vom Alttextil bis hin zu Lösungsschritten für die industrielle Umsetzung gemeinsam mit Industriepartnern. Gehen Sie mit uns gemeinsam den Walk4Recycling und verfolgen Sie auf der Messe in einem Rundgang den Weg vom Alttextil zu einem neuen Strickpullover. So werden wir unserem Anspruch als ITA Group gerecht: nachhaltig – digital – individuell.“

„ITA Aachen und ITA Augsburg sind Teil der ITA Group International Centre for Sustainable Textiles. Erleben Sie unsere textilen Innovationen anschaulich auf zwei Messeständen,“ erläutert ITA-Institutsdirektor Professor Dr. Thomas Gries. „Sehen Sie am Stand H3-B304 unseren Ringspinntester, der Recyclingfasern nachhaltig und individuell in einer bisher nicht gekannten Feinheit verspinnt. Zudem erfolgt eine digitale Garnüberwachung, was neue Marktpotentiale ermöglicht. Machen Sie sich am Stand H3-A207 ein Bild vom Recycling Atelier des ITA Augsburg und sehen Sie den textilen Kreislauf vom Alttextil bis hin zu Lösungsschritten für die industrielle Umsetzung gemeinsam mit Industriepartnern. Gehen Sie mit uns gemeinsam den Walk4Recycling und verfolgen Sie auf der Messe in einem Rundgang den Weg vom Alttextil zu einem neuen Strickpullover. So werden wir unserem Anspruch als ITA Group gerecht: nachhaltig – digital – individuell.“

ITA Aachen – Digitaler Ringspinntester für Recyclingfasern ermöglicht das Ausspinnen feiner Garne mit hohen Recyclingfaseranteilen
Das Institut für Textiltechnik der RWTH Aachen University (ITA) zeigt einen digitalen Ringspinntester, der Recyclingfasern in einem besonders hohen Umfang von 60-70 Prozent direkt und konventionell verspinnt. Bisher wurden Recyclinggarne gerade in diesem Mischungsverhältnis hauptsächlich rotorgesponnen. Dies führt zu eher groben Garnen und ist für feinere Textilien wie Oberbekleidung nicht geeignet. Das Ringspinnen von Recyclinggarnen ermöglicht nun das Spinnen von feineren Garnen und damit eine höhere Anwendungsstufe für Recyclingmaterialien.

Ein Alleinstellungsmerkmal des ITA-Ringspinntesters ist das simultane Verspinnen im Direktspinnverfahren aus dem Band und im klassischen Ringspinnverfahren. Dazu werden Festigkeit und Dehnung des gesponnenen Garns erstmals online und digital bestimmt. Die Echtzeitmessung erlaubt es, Prozessparameter und Garneigenschaften iterativ und schnell anzupassen.

Der Ringspinntester wurde aus einem bestehenden Tester auf Industrie 4.0-Standard gebracht und wird über ein Tablet bedient. Die Bedienung per Tablet ermöglicht die Anpassung der Prozessparameter einschließlich einer Online- Qualitätsüberwachung remote von jedem Ort der Welt aus. Dazu ist Ringspinntester in der Lage, auch fein ausgesponnene Ringgarne zu verarbeiten. Die Anwendung fein ausgesponnener Ringgarne aus Recyclingmaterial erschließt eine Vielzahl weiterer Anwendungsfelder im Bereich der Web- und Maschenwaren. So können Bekleidungs- und technische Textilien aus Recyclingmaterial hergestellt werden, deren Produktion vorher nicht möglich war - wie Oberbekleidung aus Recycling-Material. Die Erschließung neuer Branchen und Anwendungsfelder eröffnet neue Marktpotentiale für Recycling-Garne - auch und gerade für die Verarbeitung in Europa. So ergibt sich die Chance, Schlüsseltechnologien und Arbeitsplätze an kostenintensiven Standorten zu erhalten.

ITA Augsburg – Recycling Atelier: Walk4Recycling
Das Recycling Atelier des Instituts für Textiltechnik Augsburg gGmbH stellt den textilen Recycling Kreislauf vom Alttextil in neue Produkte über die verschiedenen Prozessschritte dar und eröffnet zusammen mit den Industriepartnern Lösungswege für die industrielle Umsetzung.

Unter der Headline „Walk4Recycling“ zeigt ein Rundgang über die Messe den Kreislauf von Alttextilien aus getragener Maschenware in einen neuen Strickpullover über ein Ringgarn aus einer Mischung von 65 Prozent recycelter Baumwolle und 35 Prozent Virgin-Polyester. Die zentrale Innovation ist der hohe Anteil von recycelten Fasern aus Post-Consumer-Textilien für ein Ringgarn dieser Feinheit. Heute werden vornehmlich grobe Rotorgarne für minderwertige Textilien aus diesen Materialien gesponnen. Die am Walk4Recycling teilnehmenden Industriepartner sind Partner des Recycling Ateliers und tragen mit ihren Technologien dazu bei, dass Fasermaterial aus Altkleidern in verschiedenen Prozessstufen zu einem neuwertigen Garn und hochwertigen Konfektionsartikeln verarbeitet werden kann.

Der Walk4Recycling bietet dem Besucher die Möglichkeit, einen vollständigen Recycling-Kreislauf mit den zahlreichen Prozessstufen vom Reißen der Alttextilien, dem Aufbereiten und Spinnen der Fasern und dem Stricken eines neuen Pullovers live während der Messe zu erleben. Ein kurzer Film vermittelt zusätzliche Einblicke über die verschiedenen Prozesse zur Produktion des Pullovers.

Wickelanlage zur kontinuierlichen Herstellung faserverstärkter thermoplastischer Rohrprofile (c) ITA. Wickelanlage zur kontinuierlichen Herstellung faserverstärkter thermoplastischer Rohrprofile.
30.03.2023

Composites made by ITA auf der JEC World 2023

  • Weniger C02-Emissionen + nachhaltig + recyclebar

Nachhaltigkeit first – das ist der Grundsatz des Instituts für Textiltechnik (ITA) der RWTH Aachen University auf der JEC World 2023 in Paris. ITA verknüpft verschiedene Leichtbaustrategien, um C02 zu reduzieren sowie nachwachsende und/ oder recyclebare Rohstoff zu verwenden.

Es präsentiert Innovationen in der Herstellung von Verstärkungsfasern und in der textilen Verarbeitung von Hochmodulfasern. Dazu zeigt es die Imprägnierung der Hochmodulfasern mit duroplastischen und thermoplastischen Matrixsystemen.

ITA stellt in Halle 6 gemeinsam mit der Firma Textechno, Mönchengladbach, textile Prüfgerate und der Firma Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems aus. Dazu wird auf dem Stand das Projekt Interreg AACOMA vorgestellt.

  • Weniger C02-Emissionen + nachhaltig + recyclebar

Nachhaltigkeit first – das ist der Grundsatz des Instituts für Textiltechnik (ITA) der RWTH Aachen University auf der JEC World 2023 in Paris. ITA verknüpft verschiedene Leichtbaustrategien, um C02 zu reduzieren sowie nachwachsende und/ oder recyclebare Rohstoff zu verwenden.

Es präsentiert Innovationen in der Herstellung von Verstärkungsfasern und in der textilen Verarbeitung von Hochmodulfasern. Dazu zeigt es die Imprägnierung der Hochmodulfasern mit duroplastischen und thermoplastischen Matrixsystemen.

ITA stellt in Halle 6 gemeinsam mit der Firma Textechno, Mönchengladbach, textile Prüfgerate und der Firma Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems aus. Dazu wird auf dem Stand das Projekt Interreg AACOMA vorgestellt.

Quelle:

ITA Institut für Textiltechnik of RWTH Aachen

Dr. Ioana Slabu und Benedict Bauer mit dem nanomodifizierten Stent Photo Peter Winandy
30.03.2023

Nanomodifizierter Polymerstent: Neue Therapie für Hohlorgan-Tumore

  • Elektromagnetisch aufheizbarer nanomodifizierter Stent zur Behandlung von Hohlorgantumoren gewinnt zweiten Platz beim RWTH Innovation Award

Fast jeder vierte Krebstote hatte einen Hohlorgantumor etwa im Gallengang oder in der Speiseröhre. Ein derartiger Tumor kann meist nicht operativ entfernt werden. Möglich ist nur eine kurzzeitige Öffnung des Hohlorgans mit einem Stent, also einer röhrchenförmigen Prothese. Der Tumor wächst jedoch wieder ein und dringt durch den Stent in das Hohlorgan. Ioana Slabu vom Institut für Angewandte Medizintechnik und Benedict Bauer vom Institut für Textiltechnik haben nun eine neuartige Technologie für die Therapie von HohlorganTumoren entwickelt, die mit dem zweiten Platz des RWTH Innovation Award 2022 ausgezeichnet wurde.

  • Elektromagnetisch aufheizbarer nanomodifizierter Stent zur Behandlung von Hohlorgantumoren gewinnt zweiten Platz beim RWTH Innovation Award

Fast jeder vierte Krebstote hatte einen Hohlorgantumor etwa im Gallengang oder in der Speiseröhre. Ein derartiger Tumor kann meist nicht operativ entfernt werden. Möglich ist nur eine kurzzeitige Öffnung des Hohlorgans mit einem Stent, also einer röhrchenförmigen Prothese. Der Tumor wächst jedoch wieder ein und dringt durch den Stent in das Hohlorgan. Ioana Slabu vom Institut für Angewandte Medizintechnik und Benedict Bauer vom Institut für Textiltechnik haben nun eine neuartige Technologie für die Therapie von HohlorganTumoren entwickelt, die mit dem zweiten Platz des RWTH Innovation Award 2022 ausgezeichnet wurde.

Dabei handelt es sich um einen Polymerstent, der magnetische Nanopartikel enthält. Beim Anlegen von elektromagnetischen Feldern führen diese Nanopartikel zu einer kontrollierten Aufheizung des Stentmaterials und damit des Tumors. Weil der Tumor viel empfindlicher auf Hitze reagiert als gesundes Gewebe, wird er zerstört, das Hohlorgan bleibt offen. Der Stent entfaltet so eine selbstreinigende Wirkung.  

Ioana Slabu vom AME erläutert: „Damit können wir nicht nur die Behandlungskosten drastisch reduzieren, sondern vor allem ermöglichen wir eine große Erleichterung für Millionen Patienten weltweit.“
 
Es gibt bereits einen Herstellungsprozess und einen Nachweis für die magnetische Hyperthermie. Diese neuartige Technologie hat ein sehr hohes Entwicklungspotenzial, weil sie genauso bei Tumoren in anderen Körperteilen wie der Prostata, dem Magen, im Darm oder in der Harnblase oder bei kardiovaskulären Erkrankungen eingesetzt werden kann.  

Das AiF/IGF-Projekt startete unter dem Projekttitel „ProNano“ und wurde vom BMWK gefördert. Jetzt liegt auch die Bewilligung des Folgeprojektes „ProNano2“ vor. Das bewilligte Projekt heißt: „Validierung des Innovationspotentials aufheizbarer Stents zur hitzeinduzierten Behandlung von Hohlraumtumoren“ und wird vom VIP-Programm des BMBF gefördert. Das Klinik für Allgemein, Viszeral- und Transplantationschirurgie des Universitätsklinikums Aachen und das Institut für Technologie- und Innovationsmanagement der RWTH Aachen ergänzt das Konsortium mit klinischer und wirtschaftswissenschaftlicher Expertise.

Die RWTH Aachen zeichnet jedes Jahr besonders innovative Hochschulprojekte mit dem Innovation Award aus. Professor Malte Brettel, Prorektor für Wirtschaft und Industrie, übergab im Rahmen von RWTHtransparent die Urkunden an vier herausragende Projekte.

Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen University

02.03.2023

Recycling Atelier Augsburg und Kelheim Fibres kooperieren

Kelheim Fibres, führender Hersteller von Viskose-Spezialfasern, hat sich dem Recycling Atelier Augsburg angeschlossen. Das Recycling Atelier Augsburg ist ein Zentrum für Forschung und Entwicklung auf dem Gebiet des Textilrecyclings. Es ist am Institut für Textiltechnik Augsburg angesiedelt, einem An-Institut der Hochschule Augsburg. Die beiden Institutionen gründeten das Recycling Atelier im Juni 2022 zusammen mit zwölf Partnern aus der deutschen Textilindustrie.

Im Recycling-Atelier steht der Dreiklang aus technischer und ökologischer Sinnhaftigkeit sowie ökonomischem Nutzen im Vordergrund. Damit stemmen sich die Partner des Recycling Ateliers gegen Fast-Fashion, die ausgelagerte Unternehmensverantwortung und eine allgemein sinkende Rohstoffqualität, die oftmals ein Downcycling – die minderwertige Wiederverwendung – der Materialien befeuern.

Kelheim Fibres, führender Hersteller von Viskose-Spezialfasern, hat sich dem Recycling Atelier Augsburg angeschlossen. Das Recycling Atelier Augsburg ist ein Zentrum für Forschung und Entwicklung auf dem Gebiet des Textilrecyclings. Es ist am Institut für Textiltechnik Augsburg angesiedelt, einem An-Institut der Hochschule Augsburg. Die beiden Institutionen gründeten das Recycling Atelier im Juni 2022 zusammen mit zwölf Partnern aus der deutschen Textilindustrie.

Im Recycling-Atelier steht der Dreiklang aus technischer und ökologischer Sinnhaftigkeit sowie ökonomischem Nutzen im Vordergrund. Damit stemmen sich die Partner des Recycling Ateliers gegen Fast-Fashion, die ausgelagerte Unternehmensverantwortung und eine allgemein sinkende Rohstoffqualität, die oftmals ein Downcycling – die minderwertige Wiederverwendung – der Materialien befeuern.

„Das Recycling Atelier Augsburg verbindet als Modellwerkstatt die wichtigsten Prozesse des textilen Recyclings und bietet so eine ganzheitliche und umfassende Forschung entlang der Wertschöpfungskette“, wie Georg Stegschuster, Leiter des Recycling Ateliers ausführt. Die Wissenschaftler forschen an allen Prozessschritten des Textilrecyclings: von der Materialanalyse über die Sortierung, Aufbereitung und Textilverarbeitung bis hin zum nachhaltigen Produktdesign. Dabei spielen eine umfassende Datenerfassung und der Einsatz künstlicher Intelligenz sowie innovativer Materialien eine zentrale Rolle.

Kelheim Fibres ist Produzent hochwertiger Viskose-Fasern, die aus Cellulose bestehen, dem Hauptbestandteil des nachwachsenden Rohstoffs Holz, und weltweit für Produkte in Bereichen wie Hygiene, Textilien und technische Anwendungen eingesetzt werden

"Im New Business Development und bei der Faser- und Anwendungsentwicklung folgen wir dem Open Innovation Konzept - die Kooperation mit dem Recycling-Atelier bietet uns eine ideale Plattform dafür. Hier können wir gemeinsam mit Partnern Nachhaltigkeit und Performance voranbringen“, erläutert Maik Thiel, Projektleiter bei Kelheim Fibres.

Recycelte Baumwollfasern sind häufig sehr kurz bzw. von ungleichmäßiger Länge, was eine Weiterverarbeitung von 100 % Recyclingmaterial zu einer Herausforderung macht. Beimischungen der Spezialfasern von Kelheim Fibres sollen die Produktion hochwertiger neuer Produkte, wie z.B. Vliesstoffen ermöglichen. Perspektivisch sollen die von Kelheim Fibres dafür bereitgestellten Fasern ebenfalls aus recyceltem Zellstoff hergestellt werden.

Quelle:

Kelheim Fibres GmbH

Foto VDMA
12.12.2022

Nachwuchspreis für KI-gestützte Produktionsüberwachung von Carbonfasern

  • Formel 1-Fahrzeuge werden in Zukunft günstiger

Carbon ist der Stoff, aus dem bei Formel 1-Fahrzeuge häufig die Karosserie hergestellt wird. Bislang ist Carbon teuer. Es kann günstiger und effizienter hergestellt werden, wenn künstliche Intelligenz die Produktionsprozesse überwacht. Ein Kamerasystem kombiniert mit künstlicher Intelligenz erkennt automatisch Fehler in der Herstellung von Carbonfasern. Damit wird eine teure manuelle Kontrolle der Carbonfasern hinfällig und der Herstellungspreis der Carbonfaser kann nachhaltig reduziert wenden.

Für diese Idee erhielt der Nachwuchsingenieur Deniz Sinan Yesilyurt am 6. Dezember den zweiten Preis des Nachwuchspreises „Digitalisierung im Maschinenbau“.

  • Formel 1-Fahrzeuge werden in Zukunft günstiger

Carbon ist der Stoff, aus dem bei Formel 1-Fahrzeuge häufig die Karosserie hergestellt wird. Bislang ist Carbon teuer. Es kann günstiger und effizienter hergestellt werden, wenn künstliche Intelligenz die Produktionsprozesse überwacht. Ein Kamerasystem kombiniert mit künstlicher Intelligenz erkennt automatisch Fehler in der Herstellung von Carbonfasern. Damit wird eine teure manuelle Kontrolle der Carbonfasern hinfällig und der Herstellungspreis der Carbonfaser kann nachhaltig reduziert wenden.

Für diese Idee erhielt der Nachwuchsingenieur Deniz Sinan Yesilyurt am 6. Dezember den zweiten Preis des Nachwuchspreises „Digitalisierung im Maschinenbau“.

Carbonfasern sind wegen ihrer guten Eigenschaften begehrt. Sie sind sehr leicht – sie wiegen bis zu 50 Prozent weniger als Aluminium. Die Kombination aus geringem Gewicht und guten mechanischen Eigenschaften bietet viele Vorteile. Gerade in Zeiten der Energiewende sind Leichtbaumaterialien wie Carbon so relevant wie nie zuvor. Gleichzeitig sind Carbonfasern so widerstandsfähig gegen äußere Belastungen wie Metalle. Diese guten Eigenschaften von Carbonfasern zu erreichen, ist aufwändig.

Bis zu 300 einzelne Faserstränge –Bündel von einzelnen Fasern - müssen während der Herstellung gleichzeitig überwacht werden. Wenn Carbonfasern reißen, kostet es Zeit und Geld, die beschädigten Fasern auszusortieren. Dies ist nur ein Beispiel für verschiedene Fehler, die bei den Fasern während der Produktion auftreten können.

Deshalb brachte Deniz Sinan Yesilyurt eine Kamera an der Carbonfaseranlage an, die Bilder verschiedener Faserfehler während der Produktion aufnimmt und in einer Datenbank sammelt. Die künstliche Intelligenz im Informationstechnologiesystem der Kamera wertet die Faserfehler aus, indem sie die Bildaufnahmen vorgegebenen Referenzfehlern zuordnet. Dabei erkennt sie verschiedene Faserfehler mit einer Zuordnungsgenauigkeit von 99 Prozent. Der Prozess kann auch für andere Bereiche eingesetzt werden, die chemische Fasern herstellen.

Deniz Sinan Yesilyurt erhielt den Preis vom Verband für Maschinen- und Anlagenbau (VDMA) in Frankfurt am Main. Er ist Bachelorabsolvent am Institut für Textiltechnik (ITA) der RWTH Aachen. Der vollständige Titel seiner Bachelorarbeit: „Entwicklung einer Kl-gestützten Prozessüberwachung unter Verwendung von Machine Learning zur Erkennung von Faserbeschädigungen im Stabilisierungsprozess“.
Der VDMA zeichnete insgesamt vier Abschlussarbeiten unterschiedlicher Hochschulen mit dem Preis aus. Der Preis wird für herausragende Abschlussarbeiten verliehen und wurde in Deutschland, Österreich und der Schweiz ausgeschrieben.

Quelle:

ITA – Institut für Textiltechnik of RWTH Aachen Universit

12.09.2022

Baumwolle: Herausforderungen Traceability und Rohstoffqualität

  • Digitale Ökosysteme
  • Effektivität lokal vernetzter Wertschöpfungsketten
  • Aus welcher Baumwolle besteht mein T-Shirt?
  • Recycling und Faserqualität
  • 15 Jahre CSITC- Rundest: Ergebnisse und Nutzen

Die Bremer Baumwollbörse und das Faserinstitut Bremen e.V. laden gemeinsam am 29. und 30. September zur 36. International Cotton Conference Bremen ein. Unter dem Motto „Cotton Decoded“ wird den Tagungsteilnehmern sowohl in Bremen vor Ort als auch online über eine Tagungsplattform ein anspruchsvolles Programm mit aktuellen Vorträgen und lebhaften Diskussionsrunden geboten.

  • Digitale Ökosysteme
  • Effektivität lokal vernetzter Wertschöpfungsketten
  • Aus welcher Baumwolle besteht mein T-Shirt?
  • Recycling und Faserqualität
  • 15 Jahre CSITC- Rundest: Ergebnisse und Nutzen

Die Bremer Baumwollbörse und das Faserinstitut Bremen e.V. laden gemeinsam am 29. und 30. September zur 36. International Cotton Conference Bremen ein. Unter dem Motto „Cotton Decoded“ wird den Tagungsteilnehmern sowohl in Bremen vor Ort als auch online über eine Tagungsplattform ein anspruchsvolles Programm mit aktuellen Vorträgen und lebhaften Diskussionsrunden geboten.

Die Europäische Union nimmt Textilunternehmen mit ihrem geplanten Lieferkettengesetz in die Verantwortung. Dies erfordert ein Umdenken im Lieferkettenmanagement. Zusätzliche Herausforderungen entstehen durch Fast Fashion, kürzere Zykluszeiten der Textil- und Bekleidungsindustrie sowie Forderungen nach Transparenz und mehr Nachhaltigkeit. Hierbei spielen auch Fragen der für ein Produkt notwendigen Baumwollqualität eine wesentliche Rolle. Mit Methoden der Rückverfolgbarkeit und der Transparenz in Lieferketten sowie den Möglichkeiten zu Beurteilung von Baumwollqualität beschäftigt sich die Internationale Baumwolltagung in ihren Sessions ‚Traceability‘ und ‚Cotton Quality und Testing‘.

Digitale Ökosysteme – was in Zukunft möglich ist!
Gesine Köppe, wissenschaftliche Mitarbeiterin am Institut für Textiltechnik der RWTH Aachen lässt die Konferenzteilnehmer in das Modell eines komplett digital vernetzten Ökosystems eintauchen. Es bietet völlige Transparenz mit der Möglichkeit der Rückverfolgbarkeit innerhalb der gesamten textilen Produktions- und Lieferkette vom Baumwollfeld bis zum Textil- und Bekleidungseinzelhandel. Die Lösung liegt laut Gesine Köppe in der Anwendung einer ‚Distributed Ledger-Technologie‘ mit der Möglichkeit einer gezielten Dokumentation von ausgewählten Transaktionen, wie man sie in ähnlicher Form auch von Blockchains kennt. Jeder Teilnehmer der Supply Chain gibt für das gesamte Netzwerk sichtbar relevante Informationen in ein dezentral geführtes digitales ‚Hauptbuch‘, wie man es aus der Buchführung kennt, ein. Während des Projekts wird ein ständiges Dokumentations- und Informationssystem eingerichtet, um die vertikale und horizontale Integration der Technologien zu gewährleisten. Somit soll der Textil- und Bekleidungsindustrie ein Anreiz durch Kooperation geboten werden.

Baumwolle Usbekistan: Rückverfolgbarkeit von Feld bis zur Spinnerei
Dr. Rinat Gulyaev, Direktor beim Cotton Science-Innovation Center, Tashkent in Usbekistan, stellt in seinem Vortrag ein Projekt vor, das darauf abzielt, Baumwolle und Baumwollprodukte durch digitale Technologie zu identifizieren und zu kennzeichnen. Damit soll eine Rückverfolgbarkeit für die Teilnehmer der Lieferkette von der Baumwollfarm bis zur Textilfabrik geschaffen werden. Dabei kommen moderne internationale Standards und bewährte Verfahren zum Einsatz. Besonderer Wert wird hierbei auf das Zusammenspiel der Digitaltechnologie mit anderen Plattformen im Kontext der digitalen Transformation der usbekischen Wirtschaft gelegt.

Effektivität lokal vernetzter Wertschöpfungsketten
Miriam Paris, Bayer Crop Science, USA, stellt in ihrem Vortrag ein spezielles ‚Field to Closet‘ -Projekt vor, bei dem in Georgia angebaute Baumwolle in Produkten im Medizinbereich Verwendung fand. Die Besonderheit: Die Stoffe für die Berufsbekleidung sind mit dem PROTX2® AV-Schutz des US-Unternehmens Intelligent Fabric Technologies N.A. ausgerüstet. Es handelt sich hierbei um eine antimikrobielle Technologie, die das Wachstum von Bakterien hemmt. Ein Thema, das für den Medizinbereich von hoher Bedeutung ist.

Textil-Tracker: Aus welcher Baumwolle besteht mein T-Shirt?
Gesicherte Herkunftsnachweise sind in der textilen Kette von wesentlicher Bedeutung. Karin Ratovo, wissenschaftliche Mitarbeiterin der Hochschule Niederrhein, Mönchengladbach sowie Markus Bonner, Agroisolab GmbH, Jülich, werden zur Tagung die Untersuchungsergebnisse des Projektes "Textile-Tracker" vorstellen. Agroisolab ist eines der führenden europäischen Laboratorien im Bereich Isotopenanalytik. Im Rahmen der Forschungsarbeit am Projekt wurde analysiert, ob chemische Signaturen von Baumwollfasern in den üblichen Textilverarbeitungsschritten erhalten bleiben. Bei erfolgreicher Validierung besteht die Möglichkeit, eine georeferenzierte Herkunftsdatenbank für Baumwolle und Textilien aufzubauen.

15 Jahre CSITC-Rundtest: Ergebnisse und Nutzen
Seit 2007 organisiert das Faserinstitut Bremen e.V. in Kooperation mit dem International Cotton Advisory Committee (ICAC) und dem US-Landwirtschaftsministerium (USDA) Rundtests zur Standardisierung von Instrumenten-Tests für Baumwolle im Rahmen des Committee on Standardized Instrument Testing of Cotton (CSITC). Es geht um die Überprüfung und Harmonisierung von High Volume-Instrumenten (HVI). Die Ergebnisse von mit HVI-Technik durchgeführten Baumwolltests sind u. a. im Baumwollhandel oder bei Spinnereien gefragt. Deshalb sollte die Prüfung einer bestimmten Baumwollqualität in zertifizierten Laboren international annähernd gleiche Ergebnisse aufweisen. Axel Drieling, Senior Manager Cotton und Mitglied des Vorstands beim Faserinstitut, sowie der neue Leiter der CSITC Task Force und Chefberater für das australische Unternehmen Textile Technical Services, Geelong, Marinus van der Sluijs, stellen die erzielten Fortschritte bei den Tests der letzten 15 Jahre vor. Van der Sluijs strebt an, die Anzahl der Teilnehmer am Rundtest gerade auch auf Seiten der Baumwollverarbeiter zu erhöhen. Dazu werden die Vorteile der Harmonisierung und Überprüfung für die Baumwollproduktion, für den Handel und für die Spinnereien genannt und faktisch untermauert.

Recycling und Faserqualität
Stephan Baz, Leiter des Bereichs Stapelfaser-Technologie am Deutschen Institut für Textil- und Faserforschung, Denkendorf (DIFT) stellt zur Tagung Zwischenergebnisse eines Projekts vor, das Lösungen für die Bewertung von für Reyclingzwecke zerrissene Materialien aus Baumwolle oder synthetischen Fasern mittels bewährter Rohstoffklassifizierung bietet. Im Zuge der Nachhaltigkeitsdebatte ist die Wiederverwertung von Textilien im Rahmen einer Kreislaufwirtschaft inzwischen ein viel diskutiertes Thema. Ziel des Projektes ist es, durch die Optimierung notwendiger Reißprozesse ein für den Spinnprozess qualitativ brauchbares Garn mit möglichst geringem Eigenschaftsverlust herzustellen.

Faserqualität und Entkörnung
Marinus van der Sluijs wirft mit seinem zweiten Vortrag einen Blick auf die Effektivität verschiedener Entkörnungsverfahren bzw. einzelner Prozessstufen bei der Reinigung von Saatbaumwolle. Parallel dazu wurde überprüft, welche Auswirkungen diese konkret auf die Faserqualität haben.
Laut Studie beträgt der durchschnittliche Schmutzanteil von angelieferter Saatbaumwolle in der Regel weniger als 10 Prozent. Im Reinigungsprozess können 20 bis 40 Prozent der Verunreinigungen entfernt werden. Je nach Verfahren fallen aber wesentliche Qualitätsmerkmale wie Längengleichheit, Kurzfaseranteil, Nissenanteil, Dehnfähigkeit, Festigkeit, Feinheit und Reife durchaus unterschiedlich aus. Bei der Auswahl von Baumwolle lohnt es sich, einen Blick darauf zu werfen.

Quelle:

Bremer Baumwollbörse

Foto: Unplash
10.08.2022

Hightech-Zentrum für Baumwoll-Verarbeitung und Faser-zu-Faser-Recycling entsteht in Afrika

Der Impact Fund for African Creatives (IFFAC) hat Pläne vorgestellt, die die westafrikanische Textil- und Bekleidungsindustrie zum Vorbild für die ganze Welt werden lassen sollen. Eine vor wenigen Jahren teilweise stillgelegte Großspinnerei in Ghana wird zu einem High-Tech-Zentrum mit neuster Textiltechnik umgebaut. Geplant ist einerseits, die dort heimische Baumwolle weiterzuverarbeiten und andererseits in das noch wenig praktizierte Faser-zu-Faser-Recycling von Stoffabfällen einzusteigen. Das Werk wird mit grünem Strom aus dem nahe gelegenen Volta-Staudamm betrieben, Rohstoff- und Fertigwarentransporte können auf dem Wasser- oder Schienenweg erfolgen.

Westafrika steht für etwa 6 % des weltweiten Baumwollanbaus, doch wird bislang nur ein geringer Bruchteil auch in Afrika verarbeitet. Afrikanische Baumwolle wird zumeist nach Asien verschifft und dort weiterverarbeitet. Dieses Großprojekt will das ändern und vielfältige ökologische wie auch wirtschaftliche Vorteile bieten.

Der Impact Fund for African Creatives (IFFAC) hat Pläne vorgestellt, die die westafrikanische Textil- und Bekleidungsindustrie zum Vorbild für die ganze Welt werden lassen sollen. Eine vor wenigen Jahren teilweise stillgelegte Großspinnerei in Ghana wird zu einem High-Tech-Zentrum mit neuster Textiltechnik umgebaut. Geplant ist einerseits, die dort heimische Baumwolle weiterzuverarbeiten und andererseits in das noch wenig praktizierte Faser-zu-Faser-Recycling von Stoffabfällen einzusteigen. Das Werk wird mit grünem Strom aus dem nahe gelegenen Volta-Staudamm betrieben, Rohstoff- und Fertigwarentransporte können auf dem Wasser- oder Schienenweg erfolgen.

Westafrika steht für etwa 6 % des weltweiten Baumwollanbaus, doch wird bislang nur ein geringer Bruchteil auch in Afrika verarbeitet. Afrikanische Baumwolle wird zumeist nach Asien verschifft und dort weiterverarbeitet. Dieses Großprojekt will das ändern und vielfältige ökologische wie auch wirtschaftliche Vorteile bieten.

Die Garn- und Gewebeherstellung aus nachhaltig angebauter Baumwolle wird in einem Joint Venture mit der in Shandong, China ansässigen WOL Textiles Ltd. zusammengefasst. Das in Privatbesitz befindliche Unternehmen verfügt über langjährige Erfahrung in der Belieferung des afrikanischen Kontinents. Die moderne Faser-zu-Faser-Recyclinganlage wird in einem getrennten Joint Venture der IFFAC und der Niederländischen Circularity B.V., Etten-Leur betrieben. Der CEO von Circularity B.V., Han Hamers, bringt das über Jahre entwickelte Faser-zu-Faser-Recycling Know-How mit in das Joint Venture ein. So werden rundgestrickten und gewebten Artikel in 100% Recyclingqualität möglich.

Das Gemeinschaftsprojekt wird voraussichtlich weit über tausend Arbeitsplätze schaffen. Der Großteil der hergestellten Produkte soll innerhalb der Region verkauft werden, doch entsprechen sämtliche Prozesse den neuen EU-Anforderungen hinsichtlich der Lieferketten- Sorgfaltspflichten, um zusätzlich auch Exportchancen zu ermöglichen.

Die jährliche Produktionsmenge ist auf 6 Millionen fertige Kleidungsstücke und 25 Millionen Meter Spinnstoffe und Gewebe ausgelegt. Insgesamt werden 30 Millionen US-Dollar in den Standort investiert. Der Betrieb wird 2023 starten.

Weitere Informationen:
IFFAC Afrika chemisches Recycling
Quelle:

Circularity Germany GmbH i.G.

03.08.2022

17. Chemnitzer Textiltechnik-Tagung (CTT) am 28. + 29. September

Unter dem Motto „Textiltechnik als Schlüsseltechnologie der Zukunft“ informieren sich Maschinenproduzenten, Anwender, Textilfachleute und Forschende über neueste Entwicklungen in den Themenbereichen:

  • Ressourceneffiziente und nachhaltige Prozesse
  • Textiltechnologien für den Leichtbau
  • Digitalisierung in der textilen Produktion
  • Additive Fertigung mit Fasern und Textilien

Das Format bietet neben klassischen Vorträgen im Plenarteil und vier Themenkomplexen auch Pitches sowie studentische und wissenschaftliche Projektvorstellungen bzw. Exponate-Präsentationen.

Im Plenarteil der Veranstaltung werden der europäische GFK-Markt vorgestellt und die Bedeutung des Mittelstandes für die deutsche Volkswirtschaft näher beleuchtet.

Ausgewählte technologische Highlights der Fachvorträge in diesem Jahr sind neuartige Verfahren zum 3D-Druck, innovative Carbon-Textilien für die Betonarmierung sowie neue Digitalisierungsstrategien für den Maschinenbau und die Textilindustrie.

Kooperationspartner der diesjährigen Veranstaltung sind das tschechische Generalkonsulat und tschechische Branchenverbände.

Unter dem Motto „Textiltechnik als Schlüsseltechnologie der Zukunft“ informieren sich Maschinenproduzenten, Anwender, Textilfachleute und Forschende über neueste Entwicklungen in den Themenbereichen:

  • Ressourceneffiziente und nachhaltige Prozesse
  • Textiltechnologien für den Leichtbau
  • Digitalisierung in der textilen Produktion
  • Additive Fertigung mit Fasern und Textilien

Das Format bietet neben klassischen Vorträgen im Plenarteil und vier Themenkomplexen auch Pitches sowie studentische und wissenschaftliche Projektvorstellungen bzw. Exponate-Präsentationen.

Im Plenarteil der Veranstaltung werden der europäische GFK-Markt vorgestellt und die Bedeutung des Mittelstandes für die deutsche Volkswirtschaft näher beleuchtet.

Ausgewählte technologische Highlights der Fachvorträge in diesem Jahr sind neuartige Verfahren zum 3D-Druck, innovative Carbon-Textilien für die Betonarmierung sowie neue Digitalisierungsstrategien für den Maschinenbau und die Textilindustrie.

Kooperationspartner der diesjährigen Veranstaltung sind das tschechische Generalkonsulat und tschechische Branchenverbände.

Quelle:

Förderverein Cetex Chemnitzer Textilmaschinenentwicklung e.V.

(c) P3N MARKETING GMBH
13.03.2022

BMBF verlängert Förderung für WIR!-Bündnis SmartERZ

SmartERZ wird bis Ende 2025 weiter durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Mit einer Fördersumme von 6 Mio. EUR startet das Bündnis mit seinen Partnern, den laufenden Vorhaben und den neu eingereichten Projekten in die zweite Phase der Umsetzung.

SmartERZ wird bis Ende 2025 weiter durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Mit einer Fördersumme von 6 Mio. EUR startet das Bündnis mit seinen Partnern, den laufenden Vorhaben und den neu eingereichten Projekten in die zweite Phase der Umsetzung.

Die Vorbereitungen für die zweite Förderphase des WIR!-Bündnisses „SmartERZ: Smart Composites Erzgebirge“ starteten im Juli 2021 mit dem Aufruf an alle 197 Bündnispartner (Stand: 01/2022) zur Einreichung von Onepagern. 22 dieser einseitigen Projektskizzen gingen insgesamt bis Ende August 2021 beim Verbundkoordinator Wirtschaftsförderung Erzgebirge GmbH (WFE) ein. Abgebildet wurden darin innovative Ideen und Projekte in den Bereichen Technologieentwicklung (z. B. Oberflächenfunktionalisierung), der Entwicklung von Applikationen (z. B. in den Bereichen Automotive und Bauwesen) sowie Innovationen bei der Organisations-, Fachkräfte- und Regionalentwicklung. Nach der Begutachtung durch den SmartERZ-Beirat wurden 13 innovative Projektideen für die Abgabe von vollständigen Projektskizzen ausgewählt. Diese ergänzen die Strategie des Bündnisses SmartERZ. Mit zahlreichen Partnern aus Wirtschaft, Wissenschaft und Gesellschaft soll das Erzgebirge durch Innovationen im Maschinenbau, der Elektrotechnik, Kunststoffverarbeitung, Oberflächentechnik und Textiltechnik zu einem zukunftsfähigen Wirtschaftsstandort entwickelt werden. Ziel ist die Transformation der Region Erzgebirge zu einem führenden Hightech-Standort für neuartige, funktionalisierte Verbundwerkstoffe, sogenannte Smart Composites. Diese Materialien haben ein großes Innovations- und Wachstumspotential. Sie gelten als Schlüsseltechnologie und ermöglichen langfristig eine hohe regionale Wertschöpfung.

Im Ergebnis der Forschungs- und Entwicklungsprojekte entstehen funktionalisierte Textilien, die mit Sensoren, Aktoren oder Leiterbahnen ausgestattet werden, um beispielsweise Körperfunktionen oder Transportschäden messen und melden zu können, oder funktionalisierte Matrizen, z. B. Formgedächtnispolymere, deren Form nach vorheriger „Programmierung“ thermoreversibel geändert werden kann, oder funktionalisierte Oberflächen mit Selbstheilungseigenschaften bzw. optischen und haptischen Effekten. Darauf aufbauend können funktionsintegrierte Leichtbauelemente (auch: Adaptronikleichtbau), wie Kunststoffräder mit erweiterten Funktionen, z. B. elektrische Radnabenmotoren, entwickelt werden.

Auf Basis des im Oktober 2021 beim Projektträger Jülich (PtJ) eingereichten Konzepts, der Präsentation am 25. Januar 2022 beim BMBF und der anschließenden Diskussion wurden der bisherige Fortschritt, die weitere Planung für die Umsetzungsphase und die Aussichten für eine Verstetigung des Bündnisses von der Expertenjury positiv mit folgendem Statement bewertet. „Das Bündnis ist wirtschaftsgetrieben und stark regional verwurzelt, was eine hohe Anwendungsorientierung und spätere Verwertbarkeit der Ergebnisse sowie konkrete Effekte in der Region erwarten lässt.“ In den kommenden Wochen wird sich der SmartERZ-Beirat erneut beraten, um die endgültige Entscheidung zu den eingereichten Projektskizzen zu treffen. Der Start in die zweite Förderphase, die konkrete Planung mit Timeline und das gemeinsame Ziel bis 2025hat die WFE bereits fest im Blick. Um auch die Bündnispartner und interessierte Unternehmen aus Wirtschaft und Wissenschaft mit einzubeziehen, gibt das SmartERZ-Managementteam am 7. April 2022 in der Online-Veranstaltung SmartCONNECT ein Update zu Neuerungen, Zeitplan und geplanten Projekten.

Als einwohnerstärkster Landkreis Ostdeutschlands hat das Erzgebirge eine solide Entwicklungsbasis. Mit der zweithöchsten Industrie- und Handwerkerdichte in Sachsen ist die Region in zahlreichen B2B-Zulieferketten etabliert und kann eine ausgeprägte Branchenvielfalt vorweisen. Auch die Arbeitslosenquote ist im Erzgebirge eine der niedrigsten in ganz Deutschland mit einem Höchststand an sozialversicherungspflichtigen Arbeitnehmern. Dem gegenüber stehen kleinteilige Firmenstrukturen mit geringer Produktivität, die Abhängigkeit vom Metall-Automotive-Sektor mit geringen Margen in Transformation und das niedrigste Lohnniveau auf Basis des Medianentgeltes. Hier setzt SmartERZ an: Das Netzwerk verbindet kleine und mittelständische Unternehmen und bezieht auch aktuelle Forschungsprojekte ein, so dass sich Kooperationen finden und die Innovationskraft der Region durch Wissenstransfer und Zusammenarbeit voll ausgeschöpft werden kann. Unter den 197 Bündnispartnern befinden sich 152 Wirtschaftsunternehmen, 30 wissenschaftliche und 15 gesellschaftliche Einrichtungen, die gemeinsam aktiv werden können. Der Fokus auf Smarte Composite verhilft dem Erzgebirge und der geballten Technologiekompetenz der ansässigen Unternehmen zu einer überregionalen Sichtbarkeit, was wiederum zu Aufträgen mit größerem Volumen beitragen soll. Basierend auf dieser erwünschten Entwicklung können Fachkräfte gehalten und neue Stellen zu besseren Konditionen geschaffen werden.

Die digitale Innovationsplattform innovERZ.hub wurde im Hinblick auf die projektübergreifende Innovationsentwicklung im Erzgebirge, den vorbereitenden Austausch und weitere Kooperationsvorhaben im November 2020 von der WFE ins Leben gerufen. Wirtschaftsunternehmen, öffentliche Institutionen und wissenschaftliche Einrichtungen können hier online Kooperations-, Umsetzungs- und Fertigungspartner suchen und finden.

 

Weitere Informationen:
SmartErz Composites Förderung
Quelle:

P3N MARKETING GMBH

(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

AVK – Industrievereinigung Verstärkte Kunststoffe vergibt Innovationspreise

Die AVK – Industrievereinigung Verstärkte Kunststoffe hat 2021 erneut Innovationspreise an Unternehmen, Institute und deren Partner vergeben. Jeweils drei Composites-Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden während des neuen Events JEC Forum DACH am 23. November 2021 ausgezeichnet, das in seiner ersten Ausgabe in Frankfurt stattfand.

„Auch in diesem Jahr waren wieder viele sehr interessante und vielversprechende Produkte und Verfahren dabei. Der Innovationspreis zeigt, wie leistungsfähig, wirtschaftlich und nachhaltig sich Faserverstärkte Kunststoffe und mit ihnen die Firmen und Institute präsentieren,“ erklärte AVK-Geschäftsfüher Dr. Elmar Witten. Die hochkarätig besetzte Fachjury ehrte in diesem Jahr u.a. folgende Innovationen:

Die AVK – Industrievereinigung Verstärkte Kunststoffe hat 2021 erneut Innovationspreise an Unternehmen, Institute und deren Partner vergeben. Jeweils drei Composites-Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden während des neuen Events JEC Forum DACH am 23. November 2021 ausgezeichnet, das in seiner ersten Ausgabe in Frankfurt stattfand.

„Auch in diesem Jahr waren wieder viele sehr interessante und vielversprechende Produkte und Verfahren dabei. Der Innovationspreis zeigt, wie leistungsfähig, wirtschaftlich und nachhaltig sich Faserverstärkte Kunststoffe und mit ihnen die Firmen und Institute präsentieren,“ erklärte AVK-Geschäftsfüher Dr. Elmar Witten. Die hochkarätig besetzte Fachjury ehrte in diesem Jahr u.a. folgende Innovationen:

Kategorie Forschung und Wissenschaft
Den 1. Platz in der Kategorie „Forschung und Wissenschaft“ erhielt das Deutsche Zentrum für Luft- und Raumfahrt (DLR) mit der Bondline Control Technologie (BCT). Das innovative Verfahren dient der Qualitätskontrolle und -sicherung von Klebverbindungen. Kernelement ist ein poröses Gewebe, das mittels Epoxidklebstoff oder Matrixharz auf eine Fügefläche appliziert wird. Das Abschälen des Gewebes erzeugt eine chemisch reaktive und hinterschnittige Oberfläche und kann gleichzeitig als Adhäsionstest zum Untergrund dienen Die BCT bietet verschiedene Anwendungsmöglichkeiten. Zum Beispiel können Abreißgewebe durch das BCT-Gewebe ersetzt werden, um Verbundbauteile mit optimierter Fügefläche herzustellen. Der kostengünstige Schältest kann in der Couponprüfung und zur Prozesskontrolle genutzt werden. Außerdem kann die kombinierte Haftprüfung und Oberflächenvorbehandlung zur Qualitätssicherung geklebter Reparaturen an Faserverbundstrukturen eingesetzt werden.

Den 2. Platz erhielt das Institut für Textiltechnik (ITA) der RWTH Aachen University und seinen Partnern AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR mit „StoneBlade - Leichtbau mit Granit für die Windindustrie“. Die Innovation ermöglicht die Reduzierung von nicht-recyclefähigem Material im Rotorblattbau. Gleichzeitig wird das Gewicht reduziert und die mechanischen Eigenschaften zur Standsicherheit von Windkraftanlagen erhöht. Hierzu wird glasfaserverstärkter Kunststoff in den Blattkomponenten durch Hartgestein als naturbasiertes, kostengünstiges und verwertbares Leichtbaumaterial ersetzt. Die auf wenige Millimeter Dicke geschliffenen Gesteinsplatten werden in ein Faserverbund-Laminat mit Carbonfasern eingebracht und so für wechselnde Lastfälle stabilisiert. Das vorgespannte Material ist im Verbund druckstabil und kann ohne einen Verlust von Steifigkeit Zugkräfte im Dauerwechsellastfall aufnehmen.

Platz 3 ging an die Technische Universität Dresden – Institut für Leichtbau und Kunststofftechnik (ILK) mit dem Partner Mercedes Benz AG mit der interdisziplinären Entwicklung eines hochintegrierten induktiven Lademoduls für Elektrofahrzeuge. Das ultra-dünne Lademodul sollte dabei den Raum im Fahrzeugunterboden optimal ausnutzen ohne die Bodenfreiheit zu verringern. Dafür wurde ein interdisziplinärer Entwicklungsprozess angewendet und eine übergreifende elektrische, mechanische und prozesstechnische Charakterisierung von Hochfrequenzlitzen, ferromagnetischer Folie und Metalldrahtgeweben durchgeführt und ein Simulationsmodelll erstellt. Das Ergebnis ist ein Demonstrator für ein Ladesystem mit  einer Aufbauhöhe von 15 mm und einem Gesamtgewicht von 8 kg. Es erreicht eine Übertragungseffizienz von bis zu 92 Prozent bei 7,2 kW Nennleistung und aktiver Luftkühlung. Der Hardware-Demonstrator wurde in einem 3-stufigen Prozess unter Nutzung des RTM- und VARI-Verfahrens hergestellt.

Übersicht aller Preisträger in den drei Kategorien:
Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Verkehrsschilder von Nabasco (N-BMC)“ – Nabasco Products BV und Lorenz Kunststofftechnik GmbH, Partner: Pol Heteren BV und NPSP BV
2. Platz: „Neuentwickeltes ultratoughes Vinylesterharz für den Großschiffbau“ Evonik Operations GmbH
3. Platz: „Lufteinlassgehäuse in Multi-Material-Design für Gasturbinen“ – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH und Leichtbau-Systemtechnologien KORROPOL GmbH
Kategorie „Innovative Prozesse und Verfahren“
1. Platz: „In-Mould Wrapping“ werkzeugfallende, folierte Faserverbundbauteile für Exterieur-Anwendungen– BMW Group, Partner: Renolit SE
2. Platz: „Adaptive automatisierte Reparatur von Composite-Strukturkomponenten in der Luftfahrt“ – Lufthansa Technik AG, Partner: iSAM AG
3. Platz: „Automatisierte Oberflächenvorbehandlung mittels VUV-Excimer Lampen – CTC GmbH
Kategorie „Forschung und Wissenschaft“
1. Platz: „Bondline Control Technologie (BCT)“ – Deutsches Zentrum für Luft- und Raumfahrt (DLR)
2. Platz: „StoneBlade - Leichtbau mit Granit für die Windindustrie“ – Institut für Textiltechnik der RWTH Aachen University, Partner: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3. Platz: „Interdisziplinäre Entwicklung eines hochintegrierten induktiven Lademoduls für Elektrofahrzeuge“ – Technische Universität Dresden – Institut für Leichtbau und Kunststofftechnik (ILK), Partner: Mercedes Benz AG

Die Ausschreibung für den nächsten Innovationspreis startet Ende Januar 2022.

Quelle:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

(c) Kai-Chieh Kuo
17.11.2021

ITA-Doktorand Kai-Chieh Kuo erhält Förderpreis der Walter Reiners-Stiftung

Kai-Chieh Kuo, Doktorand am Institut für Textiltechnik der RWTH Aachen, wurde für seine Masterarbeit mit dem Titel „Modifikation des Schlauchwebprozesses feiner Garne zur Herstellung von gewebten ultra-low profile Stentgrafts“ mit dem Förderpreis beste Masterarbeit des Deutschen Textilmaschinenbaues 2021 ausgezeichnet. Der Preis ist mit 3.500€ dotiert. Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, hat den Preis anlässlich der ADD International Textile Conference am 9. November 2021 virtuell überreicht.

Kai-Chieh Kuo, Doktorand am Institut für Textiltechnik der RWTH Aachen, wurde für seine Masterarbeit mit dem Titel „Modifikation des Schlauchwebprozesses feiner Garne zur Herstellung von gewebten ultra-low profile Stentgrafts“ mit dem Förderpreis beste Masterarbeit des Deutschen Textilmaschinenbaues 2021 ausgezeichnet. Der Preis ist mit 3.500€ dotiert. Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, hat den Preis anlässlich der ADD International Textile Conference am 9. November 2021 virtuell überreicht.

Die minimalinvasive endovaskuläre Aortenreparatur (EVAR) mit textilen Stentgraftsystemen ist heutzutage ein klinisch etabliertes Therapieverfahren zur Behandlung von abdominalen Aortenaneurysmen (AAA) – krankhaften Aussackungen der Hauptschlagader. Aufgrund zu großer Profilstärken der gefalteten Stentgraftsysteme besteht aktuell bei der Implantation ein hohes Risiko, verengte oder stark angulierte Zugangsgefäße von innen zu verletzen. Abhilfe sollen Stentgraftsysteme mit kleinerer Profilstärke schaffen, die durch geringere Biegesteifigkeiten komplizierte Zugangswege überwinden sollen. Ein möglicher Lösungsansatz zur Reduktion der Systemprofile ist der Einsatz dünnwandiger Schlauchgewebe aus hochfeinen Multifilamentgarnen (≤20 dtex) als Graftmaterial.

Bislang ist es textiltechnisch nicht möglich, die feinen Garne mit der geforderten hohen Fadendichte (>200 Fäden/cm) und der verfügbaren Webtechnik zu verarbeiten, um eine ausreichende Dichtigkeit gegenüber Blut zu gewährleisten. In seiner Masterarbeit hat Kai-Chieh Kuo durch geeignete Modifikationen einer Schützenbandwebmaschine sowie Anpassungen in der Webereivorbereitung erstmals eine hochdichte Schlauchwebverarbeitung von Feinstfilamentgarnen ermöglicht. Dabei entwickelte er unter anderem eine neuartige innovative Riettechnologie, die die Kettfadenreibung im Fachwechsel reduziert und so die Prozessstabilität des dichten Schlauchwebprozesses feiner Garne verbessert.

Durch die Prozessmodifikation wurden daraufhin hochdichte, dünnwandige Schlauchgewebe hergestellt, die sich zur Herstellung eines Stentgrafts eignen. Das Potential dieser Schlauchgewebe steckt vor allem im höchst dünnwandigen Gewebeprofil, das gleichzeitig gut gegenüber Blut abdichtet. Durch den Einsatz dieser neuartigen Schlauchgewebe als Graftmaterial von Stentgrafts kann das Systemprofil des gefalteten Stentgraftsystems verringert werden, ohne Einbußen in der Blutdichtigkeit des Implantats eingehen zu müssen.

Die von Herrn Kuo entwickelte Technologie kann nicht nur für Stentgraftsysteme verwendet werden, sondern bietet große Einsatzmöglichkeiten in sämtlichen weiteren endovaskulären Implantaten wie bspw. Transkatheterherzklappen, gecoverte Stents und kleinlumigen Gefäßprothesen.