Research publications

2 results
26.03.2024

Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbarer, bauteilgerechter Verstärkungskettfadendichte

Knittings Textile machinery Technical Textiles

Abstract

Im Rahmen dieses Forschungsprojekts wurde ein neuartiges Nachrüstmodul für Multiaxial-Kettenwirkmaschinen entwickelt, das die Herstellung von Multiaxialgelegen mit lokal angepassten Verstärkungskettfadendichten ermöglicht. Diese Innovation erlaubt eine materialsparende und kosteneffiziente Produktion von Bauteilen aus Faserkunststoffverbunden (FKV) mit Hochleistungsfasern wie Carbon. Hierbei können Kettfäden gezielt in den Bereichen, bspw. in denen sie nicht benötigt werden, aus dem Wirkprozess entfernt und bei Bedarf wieder eingefügt werden. Zudem wird es ermöglicht, eine definiert gradierte Kettfadendichte durch den gezielten Versatz von Kettfäden zu erreichen.

Das entwickelte modulare System wurde an einer Multiaxial-Kettenwirkmaschine vom Typ Malimo 14024 der Karl Mayer Textilmaschinenfabrik GmbH (Chemnitz, Deutschland) experimentell erprobt. Die Ergebnisse zeigen eine signifikante Verschnittreduktion auf bis zu 0 % in Kettrichtung sowie eine hohe Anpassungsfähigkeit an bauteilspezifische Anforderungen. Durch die Implementierung von Steuerungsalgorithmen für eine achsvariable Legung der Kettfäden konnte zudem eine simulationsgestützte Prozesskette zur Herstellung textiler Halbzeuge für FKV-Bauteile mit lokal variierenden Spannungsverteilungen erreicht werden.

Die erzielten Forschungsergebnisse unterstreichen das hohe Potential der Technologie zur wirtschaftlichen und gleichzeitig umweltfreundlichen Herstellung von FKV-Bauteilen. Besonderer Wert wurde auf die Übertragbarkeit der Ergebnisse auf die in den KMU vorhandenen Maschinen gelegt, um eine breite Anwendbarkeit der Forschungsergebnisse zu gewährleisten

Report

Ausgangssituation und Problemstellung

Der zunehmende Trend zum Leichtbau ist ein globales Phänomen in technischen Sektoren, verstärkt durch das Bewusstsein für einen materialeffizienten Umgang mit begrenzt verfügbaren natürlichen Ressourcen. Diese Entwicklung wird durch die Notwendigkeit ökologischer Nachhaltigkeit und die Reduktion von CO2-Emissionen vorangetrieben, wobei Faserkunststoffverbunde (FKV) aufgrund ihrer anisotropen strukturmechanischen Eigenschaften und ihres geringen spezifischen Gewichts eine Schlüsselrolle spielen. Sie bieten optimale Voraussetzungen für die ressourceneffiziente Auslegung von Leichtbaulösungen und treiben Innovationen in Branchen wie dem Maschinen-, Anlagen- und Automobilbau, insbesondere in der Elektromobilität, sowie in der Windkraftenergie und Luftfahrt voran. [1–11]

Die Herstellung von FKV-Bauteilen erfolgt derzeit hauptsächlich mit zweidimensionalen textilen Strukturen, die als Rollenware mit konstanter Breite und Fadendichte geliefert werden [12, 13]. Insbesondere mehraxiale Gelegestrukturen, gefertigt mittels der hochproduktiven Multiaxial-Kettenwirktechnik, sind für Großserienanwendungen und großflächige Bauteile relevant [14]. Eine wesentliche Herausforderung dieser Fertigungsprozesse ist der hohe Materialverschnitt in der bauteilspezifischen Halbzeugkonfektion, der wirtschaftlich und ökologisch nachteilig ist. Der Verschnitt kann je nach Bauteilgeometrie und -herstellungsverfahren bis zu 50 % betragen [15, 16].

In der Entwicklung endkonturgerechter textiler Halbzeuge mit lokal einstellbarer, d. h. achsvariabler, Verstärkungsfadendichte, um Verschnitt zu vermeiden und die textilen Halbzeuge an komplexe FKV-Geometrien anzupassen, liegt die entscheidende Aufgabe zur Steigerung der ökologischen und wirtschaftlichen Effizienz. Dies erfordert neue Lösungsansätze, da konventionelle Multiaxialgelege nicht die Anforderungen an eine bauteilgerechte gradierte Verstärkungsfadendichte erfüllen können. Sie sind in ihrer Verstärkungsfadendichte, sowie der Lagenanordnung im Preforming bisher für den maximalen lokalen Belastungsfall ausgelegt, was zu Überdimensionierung in weniger belasteten Bereichen oder zu hohem Verschnitt führt.

Die Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbaren Verstärkungskettfadendichten adressiert diese Problematik. Vor Projektbeginn gab es keine Lösungen, die eine konturgerechte Fertigung von Multiaxialgelegen und eine Verringerung der Kettfadenanzahl in den nicht benötigten Bereichen oder eine Erhöhung in besonders beanspruchten Zonen ermöglichten. Die Motivation des Projekts leitet sich aus der Notwendigkeit ab, die Materialeffizienz in der textilen Fertigungskette zu steigern, indem Verschnitt und Überdimensionierung vermieden werden.

Technische Entwicklung und Umsetzung

Im Fokus der Forschungsarbeiten stand die Entwicklung einer innovativen Technologie zur effizienten Nutzung von kostenintensiven Hochleistungsfasern, speziell Carbonfasern, im Fokus. Ziel war es, die ökologische und ökonomische Nachhaltigkeit von Faserkunststoffverbunden (FKV) durch eine signifikante Reduktion des Materialverschnitts und die Vermeidung von Überdimensionierung zu steigern. Die technische Herausforderung bestand darin, eine Methode zu entwickeln, die eine gezielte Anpassung der Verstärkungskettfadendichte an die bauteilspezifischen Anforderungen ermöglicht, sodass die Verstärkungskettfäden nur dort angeordnet werden, wo sie mechanisch erforderlich sind. Zur Realisierung dieser Zielsetzung war die Entwicklung eines Verfahrens essenziell, das es erlaubt, Kettfäden gezielt aus dem Wirkprozess zu entfernen und bei Bedarf wieder hinzuzufügen, um so eine konstante Kettfadendichte im endkonturgerechten Gelege zu gewährleisten. Zudem sollte eine Möglichkeit, die Kettfadendichte seitlich achsvariabel zu versetzen und somit lokal zu verstärken, was in einer gradierten Kettfadendichte resultiert, geschaffen werden. Die praktische Umsetzung dieser Technologie erforderte die Integration einer Zusatzvorrichtung in den Multiaxial-Kettenwirkprozess. Das entwickelte kombinierte Kettfadenmanipulationsmodul ermöglicht es, die Kettfäden mit lokal unterschiedlichen Dichten und Ausrichtungen prozesssicher zuzuführen.

Im Rahmen der technischen Entwicklung und Umsetzung zur Herstellung endkonturgerechter Gelege mit angepasster Kettfadendichte wurden drei wesentliche Teilfunktionen identifiziert und entwickelt: das selektive Trennen, das gezielte Führen sowie das individuelle oder gruppenweise Anfügen der Kettfäden an das Gelege. Diese Funktionen sind essenziell für die Realisierung einer global konstanten Kettfadendichte, die präzise an die Bauteilkontur und die mechanischen Anforderungen angepasst ist.

Selektives Trennen

Für das Trennen der Kettfäden wurde ein mechanisches Verfahren auf Basis eines Schermesserpaars mit einer festen und einer beweglichen Klinge, die pneumatisch angetrieben und gesteuert wird, entwickelt. Der Messerblock (siehe Abbildung 1 links) wurde an einer Lineareinheit (quer zur Arbeitsrichtung) befestigt und kann über einen Schlitten bedarfsgerecht pneumatisch auf die Höhe der zu schneidenden Kettfäden abgesenkt werden (siehe Abbildung 1 rechts). Dies ermöglicht es, die Kettfäden entsprechend der Bauteilkontur temporär aus dem Fertigungsprozess zu entfernen.

Vorbringen der Kettfäden

Zur präzisen Führung werden die Kettfäden pneumatisch vorgebracht. Dafür werden die Führungsröhrchen (siehe Abbildung 2 links) der Versatzeinheit mit Druckluft angeblasen, wodurch der Kettfaden in die Wirkstelle transportiert wird. Dabei muss die Schnittstelle, die sonst offen und zugänglich für das Schermesser gehalten wird, temporär durch eine Verschlusskappe überbrückt werden, um einen Druckluftverlust während des Vorbringens zu vermeiden (siehe Abbildung 2 rechts). Dieses System sorgt dafür, dass die abgetrennten Kettfäden exakt an die vorgesehene Stelle im Gelege, synchronisiert mit dem Wirkprozess, geführt werden. Ein Druck von 4 bar wurde für ein reproduzierbares, schnelles und präzises Vorbringen der vorher abgetrennten Kettfäden in die Nadelgasse der Wirkstelle erörtert, als Grundlage für das anschließende Anfügen des Kettfadenendes an das endkonturgerechte Gelege.

Anfügen der Kettfadenenden

Für das Anfügen der Kettfäden an das Gelege wurden verschiedene Lösungsansätze untersucht, darunter stoffschlüssige Verbindungen mittels Klebstoffen und form- bzw. kraftschlüssige Verbindungen durch nähwirktechnische Integration. Als geeignete Lösung hinsichtlich des Erhalts des textilen Charakters des endkonturgerechten Geleges sowie der Dauer des Anfügevorgangs erwies sich die nähwirktechnische Fixierung, die eine zuverlässige und schädigungsarme, kraftschlussbasierte Integration der Kettfäden in die Gelegestruktur ermöglicht.

Auf Basis der abgeleiteten Vorzugslösungen für die Teilfunktionen erfolgte anschließend die Entwicklung des kombinierten Kettfadenmanipulationsmoduls, mit dem eine Kettfadenschar sowohl seitlich versetzt, als auch einzelne Kettfäden aus der Kettfadenschar selektiv abgetrennt und nach Bedarf wieder angefügt werden können. Das kombinierte Kettfadenmanipulationsmodul besteht aus zwei synchronisierten Lineareinheiten. Eine Lineareinheit setzt die Messerblockbewegung um, eine zweite Lineareinheit den seitlichen Versatz der Kettfäden (siehe Abbildung 3 und Abbildung 4). Das vollständige, entwickelten Nachrüstmodul, inklusive der pneumatischen und elektrotechnischen Steuerungstechnik wurden in eine Malimo 14024 (Karl Mayer Textilmaschinenfabrik GmbH, Deutschland) integriert und auf Basis iterativer Funktionsmusterfertigungen erprobt. Dieses Modul ermöglicht die Herstellung endkonturgerechter Gelege mit variabel einstellbaren Verstärkungskettfadendichten und achsvariablen Fadenanordnungen und erhöht somit signifikant die Materialeffizienz in der FKV-Produktion.

Materialcharakterisierung und Ergebnisse

Auf die erfolgreiche Umsetzung der Funktionsmuster folgte die textil- und verbundphysikalische Charakterisierung der Funktionsmuster. Die Charakterisierung der Funktionsmuster erfolgte in mehreren Stufen. Zunächst wurde eine computergestützte photogrammetrische Messung zur Überprüfung der Konturradien und der Konturtreue durchgeführt. Anschließend fokussierte sich die Untersuchung auf die Ermittlung der strukturmechanischen Eigenschaften der FKV-Prüfkörper auf Basis der textilen Funktionsmuster. Hierbei kamen modifizierte Stempeldurchdrückversuche zum Einsatz, die einen multiaxialen Belastungszustand in die Textil- bzw. FKV-Prüfkörper einleiteten (siehe Abbildung 5). Die Kraftübertragung während der Versuche wurde aufgezeichnet und ausgewertet.

Die Ergebnisse zeigten, dass die Einsatzmöglichkeiten des Kettfadenmanipulationsmoduls zur Herstellung endkonturgerechter Gelege mit bauteilgerechten Verstärkungskettfadendichten eine gleichbleibende mechanische Belastbarkeit wie vollverstärkte Bauteile ermöglichen, während gleichzeitig der Materialeinsatz signifikant reduziert wird. Anhand der Umsetzung eines PKW-Kotflügeldemonstrators (siehe Abbildung 6) konnte experimentell belegt werden, dass eine Materialreduktion von bis zu 50 % möglich ist, ohne die strukturelle Integrität und mechanische Belastbarkeit der FKV-Bauteile zu reduzieren. Die umfassenden Untersuchungen und die daraus resultierenden Erkenntnisse legen die Basis für die Fertigung und Handhabung praxisnaher endkonturgerechter Gelege. Damit wird ein wichtiger Beitrag zur Steigerung der Wettbewerbsfähigkeit und zur Förderung nachhaltiger Produktionsverfahren in der Industrie geleistet.

Zusammenfassung

Im Rahmen der Forschungsarbeiten wurde ein innovatives Nachrüstmodul für die hochproduktive Multiaxial-Kettenwirktechnologie entwickelt, dass es ermöglicht, die Dichte der Verstärkungskettfäden in Multiaxialgelegen lokal und gezielt an die Anforderungen spezifischer Bauteile anzupassen. Diese technologische Neuerung repräsentiert einen signifikanten Fortschritt in der Fertigung von Faserkunststoffverbunden (FKV), indem nunmehr eine effiziente und materialsparende Produktion, insbesondere unter Verwendung hochpreisiger Hochleistungsfasern wie Carbon, ermöglicht wird. Die entwickelte Lösung gestattet es, die Integration der Kettfäden ausschließlich in jenen Bereichen vorzunehmen, die für die mechanische und geometrische Verstärkung des späteren Bauteils erforderlich sind. Dies führt zur Reduzierung des Verschnitts auf nahezu 0 % (in Kettfadenrichtung) sowie zur weitestgehenden Vermeidung der Überdimensionierung.

Für die Umsetzung des entwickelten Verfahrens wurde eine passende Fertigungstechnologie erarbeitet und als Zusatzvorrichtung in eine Multiaxial-Kettenwirkmaschine (Malimo 14024) integriert. Diese Vorrichtung ermöglichte die prozesssichere Ablage der Kettfäden mit individuell unterschiedlichen Dichten und Ausrichtungen, wodurch erstmals endkonturgerechte Gelege mit variabel einstellbaren, bauteilgerechten Kettfadendichten hergestellt werden konnten.

Der Ausblick auf zukünftige Entwicklungen fokussiert sich auf die Weiterführung der Technologieübertragung in die industrielle Praxis, insbesondere in KMU. Die durchgeführten Forschungsarbeiten bieten eine solide Basis für die Implementierung der neuen Technologie in bestehende Produktionsprozesse. Dabei stehen die Steigerung der Materialeffizienz und die Reduktion des ökologischen Fußabdrucks von FKV-Bauteilen im Vordergrund, um den steigenden industriellen und gesetzlichen Anforderungen an Nachhaltigkeit und Wirtschaftlichkeit gerecht zu werden.

Danksagung

Das IGF-Vorhaben 21968 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Authors: Konrad Zierold André Seidel Lars Hahn Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.03.2023

Thermogeneratorpaneele basierend auf multifunktionalen Abstandsgewirken

Knittings Composites Textile machinery Sensor Technology Sustainability Technical Textiles

Abstract

Thermoelektrische Generatoren (TEG) bieten das Potenzial Abwärme verschleiß- und wartungsfrei in elektrischen Strom umzuwandeln und damit zur Einsparung von CO2-Emissionen beizutragen. Die Funktionsweise der TEG beruht auf dem materialinhärenten Seebeck-Effekt. Im Rahmen des IGF- Projektes 21144 BR wurden Thermogeneratorpaneele basierend auf abstandsgewirkten glasfaserverstärkten Paneelen entwickelt. Im Wirkprozess wurde die Integration von Glasfasern und thermoelektrischen Drähte umgesetzt. Dadurch wurden Leichtbaupaneele mit guten strukturmechanischen Eigenschaften (Druck-, Biegefestigkeit) und zusätzlicher Thermogenerator- und Wärmeisolationsfunktion realisiert. Diese sogenannten Multithermogeneratorpaneele (MTP) können mit ihrer autarken elektrischen Leistung für den Betrieb von Sensoren oder Kleingeräten genutzt werden.

Report

Einleitung

Der globale Energiebedarf steigt mit den laufenden industriellen Fortschritten und dem Bevölkerungswachstum stetig an. Die Energieversorgung nachhaltig zu gestalten, ist mit der aktuellen Dringlichkeit des Klimaschutzes, zwingend notwendig, um die Wirtschaft und auch die Zukunft nachfolgender Generationen zu sichern. Im Zuge der rasanten Entwicklung des Internet of Things (IoT) und der Digitalisierung besteht außerdem große Nachfrage nach autarken mobilen Stromquellen, mit denen selbstständig und zuverlässig elektronische Sensoren und Kommunikationsgeräte betrieben werden können. Die meisten technischen Prozesse nutzen nur 25 % bis 40 % der eingesetzten Energie zur Umwandlung in mechanische Energie. Der Rest wird in thermische Energie umgewandelt, die in der Regel verloren geht. Ein vielversprechender Ansatz zur Nutzung dieser thermischen Energie ist der Einsatz von thermoelektrischen Generatoren (TEG).

Die Stromerzeugung mittels TEG wird durch den Seebeck-Effekt beschrieben. Dabei entsteht zwischen der warmen (Th) und der kalten Kontaktstelle (Tk) der thermoelektrischen Funktionsmaterialpaare A und B, auch Thermoelemente (TE) genannt, eine elektrische Spannung (U). Die erreichbare Leistungsausbeute eines TEG ist neben der Umgebungstemperaturdifferenz (ΔT) von den materialspezifischen Parametern der eingesetzten TE abhängig. Diese Parameter werden durch die Gütezahl (ZT) beschrieben und umfassen die Seebeck-Koeffizienten (α in µV/K), die elektrische (σ, möglichst hoch) und die thermische Leitfähigkeit (λ, möglichst gering). Für eine hohe Leistungsausbeute sind Materialien mit einer hohen Differenz im Seebeck-Koeffizienten notwendig. Außerdem ist die Leistungsausbeute eines TEG-Moduls maßgeblich von der Anzahl in Reihe geschalteter TE in einem Modul abhängig. Werkstoffe für einen hohen thermoelektrischen Nutzeffekt basieren auf seltenen Rohstoffen, wie Bismut, Antimon und Tellur, die eine gute elektrische Leitfähigkeit, kombiniert mit einer geringen Wärmeleitfähigkeit aufweisen. Das Vorkommen und die Lebensdauer der Halbleiterelemente ist jedoch begrenzt und das Recycling aufwändig. Sie sind außerdem kostenintensiv und teilweise toxisch.

Daher werden von der Wirtschaft und der Forschung Entwicklungen neuer Materialien oder die Steigerung der Leistung der TEG sowie kostengünstigere Herstellverfahren vorangetrieben. Allerdings bestehen diese entwickelten Verfahren zumeist aus aufwändigen kombinierten Gieß- und Sinterprozessen sowie einer kostenintensiven notwendigen Nachbearbeitung. Zur Schaffung eines effizienten Herstellverfahrens für TEG mit einer produktiven Integrationsmöglichkeit einer hohen Anzahl an TE bietet die Abstandswirktechnik großes Potenzial. Mit dem Einsatz von Funktionsmaterialien und Hochleistungsgarnen in den Abstandsgewirken, wie Glasfasergarne, und einer späteren Infiltrierung und Konsolidierung mit Harzsystemen lassen sich großflächige Faserverbundstrukturen (z. B. Leichtbaupaneele) mit geschlossenen Deckschichten generieren, die neben der TEG-Funktion sehr gute strukturmechanische Eigenschaften aufweisen und auch als tragende Strukturen im Fahrzeug- oder Anlagenbau mit Wärmeisolation einsetzbar sind [1] .

Im Rahmen des Forschungsprojektes IGF 21144 BR wurden Leichtbaupaneele als tragende Bauteile mit multifunktionalen Eigenschaften, Multifunktionsthermogeneratorpaneele (MTP), realisiert, die durch die Umwandlung industrieller Abwärme in elektrischen Strom mit gleichzeitigem Kühleffekt zur Effizienzsteigerung von Batterien oder Elektromotoren in der Elektromobilität und von Hybridsystemen beitragen.


Entwicklung der Multithermogeneratorpaneele (MTP)

Der Grundaufbau der MTP besteht aus einem glasfaserverstärkten Abstandsgewirke, welches schlussendlich verharzt das Substrat des TEG darstellt. Die Thermoelemente (TE) werden in Form von Funktionsdrähten aus Eisen und Konstantan als Polfadensystem in der RR-Raschelwirkmaschine in den Abstand integriert, wie in Abbildung 2 veranschaulicht. Weiterhin gewährleisten Polfäden aus Monofilamenten, sowie Glasfasern (EC9-68x2) die Stabilität gegenüber mechanischer Beanspruchung. In den Deckflächen stellen je zwei Maschenfadensysteme aus PES (100/40 dtex) die Fixierung der Schuss- und Stehfäden sowie der TE sicher. Die Kontaktierung und Verschaltung der TE erfolgt durch die übereinanderliegende Anordnung und Verbindung der Funktionsdrähte in den Maschen der Gewirkebindung.

Zur Entwicklung und Auslegung der thermoelektrischen Struktur der MTP wurde ein elektrisches Modell entwickelt, in welchem die Anzahl und Geometrie der TE, ihre elektrische Kontaktierung, sowie die Art der Verschaltung der TE (Reihen-, Parallel- oder Mischschaltung) variabel ist. Für das Modell wurden gekoppelte multiphysikalische Ersatzschaltungsmodelle unter Ausnutzung der mathematischen Analogien der elektrischen/thermischen/mechanischen Domäne angewendet, in LT-Spice implementiert und im Hinblick auf die zuvor beschriebenen Parameter untersucht (Abbildung 1). Mittels des Modells kann die Schaltung der TE an den Lastwiderstand des Anwendungsfalls angepasst werden, sodass die maximale Leistung des TEG erreicht wird. Das vorhandene Modell wurde weiterhin durch das thermische Verhalten hinsichtlich Wärmeleitung und Wärmekapazität der Struktur erweitert.

Um die angestrebte thermoelektrische Struktur in eine Gewirkebindung für die RR-Rascheltechnologie zu überführen, wurden mehrere Bindungsvarianten für die Funktionsdrähte im Abstand des Paneels erarbeitet, umgesetzt und analysiert [2]. Weiterhin wurden unterschiedliche elektrische Verschaltungen der Funktionsdrähte entwickelt. Dabei ermöglicht eine kombinierte Reihen- und Parallelschaltung die maximale Einbindung von TE pro Fläche von bis zu 150.000 TE/m² und eine bessere Ausfallsicherheit im Vergleich zur Reihenschaltung. Der Innenwiderstand und die elektrische Leistung kann direkt über die Abmaße des Paneels angepasst werden. Die Struktur des Abstandsgewirkes mit dieser Verschaltung ist im Modell in Abbildung 2 dargestellt.

Zur Herstellung des thermoelektrischen Abstandsgewirkes als Halbzeug für die MTP wurde eine RR-Raschelwirkmaschine MiniTronic 808 von RIUS Comatex S.A. eingesetzt. Mit dem Ziel die Funktions- und Hochleistungsmaterialien schädigungsarm zu verarbeiten, wurde eine Nadelbestückung mit der Feinheit E12 verwendet. Für die Maschineneinstellung und die technologisch-konstruktive Weiterentwicklung der Abstandswirktechnik wurde zunächst der Bauraum der RR-Raschelmaschine und der Einzug der Drähte in den vorhandenen Garnlauf analysiert. Der Fadenlängenausgleich für die Maschenbildung, die Fadenwippe, ist kommerziell als Fadenwippe mit Stahlfedern umgesetzt. Dadurch wird die für die Fadensysteme benötigte Fadenzugkraft erreicht. Bei ebendieser Fadenzugkraft entstehen für die Funktionsdrähte aus Eisen- und Konstantan jedoch irreversible Knicke an den Umkehrpunkten der Lochnadeln. Diese Knicke verhindern das Gleiten der Drähte durch die Lochnadeln, sodass ein Drahtbruch entsteht. Die Drähte benötigen eine sehr niedrige Fadenzugkraft sowie einen Längenausgleich mit niedriger Federkonstante, da materialbedingt nur eine geringe elastische Dehnung (0,1 %) vorhanden ist.

Weiterhin waren technologische Modifikationen zur Verarbeitung von Glasfasergarnen als Schuss-, Steh- und Polfaden auf der RR-Raschelwirkmaschine erforderlich. Die Glasfaserrovings (350 tex) wurden bei der Verarbeitung als Polfadensystem aufgrund der Querkräftanfälligkeit bereits vor der Maschenbildung durch die kleinen Umlenkradien in der Lochnadel abgeschert. Daher wurden verzwirnte Glasfaserrovings als Verstärkungsfaser eingesetzt. Zur Verarbeitung dieser Glasfaserzwirne wurde ein Fadenliefersystem mit einer passiven Fadenzufuhr und einer konstanten Fadenzugkraft von 20 cN entwickelt und umgesetzt. Mittels angetriebener Spulenaufnahme für Glasfasern und Tänzerwalze zur Zugkraftregelung lässt sich dieses Prinzip automatisieren und auf ein System für hohe Produktionsgeschwindigkeiten übertragen.

In einem mehrstufigen Handlaminierverfahren wurden die hergestellten MTP-Halbzeuge mit hochtemperaturbeständigem Harz infiltriert und als MTP Demonstrator verarbeitet (Abbildung 3).


Elektrische Leistung der MTP

Zur Auswertung der thermoelektrischen Leistung der MTP wurde ein gekoppelter elektrisch-thermischer Versuchsstand entwickelt, der durch jeweils ein Peltier-Element an der Ober- und Unterseite eine aktive Erwärmung bzw. Kühlung realisiert. Damit sind Temperaturdifferenzen von bis zu 80 K erreichbar. Zwischen den Peltierelementen und der Probe sind Platten aus Aluminium eingeschraubt. Diese erfüllen zwei Funktionen. Erstens homogenisieren sie die Wärmeverteilung. Zweitens sind in den Platten jeweils Pt100-Temperaturfühler (Präzisionsklasse A) eingebracht. Die Temperaturfühler wurden dabei in Bohrungen platziert und mit Wärmeleitpaste verklebt, sodass eine gute Wärmeleitung zwischen Peltierelement, Probe und Temperatursensoren gewährleistet ist und die Temperaturabweichung zwischen Sensor und TEG-Oberfläche minimal ist. Die Widerstände der Pt100-Fühler wurden mit einem Keithley DAQ 6500 Präzisionsmultimeter aufgenommen. Die Ansteuerung des Multimeters erfolgte durch Matlab-Simulink. Anhand der gemessenen Temperaturen wurde die Spannungsquelle über SCPI-Befehle und einen PID-Regler geregelt, um eine präzise und stabile Kontrolle der Temperaturdifferenz zu erreichen. Gleichzeitig ermöglichte das Präzisionsmultimeter die Messung der vom TEG erzeugten Spannung, des durch den Lastwiderstand fließenden Stroms sowie des Innenwiderstands des TEGs. In Abbildung 4 sind der Prüfstand mit dem das Temperaturprofil während eines Versuchs mit 60 K Temperaturdifferenz und die aufgenommene Strom-Spannungs-Kennlinie abgebildet.

Mittels Präzisionsmultimeter wurden außerdem die Kontaktpunkte der Funktionsgarne in der gewirkten TEG-Struktur auf ihre Übergangswiderstände hin überprüft sowie der Gesamtwiderstand der TEG-Module ermittelt. Die Kontaktwiderstände zwischen den Funktionsdrähten lagen konstant unter 0,1 Ω. Entgegen der Erwartungen war dies auch nach der Faserverbundbildung der Fall, sodass der Innenwiderstand des finalen Demonstrators 0,9 Ω beträgt. Auch der thermoelektrische Effekt des MTP wurde durch das Harz nicht nachteilig beeinträchtigt. Dies wurde durch Vergleichsmessungen der MTP am Leibniz Institut für photonische Technologien (ipht) und bei der itp GmbH ebenfalls bestätigt.

Die Projektergebnisse zur Herstellung und zu den Eigenschaften von abstandsgewirkten MTP aus Eisen und Konstantan bilden eine Basis für die zielgerichtete Weiterentwicklung einer effizienten Fertigung von vertriebsreifen TEG. Die Ausnutzung der Produktivität der RR-Raschelwirkmaschine trägt dazu bei, die sonst kostenintensiven alternativen Energiekonzepte für Bevölkerung und Wirtschaft zugänglich und profitabel zu gestalten, sodass zum Erhalt der Umwelt beigetragen wird.


Danksagung

Das IGF-Vorhaben 21144 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Das Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden (ITM) dankt den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Der Abschlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden vorhanden [3].

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Anke Golla, Johannes Mersch, Gerald Hoffmann, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM