Research publications

3 results
28.01.2026

Echtzeitfähiges Monitoring-System für textile Membranen

Fabrics Sensor Technology Technical Textiles Smart Textiles Tests

Abstract

Im IGF‑Projekt 01IF22600N wurde am ITM der TU Dresden ein echtzeitfähiges, fasersensorbasiertes Monitoring‑System für textile Membranen entwickelt. Textile Membranstrukturen werden in zahlreichen technischen Anwendungen eingesetzt, jedoch fehlen bislang Methoden zur kontinuierlichen, vollflächigen Zustandsüberwachung. Das Projektziel bestand darin, ein integriertes Sensorsystem zu realisieren, das den globalen Spannungszustand der Membran erfasst und so Hinweise auf Überlastungen und Schädigungen liefert. Hierzu wurden geeignete fadenförmige Sensormaterialien identifiziert, Sensorstrukturen mittels Stick- und Webverfahren in die Membran integriert und robuste Kontaktierungs- und Beschichtungsstrategien entwickelt. Auf Basis experimenteller Daten und FEM‑Simulationen entstand ein KI‑basiertes Regressionsmodell, das Lastpositionen in Echtzeit mit ±3 mm Genauigkeit und Lastbeträge mit ±0,6 N bestimmt und daraus den vollflächigen Spannungszustand ableitet. Die Ergebnisse zeigen, dass die mechanische Leistungsfähigkeit der Membran trotz Sensorintegration weitgehend erhalten bleibt und textile Strukturen wirksam zu intelligenten, selbstüberwachenden Tragwerken erweitert werden können.

Report

Einleitung

Textile Membranstrukturen haben sich als leichte, flexible und zugleich leistungsfähige Bauelemente in zahlreichen technischen Anwendungen etabliert, etwa in architektonischen Dach- und Fassadensystemen, in mobilen und stationären Schutzbauten oder im maritimen Umfeld. Ihre Tragfähigkeit und Dauerfestigkeit hängen jedoch entscheidend von statisch und dynamisch herrschenden Beanspruchungen ab, da lokale Überlastungen und unerkannte Schädigungen im Extremfall zu plötzlichen Strukturversagen führen können. In der Praxis basieren Inspektionen bislang überwiegend auf visuellen Kontrollen und punktuellen Messungen, die weder eine kontinuierliche Zustandsbeobachtung noch eine flächendeckende Bewertung des Membranverhaltens erlauben und daher nur eingeschränkte Aussagekraft für eine vorausschauende Instandhaltung besitzen. Vor diesem Hintergrund verfolgt das IGF‑Vorhaben 01IF22600N das Ziel, textile Membranen in intelligente, sensorisch funktionalisierte Strukturen zu transformieren, die ihren eigenen Spannungs- und Schädigungszustand in Echtzeit erfassen. Dazu wird eine textile Sensorstruktur [1] in die Membranstruktur integriert [2, 3] und deren Messwerte in Kombination mit Simulationsergebnissen [4, 5] durch KI-basierte Algorithmen [6] ausgewertet.

Zielsetzung und Lösungsweg

Zentrales Ziel des Projekts war die Kreierung eines fasersensorbasierten Monitoring-Systems, das eine vollflächige Spannungsverteilung textile Membranen ermittelt und somit Hinweise auf Ermüdungserscheinungen und strukturelle Schädigungen geben kann. Hierzu wurden fadenförmige Sensormaterialien auf ihre Dehnungseigenschaften und Eignung für den Einsatz im Verbund mit der Membran untersucht. Mit den Vorzugsvarianten wurden Bindungsmuster für Gewebe mit integrierter Sensorik- und Energieversorgungsstruktur entwickelt und gefertigt. Diese Muster wurden mechanisch charakterisiert bei gleichzeitiger Erfassung der Sensormesswerte. Gleichzeitig wurden für die Prüfszenarien die globale Dehnungsverteilung simuliert. Auf Grundlage dieser Daten wurden Algorithmen entwickelt, die aus den Sensormesswerten die globale Dehnungsverteilung errechnen und in Echtzeit z. B. als Heatmap ausgeben. Das entwickelte System wurde erfolgreich umgesetzt und in einen Funktionsdemonstrator integriert.

Ergebnisse

Fadenförmige Sensormaterialien

Für die Suche nach einem geeigneten Fadensensormaterial wurden besilberte Polyamidgarne, pseudoelastische Formgedächtnislegierungen (FGL) und Präzisionswiderstandslegierungen als aussichtsreiche Varianten ausgewählt. Untersucht wurde das Verhalten des elektrischen Widerstands unter Dehnung, die Temperaturstabilität und die Eignung für die spätere textiltechnische Integration in den Membranverbund. Als Charakterisierungsmethode wurden zyklische Zugversuche bis 10 % Dehnung gewählt, die unter verschiedenen Temperaturen zwischen -20 °C und 70 °C wiederholt wurden. Im Ergebnis dieser Untersuchungen erwiesen sich FGL aufgrund ihrer großen Temperaturabhängigkeit und des stark nicht-linearen Widerstandsverhalten als ungeeignet. Sowohl Präzisionswiderstandslegierungen (Isaohm® / Isabellenhütte) als auch besilberte Polyamidgarne (SilverTech+® 150 / Amann & Söhne GmbH & Co. KG) erschienen grundsätzlich als geeignet und wurden bei den folgenden Versuchen berücksichtigt, wobei die Präzisionswiderstandslegierungen aufgrund der geringeren Temperaturabhängigkeit und des linearen Sensorverhaltens als Vorzugsvariante identifiziert wurden. Für die Realisierung des elektrischen Kontaktierungsnetzwerks wurde aufgrund der guten textilen Verarbeitbarkeit und des geringen elektrischen Grundwiderstands (<< 1 Ω/m) ein Feindraht (LitzWire / Rudolf Pack GmbH & Co. KG) ausgewählt.

Entwicklung und Herstellung von Funktionsmustern

Für die Entwicklung eines Funktionsmusters wurden zwei Ansätze verfolgt. Zum einen wurden Muster mittels der Sticktechnologie und des TFP-Verfahrens hergestellt, zum anderen wurde der fadenförmige Sensor und die textile Zuleitung bereits im Webprozess in das textile Halbzeug integriert. Für die gestickten Muster wurde auf einer kommerziell erhältlichen Membran (HEYtex tentorium 900) gearbeitet. Dabei wurden sowohl das besilberte Polyamidgarn als auch die Präzisionswiderstandslegierung im Tailored-Fiber-Placement-Verfahren (TFP) in Mändern aufgebracht (Abbildung 1), um die Sensorlänge zu vergrößern und damit die Messgenauigkeit zu erhöhen. Zudem wurden die Sensorpatches in verschiedenen Orientierungen aufgebracht, um die Dehnung in verschiedenen Richtungen zu erfassen. Parallel dazu wurde das besilberte Polyamidgarn Shieldex® 117, welches in der textilen Verarbeitung robuster ist als SilverTech+® 150, mit den regulären Sticharten Zick-Zack- und Kettelstich ohne Hilfsfaden aufgestickt.

Für die gewebten Muster wurde ein Raster mit Schuss- und Kettfäden aus Zuleitungs- und Sensormaterial entworfen, das mustertechnisch mit dem Grundgewebe aus Polyester kombiniert wurde (Abbildung 2). So konnten Anordnungen mit Sensoren in Kett- und Schussrichtungen realisiert werden, die später die Berechnung der Dehnungsbeanspruchung in verschiedenen Richtungen erlaubt. Insgesamt wurden drei Muster realisiert, welche sich durch Länge und Position der Sensoren unterschieden. Die dritte Variante war ein Hybrid, der ein gewebtes Zuleitungsnetzwerk mit nachträglich aufgestickten Sensorpatches kombinierte. In den leitfähigen Strukturen wurden zwei Arten von Kreuzungspunkten, mit und ohne elektrischen Kontakt, realisiert und bindungstechnisch umgesetzt. Die Muster wurden auf einer Greiferwebmaschine mit Mittenübergabe produziert (Lindauer Dornier P1) gefertigt.

Entwicklung von Kontaktierungslösungen

Ein wesentlicher Entwicklungsschritt bestand in der Ausarbeitung praxistauglicher Kontaktierungsstrategien für das Sensornetzwerk. Konventionelle Lötverfahren führten aufgrund hoher Prozesstemperaturen zu Schäden am textilen Grundmaterial, während alternative leitfähige Kleber zunächst zu hohe Übergangswiderstände im kΩ‑Bereich aufwiesen. Durch den Einsatz eines Epoxid‑Silberleitklebers (8330S) mit definierter Aushärtung (160 °C, 90 s, leichter Druck) konnten hingegen stabile, niederohmige Kontaktierungen sowohl innerhalb des Gewebes als auch an den Warenrändern realisiert werden; in Kombination mit Crimpkontakten wurde eine mechanisch robuste und elektrisch zuverlässige Verbindung zu externer Messtechnik erreicht.

Beschichtung des textilen Halbzeugs mit integrierter Sensorstruktur

Die anschließende Beschichtung der funktionalisierten Gewebe mit einer vom Industriepartner bereitgestellten PVC‑Paste (plus 5 % Haftvermittler) erfolgte auf einem LineCoater der Firma COATEMA (Abbildung 3). Es zeige sich, dass mit geringer Auftragsdicke sowohl integral eingewebte (0,2 mm) als auch gestickte Sensor- und Zuleitungsstrukturen (0,7 mm) in die Membran integriert werden konnten, sodass die mechanischen Basiseigenschaften der Membran nur minimal verändert wurden, während eine vollständige Überdeckung und elektrische Isolation der Sensorik erreicht wurde. Ergänzende Versuche mit Transferfolien und direkt applizierten PVC‑Klebschichten zeigten, dass auch manuelle oder halbmanuelle Beschichtungsstrategien für lokale oder nachträgliche Funktionalisierungen geeignet sind, insbesondere bei kleineren Membranflächen.

Charakterisierung der Membran mit integrierter Sensorik

Die gefertigten Muster wurden zunächst in uniaxialen Zugversuchen geprüft. Dabei wurden neben den grundlegenden mechanischen auch die elektromechanischen Eigenschaften bestimmt. Dabei lag ein besonderes Augenmerk auf dem Einfluss der integrierten Sensorik auf die strukturelle Integrität. Dazu wurde sowohl in Schuss- als auch in Kettrichtung geprüft. Die gefertigten Muster lagen mit einer maximalen Kraft von 3810 N bei 23,2 % Dehnung in Schussrichtung und 4100 N bei 24,9 % Dehnung in Kettrichtung auf einem ähnlichen Niveau wie das kommerzielle Produkt der Firma Heytex (Schuss: 3780 N bei 25,8 %; Kett: 3920 N bei 20,6 %). Entsprechend war nicht davon auszugehen, dass die mechanische Leistungsfähigkeit durch die Integration des Sensornetzwerks beeinflusst wird.

Entwicklung von Algorithmen zur vollflächigen Dehnungszustandserfassung

Basierend auf biaxialen Zugversuchen der kommerziellen Membran wurden FE-Modelle für die vollflächige Simulation der Beanspruchungszustände erstellt. Neben der Datenbasis für die Algorithmenentwicklung konnte so auch die Auswahl geeigneter Sensorlayouts unterstützt werden. Die Modellierung basierte auf Schalenelementen mit anisotropem Materialmodell. Auf Basis des kalibrierten Materialmodells wurden Simulationen mit zufällig variierten Lastpositionen und -größen durchgeführt, die einen Teil der Datenbasis für die Algorithmenentwicklung bildeten.

Das den Algorithmen zugrundeliegende KI-Modell basierte auf einem regressiven Modell. Dazu wurden die zuvor simulierten Lastfälle auf den Demonstrator aufgebracht. Die entstandenen Sensormesswerte dienten dem Training des Modells. Im Anschluss wurde das Modell anhand der Parameter Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) und Bestimmtheitsmaß (R²) bewertet. Für den Funktionsdemonstrator, der aus einer quadratischen, eben aufgespannten Membran bestand, zeigte sich eine hohe Genauigkeit für die Positionsbestimmung im einstelligen mm-Bereich. Auch der Betrag der Last wurde mit einem Bestimmtheitsmaß von 0,9604 präzise bestimmt. Das System erreicht ± 3 mm Ortsauflösung und ± 0,6 N Kraftgenauigkeit bei Demonstratorlasten < 50 N und ist bis hin zu kN-Lastbereiche skalierbar. Auf der Grundlage der bestimmten Werte für die Position und den Betrag eines Lasteintrags wurde über mehrstufige k-Nearest-Neighbor-Modelle der zugehörige vollflächige Spannungszustand bestimmt. Das entstandene Modell zeigte mit einer Abweichung von unter 5 % zur FEM-Referenz eine hohe Regressionsgüte. Zudem erwies sich das Modell allgemein als sehr stabil und erlaubte die angestrebte Echtzeitbestimmung der Spannungsverteilung. Für den Funktionsdemonstrator wurden die Ergebnisse des Modells in Echtzeit auf einer Displayeinheit neben der Membran visualisiert (Abbildung 4), sodass die Auswirkung aufgebrachter Belastungen für den Nutzer sofort ersichtlich waren.

 

Zusammenfassung und Ausblick

Zusammenfassend zeigt das IGF Projekt MeMo, dass sich PVC‑beschichtete PES‑Membranen durch die Kombination geeigneter Sensormaterialien, textiler Integrationsstrategien und robuster Kontaktierungs- und Beschichtungsverfahren zu intelligenten, echtzeitfähigen Tragstrukturen weiterentwickeln lassen. Die experimentellen Ergebnisse belegen, dass die mechanische Leistungsfähigkeit der Membran trotz Integration der Sensorik weitgehend erhalten bleibt und die funktionalen Anforderungen – insbesondere bezüglich Messbereich, Temperaturstabilität und Langzeitverhalten der ausgewählten Sensormaterialien – erfüllt werden. Im Projekt wurde ein KI-basierter Regressionsansatz entwickelt, der aus textilintegrierten Sensorsignalen in Echtzeit Lastpositionen und -beträge ermittelt und daraus vollflächige Spannungszustände ableitet, ohne während des Betriebs numerische Simulationen zu benötigen. Der Ansatz zeichnet sich durch hohe Robustheit gegenüber sensorbedingten Streuungen sowie geringe Anforderungen an Rechenleistung und Trainingsdaten aus. Die zugrunde liegende Methodik ist grundsätzlich auf andere großflächige, deformierbare Strukturen mit integrierter Sensorik übertragbar, etwa in der textilen Architektur, im Leichtbau oder bei membran- und verbundbasierten Struktursystemen bspw. im maritimen Bereich.

Gleichzeitig machen die Untersuchungen deutlich, dass die Art der Integration und Kontaktierung einen erheblichen Einfluss auf die Qualität der Sensorsignale besitzt: Inline‑kontaktierte, integral eingewebte Sensoren sind technologisch anspruchsvoll und hinsichtlich Signalstabilität derzeit noch limitiert, während gestickte Sensornetzwerke mit klar definierten, gut zugänglichen Kontaktstellen deutlich robustere und auswertefreundlichere Signale liefern. Damit liefern die Arbeiten nicht nur einen vollständigen technischen Baukasten, sondern auch eine klare Präferenz für die weitere Systementwicklung in Richtung gestickter, hybrider Membranlösungen.

Im Bereich der mechanischen und elektromechanischen Charakterisierung erscheint eine Vertiefung biaxialer Prüfprogramme an funktionalisierten Membranen sinnvoll. Diese würden eine noch engere Verknüpfung von experimentellen und numerischen Daten erlauben und die Validierung der in den FEM‑Modellen verwendeten Material- und Schädigungsbeschreibungen auf das Sensor‑Membran‑System als Ganzes ausdehnen. Parallel dazu können die auf den bisherigen Daten aufbauenden Algorithmen zur Lastlokalisation und Spannungsrekonstruktion um weitere Lastkollektive, komplexere Randbedingungen und zusätzliche Fehlerbilder erweitert werden, sodass das Monitoring-System langfristig auch in stark variierenden Einsatzszenarien zuverlässig arbeitet.

Auf dieser Basis lassen sich perspektivisch Fertigungs- und Nachrüstkonzepte entwickeln, mit denen intelligente, selbstüberwachende Membranstrukturen in unterschiedlichen Branchen – von der Bauindustrie über Schutz- und Sicherheitsanwendungen bis hin zum maritimen Bereich – umgesetzt werden können.

Danksagung

Das IGF-Vorhaben 01IF22600N der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Literatur

[1]   J. Mersch, C. A. G. Cuaran, A. Vasilev, A. Nocke, C. Cherif, and G. Gerlach, "Stretchable and Compliant Textile Strain Sensors," IEEE Sensors J., vol. 21, no. 22, pp. 25632–25640, 2021, doi: 10.1109/JSEN.2021.3115973.

[2]   E. Haentzsche, R. Mueller, T. Ruder, A. Nocke, and C. Cherif, "Integrative Manufacturing of Textile-Based Sensors for Spatially Resolved Structural Health Monitoring Tasks of Large-Scaled Composite Components," MSF, 825-826, pp. 571–578, 2015, doi: 10.4028/www.scientific.net/MSF.825-826.571.

[3]   K. Bremer, F. Weigand, Y. Zheng, L. S. Alwis, R. Helbig, and B. Roth, "Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors," Sensors (Basel, Switzerland), vol. 17, no. 2, 2017, doi: 10.3390/s17020345.

[4]   T. D. Dinh et al., "A study of tension fabric membrane structures under in-plane loading: Nonlinear finite element analysis and validation," Composite Structures, vol. 128, pp. 10–20, 2015, doi: 10.1016/j.compstruct.2015.03.055.

[5]   T. D. Dinh, A. Rezaei, L. de Laet, M. Mollaert, D. van Hemelrijck, and W. van Paepegem, "A new elasto-plastic material model for coated fabric," Engineering Structures, vol. 71, pp. 222–233, 2014, doi: 10.1016/j.engstruct.2014.04.027.

[6]   J. Vitola, F. Pozo, D. A. Tibaduiza, and M. Anaya, "A Sensor Data Fusion System Based on k-Nearest Neighbor Pattern Classification for Structural Health Monitoring Applications," Sensors (Basel, Switzerland), vol. 17, no. 2, 2017, doi: 10.3390/s17020417.

 

Authors: Karl Kopelmann Anna Happel Florian Schmidt Tobias Lang Hung Le Xuan Chokri Cherif

Technische Universität Dresden

Fakultät Maschinenwesen

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

01062 Dresden

https://tu-dresden.de/ing/maschinenwesen/itm

 

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

26.03.2024

Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbarer, bauteilgerechter Verstärkungskettfadendichte

Knittings Textile machinery Technical Textiles

Abstract

Im Rahmen dieses Forschungsprojekts wurde ein neuartiges Nachrüstmodul für Multiaxial-Kettenwirkmaschinen entwickelt, das die Herstellung von Multiaxialgelegen mit lokal angepassten Verstärkungskettfadendichten ermöglicht. Diese Innovation erlaubt eine materialsparende und kosteneffiziente Produktion von Bauteilen aus Faserkunststoffverbunden (FKV) mit Hochleistungsfasern wie Carbon. Hierbei können Kettfäden gezielt in den Bereichen, bspw. in denen sie nicht benötigt werden, aus dem Wirkprozess entfernt und bei Bedarf wieder eingefügt werden. Zudem wird es ermöglicht, eine definiert gradierte Kettfadendichte durch den gezielten Versatz von Kettfäden zu erreichen.

Das entwickelte modulare System wurde an einer Multiaxial-Kettenwirkmaschine vom Typ Malimo 14024 der Karl Mayer Textilmaschinenfabrik GmbH (Chemnitz, Deutschland) experimentell erprobt. Die Ergebnisse zeigen eine signifikante Verschnittreduktion auf bis zu 0 % in Kettrichtung sowie eine hohe Anpassungsfähigkeit an bauteilspezifische Anforderungen. Durch die Implementierung von Steuerungsalgorithmen für eine achsvariable Legung der Kettfäden konnte zudem eine simulationsgestützte Prozesskette zur Herstellung textiler Halbzeuge für FKV-Bauteile mit lokal variierenden Spannungsverteilungen erreicht werden.

Die erzielten Forschungsergebnisse unterstreichen das hohe Potential der Technologie zur wirtschaftlichen und gleichzeitig umweltfreundlichen Herstellung von FKV-Bauteilen. Besonderer Wert wurde auf die Übertragbarkeit der Ergebnisse auf die in den KMU vorhandenen Maschinen gelegt, um eine breite Anwendbarkeit der Forschungsergebnisse zu gewährleisten

Report

Ausgangssituation und Problemstellung

Der zunehmende Trend zum Leichtbau ist ein globales Phänomen in technischen Sektoren, verstärkt durch das Bewusstsein für einen materialeffizienten Umgang mit begrenzt verfügbaren natürlichen Ressourcen. Diese Entwicklung wird durch die Notwendigkeit ökologischer Nachhaltigkeit und die Reduktion von CO2-Emissionen vorangetrieben, wobei Faserkunststoffverbunde (FKV) aufgrund ihrer anisotropen strukturmechanischen Eigenschaften und ihres geringen spezifischen Gewichts eine Schlüsselrolle spielen. Sie bieten optimale Voraussetzungen für die ressourceneffiziente Auslegung von Leichtbaulösungen und treiben Innovationen in Branchen wie dem Maschinen-, Anlagen- und Automobilbau, insbesondere in der Elektromobilität, sowie in der Windkraftenergie und Luftfahrt voran. [1–11]

Die Herstellung von FKV-Bauteilen erfolgt derzeit hauptsächlich mit zweidimensionalen textilen Strukturen, die als Rollenware mit konstanter Breite und Fadendichte geliefert werden [12, 13]. Insbesondere mehraxiale Gelegestrukturen, gefertigt mittels der hochproduktiven Multiaxial-Kettenwirktechnik, sind für Großserienanwendungen und großflächige Bauteile relevant [14]. Eine wesentliche Herausforderung dieser Fertigungsprozesse ist der hohe Materialverschnitt in der bauteilspezifischen Halbzeugkonfektion, der wirtschaftlich und ökologisch nachteilig ist. Der Verschnitt kann je nach Bauteilgeometrie und -herstellungsverfahren bis zu 50 % betragen [15, 16].

In der Entwicklung endkonturgerechter textiler Halbzeuge mit lokal einstellbarer, d. h. achsvariabler, Verstärkungsfadendichte, um Verschnitt zu vermeiden und die textilen Halbzeuge an komplexe FKV-Geometrien anzupassen, liegt die entscheidende Aufgabe zur Steigerung der ökologischen und wirtschaftlichen Effizienz. Dies erfordert neue Lösungsansätze, da konventionelle Multiaxialgelege nicht die Anforderungen an eine bauteilgerechte gradierte Verstärkungsfadendichte erfüllen können. Sie sind in ihrer Verstärkungsfadendichte, sowie der Lagenanordnung im Preforming bisher für den maximalen lokalen Belastungsfall ausgelegt, was zu Überdimensionierung in weniger belasteten Bereichen oder zu hohem Verschnitt führt.

Die Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbaren Verstärkungskettfadendichten adressiert diese Problematik. Vor Projektbeginn gab es keine Lösungen, die eine konturgerechte Fertigung von Multiaxialgelegen und eine Verringerung der Kettfadenanzahl in den nicht benötigten Bereichen oder eine Erhöhung in besonders beanspruchten Zonen ermöglichten. Die Motivation des Projekts leitet sich aus der Notwendigkeit ab, die Materialeffizienz in der textilen Fertigungskette zu steigern, indem Verschnitt und Überdimensionierung vermieden werden.

Technische Entwicklung und Umsetzung

Im Fokus der Forschungsarbeiten stand die Entwicklung einer innovativen Technologie zur effizienten Nutzung von kostenintensiven Hochleistungsfasern, speziell Carbonfasern, im Fokus. Ziel war es, die ökologische und ökonomische Nachhaltigkeit von Faserkunststoffverbunden (FKV) durch eine signifikante Reduktion des Materialverschnitts und die Vermeidung von Überdimensionierung zu steigern. Die technische Herausforderung bestand darin, eine Methode zu entwickeln, die eine gezielte Anpassung der Verstärkungskettfadendichte an die bauteilspezifischen Anforderungen ermöglicht, sodass die Verstärkungskettfäden nur dort angeordnet werden, wo sie mechanisch erforderlich sind. Zur Realisierung dieser Zielsetzung war die Entwicklung eines Verfahrens essenziell, das es erlaubt, Kettfäden gezielt aus dem Wirkprozess zu entfernen und bei Bedarf wieder hinzuzufügen, um so eine konstante Kettfadendichte im endkonturgerechten Gelege zu gewährleisten. Zudem sollte eine Möglichkeit, die Kettfadendichte seitlich achsvariabel zu versetzen und somit lokal zu verstärken, was in einer gradierten Kettfadendichte resultiert, geschaffen werden. Die praktische Umsetzung dieser Technologie erforderte die Integration einer Zusatzvorrichtung in den Multiaxial-Kettenwirkprozess. Das entwickelte kombinierte Kettfadenmanipulationsmodul ermöglicht es, die Kettfäden mit lokal unterschiedlichen Dichten und Ausrichtungen prozesssicher zuzuführen.

Im Rahmen der technischen Entwicklung und Umsetzung zur Herstellung endkonturgerechter Gelege mit angepasster Kettfadendichte wurden drei wesentliche Teilfunktionen identifiziert und entwickelt: das selektive Trennen, das gezielte Führen sowie das individuelle oder gruppenweise Anfügen der Kettfäden an das Gelege. Diese Funktionen sind essenziell für die Realisierung einer global konstanten Kettfadendichte, die präzise an die Bauteilkontur und die mechanischen Anforderungen angepasst ist.

Selektives Trennen

Für das Trennen der Kettfäden wurde ein mechanisches Verfahren auf Basis eines Schermesserpaars mit einer festen und einer beweglichen Klinge, die pneumatisch angetrieben und gesteuert wird, entwickelt. Der Messerblock (siehe Abbildung 1 links) wurde an einer Lineareinheit (quer zur Arbeitsrichtung) befestigt und kann über einen Schlitten bedarfsgerecht pneumatisch auf die Höhe der zu schneidenden Kettfäden abgesenkt werden (siehe Abbildung 1 rechts). Dies ermöglicht es, die Kettfäden entsprechend der Bauteilkontur temporär aus dem Fertigungsprozess zu entfernen.

Vorbringen der Kettfäden

Zur präzisen Führung werden die Kettfäden pneumatisch vorgebracht. Dafür werden die Führungsröhrchen (siehe Abbildung 2 links) der Versatzeinheit mit Druckluft angeblasen, wodurch der Kettfaden in die Wirkstelle transportiert wird. Dabei muss die Schnittstelle, die sonst offen und zugänglich für das Schermesser gehalten wird, temporär durch eine Verschlusskappe überbrückt werden, um einen Druckluftverlust während des Vorbringens zu vermeiden (siehe Abbildung 2 rechts). Dieses System sorgt dafür, dass die abgetrennten Kettfäden exakt an die vorgesehene Stelle im Gelege, synchronisiert mit dem Wirkprozess, geführt werden. Ein Druck von 4 bar wurde für ein reproduzierbares, schnelles und präzises Vorbringen der vorher abgetrennten Kettfäden in die Nadelgasse der Wirkstelle erörtert, als Grundlage für das anschließende Anfügen des Kettfadenendes an das endkonturgerechte Gelege.

Anfügen der Kettfadenenden

Für das Anfügen der Kettfäden an das Gelege wurden verschiedene Lösungsansätze untersucht, darunter stoffschlüssige Verbindungen mittels Klebstoffen und form- bzw. kraftschlüssige Verbindungen durch nähwirktechnische Integration. Als geeignete Lösung hinsichtlich des Erhalts des textilen Charakters des endkonturgerechten Geleges sowie der Dauer des Anfügevorgangs erwies sich die nähwirktechnische Fixierung, die eine zuverlässige und schädigungsarme, kraftschlussbasierte Integration der Kettfäden in die Gelegestruktur ermöglicht.

Auf Basis der abgeleiteten Vorzugslösungen für die Teilfunktionen erfolgte anschließend die Entwicklung des kombinierten Kettfadenmanipulationsmoduls, mit dem eine Kettfadenschar sowohl seitlich versetzt, als auch einzelne Kettfäden aus der Kettfadenschar selektiv abgetrennt und nach Bedarf wieder angefügt werden können. Das kombinierte Kettfadenmanipulationsmodul besteht aus zwei synchronisierten Lineareinheiten. Eine Lineareinheit setzt die Messerblockbewegung um, eine zweite Lineareinheit den seitlichen Versatz der Kettfäden (siehe Abbildung 3 und Abbildung 4). Das vollständige, entwickelten Nachrüstmodul, inklusive der pneumatischen und elektrotechnischen Steuerungstechnik wurden in eine Malimo 14024 (Karl Mayer Textilmaschinenfabrik GmbH, Deutschland) integriert und auf Basis iterativer Funktionsmusterfertigungen erprobt. Dieses Modul ermöglicht die Herstellung endkonturgerechter Gelege mit variabel einstellbaren Verstärkungskettfadendichten und achsvariablen Fadenanordnungen und erhöht somit signifikant die Materialeffizienz in der FKV-Produktion.

Materialcharakterisierung und Ergebnisse

Auf die erfolgreiche Umsetzung der Funktionsmuster folgte die textil- und verbundphysikalische Charakterisierung der Funktionsmuster. Die Charakterisierung der Funktionsmuster erfolgte in mehreren Stufen. Zunächst wurde eine computergestützte photogrammetrische Messung zur Überprüfung der Konturradien und der Konturtreue durchgeführt. Anschließend fokussierte sich die Untersuchung auf die Ermittlung der strukturmechanischen Eigenschaften der FKV-Prüfkörper auf Basis der textilen Funktionsmuster. Hierbei kamen modifizierte Stempeldurchdrückversuche zum Einsatz, die einen multiaxialen Belastungszustand in die Textil- bzw. FKV-Prüfkörper einleiteten (siehe Abbildung 5). Die Kraftübertragung während der Versuche wurde aufgezeichnet und ausgewertet.

Die Ergebnisse zeigten, dass die Einsatzmöglichkeiten des Kettfadenmanipulationsmoduls zur Herstellung endkonturgerechter Gelege mit bauteilgerechten Verstärkungskettfadendichten eine gleichbleibende mechanische Belastbarkeit wie vollverstärkte Bauteile ermöglichen, während gleichzeitig der Materialeinsatz signifikant reduziert wird. Anhand der Umsetzung eines PKW-Kotflügeldemonstrators (siehe Abbildung 6) konnte experimentell belegt werden, dass eine Materialreduktion von bis zu 50 % möglich ist, ohne die strukturelle Integrität und mechanische Belastbarkeit der FKV-Bauteile zu reduzieren. Die umfassenden Untersuchungen und die daraus resultierenden Erkenntnisse legen die Basis für die Fertigung und Handhabung praxisnaher endkonturgerechter Gelege. Damit wird ein wichtiger Beitrag zur Steigerung der Wettbewerbsfähigkeit und zur Förderung nachhaltiger Produktionsverfahren in der Industrie geleistet.

Zusammenfassung

Im Rahmen der Forschungsarbeiten wurde ein innovatives Nachrüstmodul für die hochproduktive Multiaxial-Kettenwirktechnologie entwickelt, dass es ermöglicht, die Dichte der Verstärkungskettfäden in Multiaxialgelegen lokal und gezielt an die Anforderungen spezifischer Bauteile anzupassen. Diese technologische Neuerung repräsentiert einen signifikanten Fortschritt in der Fertigung von Faserkunststoffverbunden (FKV), indem nunmehr eine effiziente und materialsparende Produktion, insbesondere unter Verwendung hochpreisiger Hochleistungsfasern wie Carbon, ermöglicht wird. Die entwickelte Lösung gestattet es, die Integration der Kettfäden ausschließlich in jenen Bereichen vorzunehmen, die für die mechanische und geometrische Verstärkung des späteren Bauteils erforderlich sind. Dies führt zur Reduzierung des Verschnitts auf nahezu 0 % (in Kettfadenrichtung) sowie zur weitestgehenden Vermeidung der Überdimensionierung.

Für die Umsetzung des entwickelten Verfahrens wurde eine passende Fertigungstechnologie erarbeitet und als Zusatzvorrichtung in eine Multiaxial-Kettenwirkmaschine (Malimo 14024) integriert. Diese Vorrichtung ermöglichte die prozesssichere Ablage der Kettfäden mit individuell unterschiedlichen Dichten und Ausrichtungen, wodurch erstmals endkonturgerechte Gelege mit variabel einstellbaren, bauteilgerechten Kettfadendichten hergestellt werden konnten.

Der Ausblick auf zukünftige Entwicklungen fokussiert sich auf die Weiterführung der Technologieübertragung in die industrielle Praxis, insbesondere in KMU. Die durchgeführten Forschungsarbeiten bieten eine solide Basis für die Implementierung der neuen Technologie in bestehende Produktionsprozesse. Dabei stehen die Steigerung der Materialeffizienz und die Reduktion des ökologischen Fußabdrucks von FKV-Bauteilen im Vordergrund, um den steigenden industriellen und gesetzlichen Anforderungen an Nachhaltigkeit und Wirtschaftlichkeit gerecht zu werden.

Danksagung

Das IGF-Vorhaben 21968 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Authors: Konrad Zierold André Seidel Lars Hahn Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.09.2022

Entwicklung endkonturnah gewebter, gekrümmter Profilpreformen

Technical Textiles

Abstract

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

Report

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

Authors: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM