From the Sector

Reset
111 results
19.02.2024

CARBIOS and De Smet Engineers & Contractors: Partnership for construction of PET biorecycling plant

CARBIOS and De Smet Engineers & Contractors (DSEC), a provider of Engineering, Procurement and Construction services in the biotech’s and agro-processing industries, announce their collaboration to spearhead the construction of the world's first PET biorecycling plant. Under the agreement, De Smet has been entrusted with the project management and detailed engineering, including procurement assistance and CARBIOS partners’ management, to ensure the execution of the plant's construction in Longlaville, France, due for commissioning in 2025.  CARBIOS’ first commercial facility will play a key role in the fight against plastic pollution by offering an industrial-scale solution for the enzymatic depolymerization of PET waste to accelerate a circular economy for plastic and textiles.

With over 70 members of De Smet's expert team dedicated to the project and working alongside CARBIOS teams, the collaboration aims to guarantee the project timeline and budget while upholding quality, safety, health, and environmental standards. Construction is currently underway and on schedule.

CARBIOS and De Smet Engineers & Contractors (DSEC), a provider of Engineering, Procurement and Construction services in the biotech’s and agro-processing industries, announce their collaboration to spearhead the construction of the world's first PET biorecycling plant. Under the agreement, De Smet has been entrusted with the project management and detailed engineering, including procurement assistance and CARBIOS partners’ management, to ensure the execution of the plant's construction in Longlaville, France, due for commissioning in 2025.  CARBIOS’ first commercial facility will play a key role in the fight against plastic pollution by offering an industrial-scale solution for the enzymatic depolymerization of PET waste to accelerate a circular economy for plastic and textiles.

With over 70 members of De Smet's expert team dedicated to the project and working alongside CARBIOS teams, the collaboration aims to guarantee the project timeline and budget while upholding quality, safety, health, and environmental standards. Construction is currently underway and on schedule.

Fraunhofer CCPE Positionspapier »Challenges and requirements in comparative life cycle assessment of plastics recycling« Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE
Fraunhofer CCPE Positionspapier »Challenges and requirements in comparative life cycle assessment of plastics recycling«
06.02.2024

Transparente Ökobilanzierung des Kunststoffrecyclings

Ökobilanzierungen dienen oftmals als Entscheidungsgrundlage für die Auswahl von umweltfreundlichen Verfahren, Einsatzstoffen oder Dienstleistungen beim Kunststoffrecycling. Doch wie sieht eine vergleichbare und transparente ökologische Bewertung aus, die unterschiedlichen Ansprüchen gerecht wird? Fraunhofer CCPE Forschende haben zehn Herausforderungen und zehn Anforderungen herausgearbeitet, die Vergleichbarkeit und Transparenz bei der ökologischen Bewertung des Kunststoffrecycling erhöhen.

Ökobilanzierungen dienen oftmals als Entscheidungsgrundlage für die Auswahl von umweltfreundlichen Verfahren, Einsatzstoffen oder Dienstleistungen beim Kunststoffrecycling. Doch wie sieht eine vergleichbare und transparente ökologische Bewertung aus, die unterschiedlichen Ansprüchen gerecht wird? Fraunhofer CCPE Forschende haben zehn Herausforderungen und zehn Anforderungen herausgearbeitet, die Vergleichbarkeit und Transparenz bei der ökologischen Bewertung des Kunststoffrecycling erhöhen.

Mit Ökobilanzstudien lassen sich nicht nur Produkte und Dienstleistungen über ihren gesamten Lebenszyklus hinweg bewerten, sondern es können auch verschiedene Recyclingverfahren und recycelter Kunststoff mit Neuware verglichen werden. Die Ergebnisse dienen als Entscheidungsgrundlage bei der Auswahl der Optionen mit den geringsten Umweltwirkungen. Die grundlegende Vergleichsgröße in jeder Ökobilanz ist die funktionelle Einheit. Alle Umweltwirkungen werden auf diese Größe bezogen. Das Recycling von Kunststoffen erfüllt immer mehrere Funktionen wie die ordnungsgemäße Behandlung von Abfällen und die Bereitstellung neuer Ressourcen für weitere Produkte. Der Umgang mit dieser Multifunktionalität in der Ökobilanzierung des Recyclings wird seit langem ohne Konsens diskutiert.

Die Fraunhofer CCPE-Forschenden möchten mit ihrem gerade erschienenen Positionspapier diese Herausforderungen und Anforderungen verdeutlichen, die bei der Bewertung und dem Vergleich von Kunststoffrecyclingaktivitäten bestehen. Der Fokus liegt auf der Unterscheidung zwischen den Funktionalitäten der Abfallbehandlung und Materialbereitstellung. »Wir wollen mit dem Positionspapier Raum für einen offenen und transparenten Austausch zwischen Wissenschaft, Industrie und Politik eröffnen, um Entscheidungen auf Basis des ökologischen Vergleichs verständlich und belastbar zu gestalten«, so Anna Kerps, Initiatorin des Positionspapiers und wissenschaftliche Mitarbeiterin des Fraunhofer CCPE.

Die Autor*innen weisen darauf hin, dass vergleichende Ökobilanzen zudem von verschiedenen Randbedingungen und Annahmen abhängen. Die Prüfung logischer Widersprüche in den Annahmen ist eine Hauptanforderung für aussagekräftige Vergleiche. Inkonsistente Ökobilanzstudien führen oft zu Fehlinterpretationen. Weitere Herausforderungen sehen sie im Umgang mit den verschiedenen Technologierouten und -skalen sowie der Komplexität von Recyclingrouten gemischter Abfälle. Unterschiedliche Abfallherkünfte und mitgesammelte Störstoffe beeinflussen die Qualität der Rezyklate – und müssen in der Bilanzierung berücksichtigt werden.

Weiterhin ist es auf methodischer Ebene wichtig, Modellierungsansätze in Bezug auf Multifunktionalität und Systemgrenzen zu verbessern. Der Vergleich verschiedener Recyclingverfahren und von Neuware mit Rezyklat ist herausfordernd, da sie unterschiedliche Funktionalitäten haben. Insgesamt fehlt es bisher an einem methodischen Konsens, um robuste und vergleichbare Ökobilanz-Ergebnisse zu erhalten.

Source:

Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE

Statusbericht der deutschen Kreislaufwirtschaft 2024 (c) Prognos AG
26.01.2024

Statusbericht der deutschen Kreislaufwirtschaft 2024

Der Statusbericht der deutschen Kreislaufwirtschaft 2024 beleuchtet zum dritten Mal nach 2018 und 2020 die Situation der deutschen Kreislaufwirtschaft. Seit der ersten Veröffentlichung im Mai des Jahres 2018 sind fast sechs Jahre vergangen. In diesem Zeitraum haben in Deutschland zwei Ereignisse für eine veränderte Sichtweise auf die Branche geführt: Zunächst die Corona-Krise, die nicht nur die Leistungs- und Anpassungsfähigkeit der Branche, sondern auch ihre Systemrelevanz für die Funktionsfähigkeit des gesellschaftlichen und wirtschaftlichen Lebens unter Beweis gestellt hat. In diesem Zusammenhang ist seit Anfang des Jahres 2020 auch das Ansehen der Abfallentsorgung und vor allem der beteiligten Mitarbeiterinnen und Mitarbeiter in der Bevölkerung deutlich gestiegen.

Der Statusbericht der deutschen Kreislaufwirtschaft 2024 beleuchtet zum dritten Mal nach 2018 und 2020 die Situation der deutschen Kreislaufwirtschaft. Seit der ersten Veröffentlichung im Mai des Jahres 2018 sind fast sechs Jahre vergangen. In diesem Zeitraum haben in Deutschland zwei Ereignisse für eine veränderte Sichtweise auf die Branche geführt: Zunächst die Corona-Krise, die nicht nur die Leistungs- und Anpassungsfähigkeit der Branche, sondern auch ihre Systemrelevanz für die Funktionsfähigkeit des gesellschaftlichen und wirtschaftlichen Lebens unter Beweis gestellt hat. In diesem Zusammenhang ist seit Anfang des Jahres 2020 auch das Ansehen der Abfallentsorgung und vor allem der beteiligten Mitarbeiterinnen und Mitarbeiter in der Bevölkerung deutlich gestiegen.

Der Angriffskrieg auf die Ukraine hat vor Augen geführt, wie stark Deutschland von Energie- und Rohstoffimporten abhängig ist und wie schnell Störungen in den Lieferketten zu Problemen bei der Versorgung mit wichtigen Gütern führen können. Die Abfallwirtschaft kann sowohl durch die Kreislaufführung von Rohstoffen als auch durch die energetische Verwertung wichtige Beiträge zur Reduzierung dieser Abhängigkeiten leisten.

Die Kernthesen des Statusberichtes 2024

  • Das gesamte Abfallaufkommen in Deutschland bleibt seit vielen Jahren stabil bei rund 400 Millionen Tonnen, die Abfallmengen aus privaten Haushalten steigen sowohl absolut als auch pro Kopf weiter leicht an
  • Die Kreislaufwirtschaft wächst weiter: Mehr Recycling, mehr Beschäftigung und ein Umsatzsprung durch höhere Rohstoffpreise.
  • Kreislaufwirtschaft international: Wachsende Märkte für Technik und Güter bei zunehmendem Wettbewerbsdruck für die deutschen Unternehmen
  • Kreislaufwirtschaft vernetzt: Bedeutende Beiträge zum Klimaschutz, zur Rohstoffversorgung und zur Energiewende.
  • Die Wertschätzung der Branche und ihrer Beschäftigung nimmt zu, gleiches gilt allerdings nicht für die Akzeptanz der für die stoffliche und energetische Verwertung notwendigen Anlagen.
  • Kreislaufwirtschaft digital und innovativ: Die Digitalisierung unterstützt Sammlung und Transport, innovative Verfahren verbessern die Recyclingergebnisse, Startups mit neuen Ideen
  • Produzenten und Recycler rücken immer enger zusammen, gleichwohl sind für den Wiedereinsatz von Recyclingrohstoffen die Absatzmärkte sicherzustellen
  • Brüssel gibt mittlerweile in vielen Feldern der Kreislaufwirtschaft die Zielrichtung und die Geschwindigkeit vor. Das Ziel: Die Transformation von einer linearen Wirtschaft zu einer Circular Economy
  • Für den Transformationsprozess zur Circular Economy ist eine funktionierende Kreislaufwirtschaft die wichtigste Basis, gleiches gilt für den Green Deal
Source:

Prognos AG / Mitwirkende Verbände: ASA, BDE, BDSAV,BDSV, BVSE, DGAW, INWESD, ITAD, KDK, PLASTICSEUROPE,VDM, VDMA, VHI, VKU, IFAT

Photo: akiragiulia, Pixabay
05.01.2024

Research to reduce shed of microplastics during laundering

A collaboration between Deakin University researchers and Australia’s largest commercial linen supplier Simba Global is tackling a critical global issue, the spread of harmful microplastics through our laundry.

Clothing and textiles are estimated to generate up to 35 per cent of the microplastics found in the world’s oceans, making them one of the biggest contributors. But there is still a lot to be learnt about the characteristics of these microplastics and exactly how and why they are generated.

Researchers at the ARC Research Hub for Future Fibres in Deakin’s Institute for Frontier Materials (IFM) have teamed up with Simba Global, a global textile manufacturing and supply company, to better understand the extent and type of microplastics shed when their products are laundered. Simba Global wants to lead the charge to reduce the environmental impact of textiles.

Lead scientist IFM Associate Professor Maryam Naebe said working with an industry partner on the scale of Simba Global meant the research could have a huge real-world impact.

A collaboration between Deakin University researchers and Australia’s largest commercial linen supplier Simba Global is tackling a critical global issue, the spread of harmful microplastics through our laundry.

Clothing and textiles are estimated to generate up to 35 per cent of the microplastics found in the world’s oceans, making them one of the biggest contributors. But there is still a lot to be learnt about the characteristics of these microplastics and exactly how and why they are generated.

Researchers at the ARC Research Hub for Future Fibres in Deakin’s Institute for Frontier Materials (IFM) have teamed up with Simba Global, a global textile manufacturing and supply company, to better understand the extent and type of microplastics shed when their products are laundered. Simba Global wants to lead the charge to reduce the environmental impact of textiles.

Lead scientist IFM Associate Professor Maryam Naebe said working with an industry partner on the scale of Simba Global meant the research could have a huge real-world impact.

Simba Global is the major linen supplier to Australia’s hospitals, hotels and mining camps, resulting in 950,000 tonnes of textile products – including bedsheets, bath towels, scrubs and much more – going through the commercial laundering process each year. It also supplies international markets in New Zealand, Singapore and the US.

“As part of our research, we will investigate potential solutions including the pre-treatment of textiles to reduce the shedding of microplastics, or even increasing the size of the plastics that break down so they can be better captured and removed by filtration during the laundering process,” Associate Professor Naebe said.

“Microplastics are now ubiquitous in the environment, they’re in the air we breathe, the food we eat and the earth we walk on. The magnitude of the problem is bigger than previously thought.

“Of serious concern is the mounting evidence that microplastics are having a negative impact on human and animal health. There are not just physical, but chemical and biological impacts.”

Associate Professor Naebe’s team have taken the first steps in the project, analysing wastewater samples from commercial laundries with high-powered electron microscopes in their Geelong laboratory, part of the largest fibres and textiles research facility in Australia.

The team recently presented a new scientific paper at the Association of Universities for Textiles (AUTEX) Conference 2023, which started the important process of formally categorising these types of microplastics, as well as developing standard terminology and testing methods.

“Because our understanding of microplastics is still in its infancy, we needed to start right at the beginning,” Associate Professor Naebe said.

“We need to have a standard definition of what is a microplastic. Up to this point that has been lacking, which makes it difficult to compare and incorporate other studies in this area.

“We are now developing a systematic method for sampling and identifying microplastics in laundry wastewater. It has been tricky to measure the different sizes, but this is important information to have. For example, there are studies that suggest some sizes of microplastics are causing more issues in certain animals.

“The next step will be establishing an essential method to prevent the release of microplastics from textile laundering. This may involve a coating on the surface of the textile or better ways to collect the waste during the washing process.”

Simba Global Executive Chair Hiten Somaia said the company had a strong focus on sustainability, driven by the business’ purpose statement.

“We are proud to partner with Deakin University in what is the first significant research into textile microplastic pollution in Australia. What we are most excited about is sharing the results of this research with all other textile markets in Australia – including clothing – and putting an end to microplastic pollution from textiles.”

Source:

Deakin University

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

Test kit for textile microfibre shedding Hohenstein
Test kit for textile microfibre shedding
19.12.2023

New test kit for textile microfibre shedding

In cooperation with testing provider Hohenstein, Under Armour is launching a new fiber-shed test kit. It will help textile companies along the supply chain to develop lower shed materials during product development. The companies carry out the test themselves in-house using the test kit or can commission Hohenstein as a testing service provider.

The kit is a one-off purchase, after which users can buy additional materials from project partner James Heal. By using the new kit, Under Armour can reliably assess the quality and shed rate of the materials from suppliers.

For Hohenstein customers, the test kit is a useful addition to their microplastics tests. It is a quick and relatively inexpensive preliminary test that ensures better early-stage results for the end product.

During the production, wear and laundering of synthetic and natural fabrics, fibre shedding occurs in varying degrees. Hohenstein and Under Armour expect that their test method will help the industry better understand and reduce its contribution to the microfibre problem.

In cooperation with testing provider Hohenstein, Under Armour is launching a new fiber-shed test kit. It will help textile companies along the supply chain to develop lower shed materials during product development. The companies carry out the test themselves in-house using the test kit or can commission Hohenstein as a testing service provider.

The kit is a one-off purchase, after which users can buy additional materials from project partner James Heal. By using the new kit, Under Armour can reliably assess the quality and shed rate of the materials from suppliers.

For Hohenstein customers, the test kit is a useful addition to their microplastics tests. It is a quick and relatively inexpensive preliminary test that ensures better early-stage results for the end product.

During the production, wear and laundering of synthetic and natural fabrics, fibre shedding occurs in varying degrees. Hohenstein and Under Armour expect that their test method will help the industry better understand and reduce its contribution to the microfibre problem.

“Until now, integrating fiber-shed testing into industry research and development activities has required a significant time and cost investment,” said Kyle Blakely, Senior Vice President of Innovation for Under Armour. “At Under Armour, we believe intervening early to mitigate shedding is critical, which is why our test method is designed to specifically address these time and cost barriers.”

19.12.2023

New sustainability label Autoneum Blue

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

With its new sustainability label Autoneum Blue, Autoneum combines the use of recycled materials with protecting the oceans and social responsibility. Autoneum Blue is a continuation of the LABEL blue by Borgers®, which was originally launched by Borgers Automotive. Following the acquisition of the German automotive supplier in April 2023, Autoneum has now fully integrated the label into its sustainable product portfolio.

Marine pollution has reached alarming levels in recent decades, with plastic contamination posing one of the most harmful threats to the health of the world’s largest ecosystem. In light of ever-stricter legal requirements for the environmental performance of vehicles, especially regarding the recycled content of components and their end-of-life recyclability, the reduction and recycling of plastics is also one of the key challenges for the automotive industry. Autoneum Pure, the Company’s sustainability label for technologies with an excellent sustainability performance throughout the product life cycle, is already successfully helping customers to tackle these challenges. With Autoneum Blue, Autoneum is now expanding its sustainable product portfolio with a label for components that combine the use of recycled material with protecting the oceans and social responsibility.

In order to qualify for the Autoneum Blue label, components must be based on materials that consist of at least 30% recycled PET that was collected from coastal areas within a 50-kilometer range of the water. These credentials mean the products make an important contribution to preventing plastic pollution in the oceans. In addition, the process of collecting the PET bottles must be socially respon-sible and comply with human rights, and traceable procurement of the bottle flakes must be guaran-teed. Autoneum Blue thus complements the Company’s strategic target to continuously reduce water consumption in all areas of its operations with an additional focus on preventing plastic pollution of the oceans.

Autoneum currently offers selected wheelhouse outer liners, needlepunch carpets and trunk side trim under the Blue label. In principle, however, the label could be extended to any product based on Autoneum technologies that feature recycled polyester fibers. As an addition to Autoneum’s existing fully recyclable monomaterial polyester constructions, which are characterized by waste-free production and have a significantly lower carbon footprint compared to products made from virgin fibers, Autoneum Blue presents another example of the Company’s ongoing efforts and continuous strides towards a sustainable circular economy.

Source:

Autoneum Management AG

Carbios at two-year anniversary of France 2030 (c) Carbios
Emmanuel Ladent, Carbios CEO, on stage to present Carbios' industrial project advancements at the two-year anniversary of France 2030
13.12.2023

Carbios at two-year anniversary of France 2030

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios was one of eight beneficiaries selected to present the progress of its industrial project in the presence of the President of the French Republic on the occasion of the two-
year anniversary of the launch of the France 2030 investment plan. Carbios is receiving €42.5 million in public funding (€30 million from the State as part of France 2030 and €12.5 million from the Grand-Est Region) for the construction of the plant for the enzymatic depolymerization of PET. Carbios is an emblematic example of the France 2030 initiative to support innovative projects that contribute to reindustrialization through innovation in strategic sectors, such as recycling. This plant, located in Longlaville in the Grand-Est Region, will be Carbios' first industrial site. Construction has just begun.

Carbios' technology enables PET circularity and provides an alternative raw material to virgin fossil-based monomers, allowing PET producers, waste management companies, public entities, and brands to have an efficient solution to meet regulatory requirements and fulfill their own sustainability commitments. The plant will have a processing capacity of 50,000 tons of post-consumer PET waste per year (equivalent to 2 billion colored PET bottles, 2.5 billion PET trays, or 300 million T-shirts) and will address waste with little or no value such as colored PET bottles, food trays, and textiles. The plant will create 150 direct and indirect jobs in the region. In October 2023, Carbios obtained the building permit in 10 months (the average duration in France is 17 months) and the site operating permit, allowing construction to begin. The plant is currently under construction in Longlaville in the Grand-Est Region.

Source:

Carbios

Carbios and L’Oréal win Pioneer Award for PET recycling solution Photo: Carbios
Emmanuel Ladent (CEO Carbios, on the left) and Jacques Playe (Packaging and Development Director at L’Oréal, on the right)
15.11.2023

Carbios and L’Oréal win Pioneer Award for PET recycling solution

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal have won the “Pioneer Awards” in the Industry category, presented by the Solar Impulse Foundation at the first World Alliance Summit. This prize was awarded to Carbios for its enzymatic PET recycling solution, labeled “Efficient Solution” by the Solar Impulse Foundation since 2019, and to L’Oréal for using this technology for the first time in a cosmetics bottle prototype. Carbios’ solution offers brands an alternative to petro-sourced plastic that helps them meet their sustainability commitments. This advancement paves the way for future applications in other sectors such as packaging, food and beverage, and textiles.

Carbios and L’Oréal: a long-term collaboration
Since 2017, Carbios and L’Oréal have been working together with a shared vision of accelerating the transition to a circular economy for plastic. In 2017, both companies created a Consortium to improve the recyclability and circularity of PET packaging.  Nestlé Waters, PepsiCo and Suntory Beverage & Food Europe joined this Consortium in 2019 to scale up Carbios’ innovation. The world’s first enzymatically recycled PET packaging was made in 2021 using Carbios’ biorecycling process. The world’s first PET biorecycling plant is scheduled to be commissioned in 2025. In parallel, Carbios is rolling out its technology internationally through licensing agreements.

The environmental benefits of biorecycling developed by Carbios
Recent life-cycle analyses[1] show a 57% reduction in CO2 emissions compared with the production of virgin plastic[2], and for every tonne of recycled PET produced, 1.3 tonnes of petrol are avoided. Compared with conventional recycling, enzymatic recycling is 4 times more circular (calculated according to the Ellen MacArthur Foundation’s Material Circularity Indicator). Thanks to its highly selective enzyme, optimized for efficient PET degradation, Carbios’ depolymerization process can process all types of PET waste, including colored, multilayer or textile waste that cannot be recycled using current technologies. Furthermore, the two monomers produced (PTA and MEG) make it possible to recreate recycled PET products of identical quality to virgin ones, and suitable for food contact.
 
 
[1] Database ecoinvent 3.8
[2] French scenario, taking into account the detour of 50% of PET waste from conventional end-of-life. Virgin PET: 2.53 kg CO2/kg (cradle to gate)

Source:

Carbios

10.11.2023

HeiQ AeoniQ™ joins Canopy and commits to Forests Protection

HeiQ AeoniQ™ becomes an active brand partner of the Canopy initiative with eleven other companies to address the growing climate and biodiversity crises by committing to keep Ancient and Endangered Forests out of our man-made cellulosic fiber supply chain.

The commitments that HeiQ AeoniQ™ is making are part of solutions-driven non-profit Canopy’s Pack4Good and CanopyStyle initiatives which currently represent collectively 950 brand partners. Together, the initiatives are shifting supply chains away from vital forests to low-impact, circular Next Gen Solutions.

HeiQ AeoniQ™ becomes an active brand partner of the Canopy initiative with eleven other companies to address the growing climate and biodiversity crises by committing to keep Ancient and Endangered Forests out of our man-made cellulosic fiber supply chain.

The commitments that HeiQ AeoniQ™ is making are part of solutions-driven non-profit Canopy’s Pack4Good and CanopyStyle initiatives which currently represent collectively 950 brand partners. Together, the initiatives are shifting supply chains away from vital forests to low-impact, circular Next Gen Solutions.

“We must rapidly replace oil-based polyester in the textile industry causing microplastics, global warming, landfill and ecosystem degradation. Cellulose is the most abundant biopolymer in the world and is best suited to replace polyester. However, we must pay attention to cellulose feedstock sources. Our forests, a potential cellulose feedstock, are one of the most important solutions to addressing the effects of climate change. Approximately 2.6 billion tons of carbon dioxide, one-third of the CO2 released from burning fossil fuels, is absorbed by forests every year. Around 12.5% of global greenhouse gas emissions (5-10 GtCO2e annually) come from deforestation. We are losing forests at an alarming rate. Every year, around 10 million hectares of forests globally are destroyed. We need immediate action to increase forests again. Canopy is our go-to partner to replace polyester with circular & sustainable cellulose feedstock for our innovative HeiQ AeoniQ™ fiber revolution.” said Carlo Centonze, HeiQ Group CEO.

Paper packaging is also a key driver of forest loss globally, as 3.1 billion trees are cut down annually to produce the boxes and bags in which products are packaged and shipped. Paper packaging production has increased by 65% over the past two years.

“The range of companies and sectors represented in today’s announcement reflects the breadth of market response to the growing climate and biodiversity crises and intensifying supply chain disruptions,” said Nicole Rycroft, Founder and Executive Director of Canopy. “Today’s brand partners add significant momentum to global conservation efforts and the movement to transform ‘take, make, waste’ supply chains to be lower-impact and Next Gen.”

Today, as part of Pack4Good, HeiQ AeoniQ™ committed to:

  • Eliminate Ancient and Endangered Forests from our paper packaging supply chain.
  • Reduce material use through design innovation.
  • Maximize recycled content.
  • Explore and scale alternative Next Gen fibers (such as agricultural residues).
  • Where virgin fiber is necessary, use FSC-certified fiber.
Source:

HeiQ

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

Innovation Award for Indorama Ventures and Polymateria Photo Indorama Ventures
21.07.2023

INDA Innovation Award for Indorama Ventures and Polymateria's Biotransformation Technology

Indorama Ventures, in partnership with Polymateria, has been honoured with the INDA Innovation Award for their collaboration in developing pioneering Biotransformation technology to create wipes, which totally biodegrade, leaving no harmful substance or microplastics behind.

The award was presented at the recent World of Wipes International Conference in Atlanta, USA, and recognizes the level of technical innovation and investment that led to developing wipes that both deliver against the sustainability challenges of today while meeting the demands of Indorama Ventures’ customers worldwide.

Through its 10-year partnership agreement with technology innovator Polymateria, Indorama Ventures is applying Polymateria’s unique biotransformation technology to fibers and spunmelt nonwovens. Biotransformation is the world's first biodegradation technology that is capable of delivering full biological consumption of Polyolefin products in the open terrestrial environment. Polyolefin-based materials produced by this technology are especially useful for applications where materials may be leaked into the environment as unmanaged waste.

Indorama Ventures, in partnership with Polymateria, has been honoured with the INDA Innovation Award for their collaboration in developing pioneering Biotransformation technology to create wipes, which totally biodegrade, leaving no harmful substance or microplastics behind.

The award was presented at the recent World of Wipes International Conference in Atlanta, USA, and recognizes the level of technical innovation and investment that led to developing wipes that both deliver against the sustainability challenges of today while meeting the demands of Indorama Ventures’ customers worldwide.

Through its 10-year partnership agreement with technology innovator Polymateria, Indorama Ventures is applying Polymateria’s unique biotransformation technology to fibers and spunmelt nonwovens. Biotransformation is the world's first biodegradation technology that is capable of delivering full biological consumption of Polyolefin products in the open terrestrial environment. Polyolefin-based materials produced by this technology are especially useful for applications where materials may be leaked into the environment as unmanaged waste.

“We are constantly innovating to live up to our responsibility to optimize the Earth’s resources, as we combine nature and science in our Biotransformation PP - designed to be recycled or returned to nature,” he said. “By bringing Biotransformation technology to Hygiene markets, we hope to offer a real-world solution to waste management. We particularly hope to address aspects of the creation of fugitive waste and remove this from the environment without causing additional, and potentially more dangerous, problems.”

06.07.2023

Alternative to synthetics: MAS Holdings invests in HeiQ AeoniQ™

MAS Holdings, a global apparel & textile manufacturing and tech conglomerate, headquartered in Sri Lanka, secures a stake in HeiQ AeoniQ™ as part of its Plan for Change initiative to support the development of next-generation cellulosic filament fibers to replace polyester and nylon.

HeiQ from Switzerland and MAS Holdings entered a partnership for MAS to secure a stake in HeiQ AeoniQ GmbH, a subsidiary of HeiQ Group that will produce HeiQ AeoniQ™, a climate-positive cellulosic yarn.

With this investment, MAS Holdings becomes the first manufacturer to partner with HeiQ AeoniQ™ in their efforts to provide a sustainable alternative to polyester and nylon. The investment to be made by MAS Holdings is part of the group’s strategy to drive a positive environmental impact. The MAS Plan for Change aims to generate 50% of the company’s revenue through sustainable products by 2025, revolutionizing the textile industry with a focus on innovation, sustainable sourcing, and pioneering circularity at scale.

MAS Holdings, a global apparel & textile manufacturing and tech conglomerate, headquartered in Sri Lanka, secures a stake in HeiQ AeoniQ™ as part of its Plan for Change initiative to support the development of next-generation cellulosic filament fibers to replace polyester and nylon.

HeiQ from Switzerland and MAS Holdings entered a partnership for MAS to secure a stake in HeiQ AeoniQ GmbH, a subsidiary of HeiQ Group that will produce HeiQ AeoniQ™, a climate-positive cellulosic yarn.

With this investment, MAS Holdings becomes the first manufacturer to partner with HeiQ AeoniQ™ in their efforts to provide a sustainable alternative to polyester and nylon. The investment to be made by MAS Holdings is part of the group’s strategy to drive a positive environmental impact. The MAS Plan for Change aims to generate 50% of the company’s revenue through sustainable products by 2025, revolutionizing the textile industry with a focus on innovation, sustainable sourcing, and pioneering circularity at scale.

With the closing of this deal, HeiQ and MAS agreed to a 5-year Offtake Agreement for 3,000 tons of HeiQ AeoniQ™ yarn in 2025 and 5,000 tons per year from 2026 to 2029, valued by HeiQ in the aggregate to US$ 100 million. MAS will finalize this commitment within a stipulated time period after achieving milestone 1, and a mutual plan for commercialization. HeiQ and MAS firmly believe that rapid scaling is key to facilitating the fast adoption of sustainable, circular technologies such as HeiQ AeoniQ™.

The HeiQ AeoniQ™ pilot plant in Austria is manufacturing this revolutionary continuous cellulosic filament yarn since Q3 2022, with up to a 100 tons capacity to be upscaled up to 300 tons by the end of 2023.

The HeiQ AeoniQ™ production scale-up is planned to have its definitive boost by early 2026 with the construction of an entirely new gigafactory capable of a 30,000-ton output per year, in a 250M USD estimated investment.

Polyester and nylon, two oil-based fibers, virtually non-recyclable, account for about 70% of all the global textile production, they take between 350 to 1000 years to degrade in nature, are currently close loop recycled at less than 1%, and are at the origin of 35% of the microplastics that can be found in today's oceans. HeiQ AeoniQ™ was innovated and is being hyper-scaled up to change this course of action.

More information:
MAS Holdings HeiQ AeoniQ
Source:

HeiQ

ADVANSA and Asia Pacific Fibers (APF) launch fibre made from recycled ocean-bound plastic bottles (c) ADVANSA
05.07.2023

ADVANSA and Asia Pacific Fibers (APF) launch fibre made from recycled ocean-bound plastic bottles

ADVANSA and Asia Pacific Fibers (APF) join forces to launch REMOTION®, a premium fibre for sports and activewear, made from recycled ocean-bound plastic bottles with full end-to-end traceability from Prevented Ocean Plastic™. REMOTION® offers a solution for textiles that merges ocean protection with built-in biodegradability. The fibres break-down in marine environments to prevent microplastic pollution of the oceans, a problem which can be the consequence of fibre-shedding from apparel laundry waste-water.

Remotion® offers a solution with various sustainable features such as biodegradability and recyclability, with customized performance features such as anti-bacterial properties and moisture management built-in to the fibre. Moreover, the fibre is also offered in customer curated colours that guarantee very good colour fastness. Thus, this “all-in-one” fibre contributes to a sustainable and healthy environment with savings in water, energy, chemicals, and CO2. The fibre is available in a range of filament and staple options with two variants: REMOTION® Blue made from ocean-bound plastic bottles, REMOTION® Green made from domestic recycled plastic bottles.

ADVANSA and Asia Pacific Fibers (APF) join forces to launch REMOTION®, a premium fibre for sports and activewear, made from recycled ocean-bound plastic bottles with full end-to-end traceability from Prevented Ocean Plastic™. REMOTION® offers a solution for textiles that merges ocean protection with built-in biodegradability. The fibres break-down in marine environments to prevent microplastic pollution of the oceans, a problem which can be the consequence of fibre-shedding from apparel laundry waste-water.

Remotion® offers a solution with various sustainable features such as biodegradability and recyclability, with customized performance features such as anti-bacterial properties and moisture management built-in to the fibre. Moreover, the fibre is also offered in customer curated colours that guarantee very good colour fastness. Thus, this “all-in-one” fibre contributes to a sustainable and healthy environment with savings in water, energy, chemicals, and CO2. The fibre is available in a range of filament and staple options with two variants: REMOTION® Blue made from ocean-bound plastic bottles, REMOTION® Green made from domestic recycled plastic bottles.

REMOTION® Blue is a specially engineered polyester fibre made from ocean-bound plastic as a premium raw material with a social aspect. ADVANSA and APF are cooperating with Prevented Ocean Plastic™, a global recycling initiative that helps tens of thousands of people around the world to clean their coastlines, prevent ocean plastic pollution and earn additional income. Discarded plastic bottles are picked up by plastic collectors from coastal areas at risk of ocean plastic pollution and are taken to collection centres. The plastic bottles are then sorted out, cleaned and processed into raw material flakes which are used as a premium ingredient for REMOTION® Blue range of products.

ADVANSA and Asia Pacific Fibers are launching REMOTION® at the Performance Days in Munich from 3-5 October 2023.

Source:

ADVANSA

30.06.2023

17th World Pultrusion Conference - CALL FOR PAPERS

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 17th World Pultrusion Conference on 29th February – 1st March 2024 in Hamburg, Germany. The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2024 in Paris (5th – 7th March 2024).

The presentations are to document innovations in the following subject areas of
pultruded reinforced plastics:

  • Market development in Europe, USA, Asia
  • Innovative applications
  • New Markets: Ideas for potential new applications with pultruded shapes or
  • systems
  • Sustainability: Technical possibilities, recycling, etc.
  • Raw materials
    ○ Development of fibres
    ○ Development of resins
  • Construction / Testing / Calculation
  • Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th September 2023 to info@pultruders.com.

23.06.2023

INDA receives United Nations Accreditation

INDA, the Association of the Nonwoven Fabrics Industry, was granted status last month as an accredited stakeholder with the United Nations Environment Programme (UNEP), which, among other privileges, will allow representatives from the association to observe the formal ongoing negotiations of the UN Global Plastics Treaty. INDA Government Affairs Director Wes Fisher was on site at the second session of the treaty negotiations formally titled the “second session of the Intergovernmental Negotiating Committee to develop an international legally binding instrument on plastic pollution, including in the marine environment.” The negotiations took place from 29 May to 2 June 2023 at the United Nations Educational, Scientific and Cultural Organization (UNESCO) Headquarters in Paris, France.

“We are excited to continue to enhance the capacity of INDA’s government affairs department to better serve the industry on a global scale,” stated Fisher. “We look forward to working with the UNEP to provide technical input regarding ongoing plastics treaty issues specific to the nonwovens industry, and engaging with other UN processes with our new status as an accredited stakeholder.”

INDA, the Association of the Nonwoven Fabrics Industry, was granted status last month as an accredited stakeholder with the United Nations Environment Programme (UNEP), which, among other privileges, will allow representatives from the association to observe the formal ongoing negotiations of the UN Global Plastics Treaty. INDA Government Affairs Director Wes Fisher was on site at the second session of the treaty negotiations formally titled the “second session of the Intergovernmental Negotiating Committee to develop an international legally binding instrument on plastic pollution, including in the marine environment.” The negotiations took place from 29 May to 2 June 2023 at the United Nations Educational, Scientific and Cultural Organization (UNESCO) Headquarters in Paris, France.

“We are excited to continue to enhance the capacity of INDA’s government affairs department to better serve the industry on a global scale,” stated Fisher. “We look forward to working with the UNEP to provide technical input regarding ongoing plastics treaty issues specific to the nonwovens industry, and engaging with other UN processes with our new status as an accredited stakeholder.”

Accreditation provides non-governmental organizations with observer status to the United Nations Environment Assembly, UNEP, and its subsidiaries. Accreditation will bring many advantages to INDA with respect to participation in the work of UNEP’s Governing Bodies, such as the United Nations Environment Assembly of UNEP and the Committee of Permanent Representatives.

UN Global Plastics Treaty negotiations have garnered significant attention from both industry and environmental groups. At least three more negotiation sessions are expected with the goal of finalizing a treaty by the end of 2024.

02.06.2023

Carbios receives funding for PET biorecycling plant and R&D activities

Carbios will receive grants totaling €54 million from French State via France 2030 and Grand-Est Region to finance construction of world’s first PET biorecycling plant and accelerate R&D activities

Carbios announces that its project has been selected by the French State for funding of €30 million from the French State as part of the investment plan France 2030, and €12.5 million from the Grand-Est Region.  The implementation of this funding is conditional to the European Commission’s approval of the corresponding state aid scheme, followed by the conclusion of national aid agreements. As part of the national call for projects on “Plastics Recycling” operated by ADEME[1], Carbios’ project to finalize the industrialization of its unique PET biorecycling process has been selected. The reference plant in Longlaville in the Grand-Est region will be the world’s first PET biorecycling plant and is due for commissioning in 2025. This plant will make it possible to relocate to France the production of the two basic components of PET, PTA and MEG[2], both derived from the Carbios process.

Carbios will receive grants totaling €54 million from French State via France 2030 and Grand-Est Region to finance construction of world’s first PET biorecycling plant and accelerate R&D activities

Carbios announces that its project has been selected by the French State for funding of €30 million from the French State as part of the investment plan France 2030, and €12.5 million from the Grand-Est Region.  The implementation of this funding is conditional to the European Commission’s approval of the corresponding state aid scheme, followed by the conclusion of national aid agreements. As part of the national call for projects on “Plastics Recycling” operated by ADEME[1], Carbios’ project to finalize the industrialization of its unique PET biorecycling process has been selected. The reference plant in Longlaville in the Grand-Est region will be the world’s first PET biorecycling plant and is due for commissioning in 2025. This plant will make it possible to relocate to France the production of the two basic components of PET, PTA and MEG[2], both derived from the Carbios process.

Carbios also announces that it has been granted total funding of €11.4 million from the French State as part of France 2030, of which €8.2 million directly for Carbios (€5 million in repayable advances) and €3.2 million for its academic partners INRAE[3], INSA[4] and CNRS[5] via the TWB[6] and TBI[7] joint service and research units. This funding will enable to continue its research into the optimization and continuous improvement of Carbios’ enzymatic technologies.

The plant will secure the sales of the first volumes of recycled PET produced with Carbios’ technology, and to offer its partners recycled PET of the same quality as virgin PET. Once the necessary permits have been obtained, which should be granted by the end of 2023, in line with the announced start of construction before the end of the year, the plant is scheduled to be commissioned in 2025. This will be followed by a period of ramp-up to full capacity. The plant will have a nominal processing capacity of 50,000 tonnes of PET waste per year, equivalent to 2 billion bottles or 2.5 billion food trays.

Selection for funding by the French State through France 2030 and the Grand-Est Region complements the recent announcement of an exclusive, long-term partnership with Novozymes[8], a leader in enzyme production, one of the main aims is to ensure the supply of enzymes to Carbios’ Longlaville plant and future licensed plants. In addition, Carbios recently secured a first supply source for its future plant by winning part of the CITEO tender for the biorecycling of multilayer trays[9].


[1] The French Agency for Ecological Transition
[2] PTA = purified terephthalic acid; MEG = monoethylene glycol
[3] French National Research Institute for Agriculture, Food and the Environment
[4] French National Institute of Applied Sciences
[5] French National Center for Scientific Research
[6] Toulouse White Biotechnology – UMS INRAE 1337 / UAR CNRS 3582
[7] Toulouse Biotechnology Institute – UMR INSA/CNRS 5504 / UMR INSA/INRAE 792
[8] Cf. press release dated 12 January 2023
[9] Cf. press release published by Citeo dated 26 April 2023

More information:
Carbios biorecycling plastics France
Source:

Carbios

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

(c) EREMA
Manfred Hackl, CEO EREMA Group GmbH
17.05.2023

EREMA: Manfred Hackl is Plastics Recycling Ambassador of the Year

Manfred Hackl, CEO of EREMA Group GmbH, was recently awarded the accolade Plastics Recycling Ambassador of the Year at the Plastics Recycling Show Europe. The award is given in honour of personalities who are particularly committed to plastics recycling.
 
Manfred Hackl has been with EREMA since 1995 and, prior to joining the management team, was responsible for the product development and market launch of VACUREMA technology that closed the loop in the bottle-to-bottle segment efficiently and cost effectively. In his current role as CEO of the EREMA Group and in various roles in well-known national and international associations he promotes plastics recycling and circular economy across the industry, regionally and throughout Europe - especially at EU level - encouraging everybody in the industry to work together.

Manfred Hackl, CEO of EREMA Group GmbH, was recently awarded the accolade Plastics Recycling Ambassador of the Year at the Plastics Recycling Show Europe. The award is given in honour of personalities who are particularly committed to plastics recycling.
 
Manfred Hackl has been with EREMA since 1995 and, prior to joining the management team, was responsible for the product development and market launch of VACUREMA technology that closed the loop in the bottle-to-bottle segment efficiently and cost effectively. In his current role as CEO of the EREMA Group and in various roles in well-known national and international associations he promotes plastics recycling and circular economy across the industry, regionally and throughout Europe - especially at EU level - encouraging everybody in the industry to work together.

"I dedicate the Recycling Ambassador of the Year award to the employees at the EREMA Group. This year we are celebrating our 40th anniversary, and this award, just like the many we have received for our technologies over the years, shows that we can be very proud of what we have accomplished and achieved together during this time," says Manfred Hackl, delighted with the award. In the past business year 2022/23 alone, the extruders supplied by the companies within the EREMA Group deliver an additional 1.6 million tonnes of recycling capacity.

Source:

EREMA Group GmbH

Frau am Meer Photo Pixabay
17.04.2023

Kelheim Fibres, Sandler and pelzGROUP develop plastic-free panty liner

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

The partnership between the three companies was formed under the Open Innovation principle, which allowed for creative idea exchange and facilitated the development of an innovative product. According to Jessica Zeitler, R&D Specialist at Sandler, “Our collaboration with Kelheim Fibres and pelzGROUP is a great example of how companies can work together to create solutions that benefit both the environment and consumers. We are proud to be part of this project and the opportunities it offers.”

For hygiene product manufacturer pelzGROUP, it is important to combine sustainability and performance to achieve broad acceptance in the market. “Our panty liner meets the strict requirements of the European Single-Use Plastics Directive (SUPD) while also matching the performance of conventional synthetic products. At the same time, our new panty liner has a completely European supply chain. This means short distances and therefore low CO2 emissions, and – especially in times of global disruption – reliability for our customers,” emphasizes Dr. Henning Röttger, Head of Business Development at pelzGROUP.

"Our viscose speciality fibres are an environmentally friendly and high-performance alternative to synthetic materials," says Dominik Mayer, Project Manager Fibre & Application Development at Kelheim Fibres. "They are at the very beginning of the product value chain and yet have an enormous impact on the functionality of the end product. Open innovation allows us to bring all partners in the value chain to the table, to find the best solution together in a very short time and bring it to commercialisation - the collaboration with Sandler and pelzGROUP is an important milestone in our AHP journey."

Source:

Kelheim Fibres GmbH