From the Sector

Reset
Composite impact protection plate Photo Autoneum Management AG
20.05.2025

Composite impact protection plate: Impact resistance and thermal insulation

Autoneum's new impact protection plate, made from thermoplastic composite material, shields the battery of electric vehicles from impact, fire and corrosion. The lightweight com-ponent not only meets the highest requirements in terms of shock resistance and durability but also contributes to improved energy management and thus to a longer range thanks to its thermal insulation properties.

The ongoing transformation of the automotive industry towards an increasingly electrified mobility requires new shielding technologies to protect the battery system in electric vehicles. In this regard, Autoneum's new impact protection plate offers a high-performance, safe and cost-effective option thanks to its mechanical and thermal insulation properties, low weight and ability to withstand extreme temperatures.

Autoneum's new impact protection plate, made from thermoplastic composite material, shields the battery of electric vehicles from impact, fire and corrosion. The lightweight com-ponent not only meets the highest requirements in terms of shock resistance and durability but also contributes to improved energy management and thus to a longer range thanks to its thermal insulation properties.

The ongoing transformation of the automotive industry towards an increasingly electrified mobility requires new shielding technologies to protect the battery system in electric vehicles. In this regard, Autoneum's new impact protection plate offers a high-performance, safe and cost-effective option thanks to its mechanical and thermal insulation properties, low weight and ability to withstand extreme temperatures.

Autoneum’s composite impact protection plate shields the vehicle battery from damage caused by impact, fire and corrosion. It is significantly lighter than metal alternatives and at the same time ther-mally insulating, which contributes to a longer driving range. In addition, the part meets the highest requirements for impact resistance and springs back into shape without structural loss or deforma-tion even after repeated exposure to stones and road debris. The new impact protection plate is based on long-fiber thermoplastic (LFT) technology, which allows the greatest possible freedom in terms of design and construction as well as waste-free production. Moreover, the additional rein-forcement of the basic structure ensures maximum rigidity and impact protection at minimal weight.

The impact protection plate reflects Autoneum’s technological expertise in underbody shields, ther-mal management and the application of the LFT process, adapted specifically for battery electric vehicles. The technology for the composite impact protection plate has been validated by simulations and vehicle testing at different European OEMs.

Source:

Autoneum Management AG

DITF spacer fabric (c) Deutsche Institute für Textil- und Faserforschung
DITF spacer fabric
15.05.2025

Vacuum insulation panels save heating or cooling energy

Adaptable insulation elements can ensure that the heat transfer through the building envelope can be adjusted as required. This saves heating or cooling energy and therefore costs. Intelligent systems can regulate heat transfer according to the outside temperature and the need for heating or cooling in the interior. In the ReVaD project, the German Institutes of Textile and Fiber Research Denkendorf (DITF) and their partners are developing adaptive building envelopes that can also use concrete components as structural thermal energy storage units for temperature control in buildings.

Adaptable insulation elements can ensure that the heat transfer through the building envelope can be adjusted as required. This saves heating or cooling energy and therefore costs. Intelligent systems can regulate heat transfer according to the outside temperature and the need for heating or cooling in the interior. In the ReVaD project, the German Institutes of Textile and Fiber Research Denkendorf (DITF) and their partners are developing adaptive building envelopes that can also use concrete components as structural thermal energy storage units for temperature control in buildings.

The research project is developing adaptable insulation elements based on the Knudsen effect. The Knudsen effect describes the change in the thermal conductivity of porous structures with the prevailing gas pressure in the pore space. If there is a vacuum in the pore space, the thermal conductivity is low; if the pressure increases, the thermal conductivity also increases. In order to use the principle in an adjustable insulation element, the highest possible switching factor between the two states is required. To achieve this, the pore system and gas pressure range must be optimally matched. In the adaptable insulation panel, the pore system consists of a spacer fabric that is being developed at the DITF. A key challenge here is the compressive strength of the filling core, which must only allow minimal deformation at a surface pressure of 10 N/cm2 imprinted by a fine vacuum.

The research team at the Technology Center Knitting Technique at DITF has developed the corresponding pressure-resistant structures. Their pore size will be optimized in the next steps by inserting textured yarns into the pole thread space. The basic thermal conductivity of the structure should be increased as little as possible. With the knitted structures in the panel, a switching factor, i.e. the ratio of maximum to minimum thermal conductivity achieved, of 5 has already been demonstrated. Current work involves optimizing the spacer structures and setting up a demonstrator.

In the joint project, the Institute of Technical Thermodynamics at the German Aerospace Center (DLR) in Stuttgart is developing a thermochemical reactor component that enables precise and energy-efficient gas pressure adjustment in the vacuum insulation panel. Metal hydride-hydrogen reaction systems are used, which allow the gas pressure in the insulation panel to be set through temperature control.

The Institute for Building Energetics, Thermal Engineering and Energy Storage (IGTE) at the University of Stuttgart is investigating the integration possibilities of the panels in the wall composite using simulations and experiments. The thermal-energetic simulations make it possible to assess the energy-saving potential of the technology in different scenarios and under different boundary conditions. A demonstrator is used to test the adaptable thermal insulation in an application-oriented manner.

The ReVaD project (development of adaptable vacuum insulation elements for the needs-based adaptation of heat transfer in building envelopes and structures as well as the thermal activation of storage masses) is funded by the Federal Ministry of Economics and Energy as part of joint industrial research (IGF) (FKZ: 22617 N).

Source:

Deutsche Institute für Textil- und Faserforschung

07.05.2025

ADD-ITC: Extended Call for Abstracts

The Aachen-Dresden-Denkendorf International Textile Conference 2025 will take place on November 27-28, 2025 at the Eurogress Aachen.

Interested parties have the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. Please note that the extended deadline for oral presentation abstracts is June 2, 2025. The Call for Abstracts for poster contributions is open until July 31, 2025.
The conference program includes plenary lectures and themed sessions in the areas of

The Aachen-Dresden-Denkendorf International Textile Conference 2025 will take place on November 27-28, 2025 at the Eurogress Aachen.

Interested parties have the opportunity to contribute to the conference program and submit an abstract for a talk or poster presentation. Please note that the extended deadline for oral presentation abstracts is June 2, 2025. The Call for Abstracts for poster contributions is open until July 31, 2025.
The conference program includes plenary lectures and themed sessions in the areas of

  • Sustainable Textiles and Circular Textile Economy
  • Bio-based Fibers
  • Synthetic High-Performance Fibers
  • Artificial Intelligence in the Textile Sector
  • Textile Production
  • Smart Textiles & Applications
  • Textiles for Medicine & Health Care
  • Technology Transfer & Start-up Pitches
  • Fiber Composites and Lightweight Construction
  • Best Practices – Examples from Collaboration Projects between Academia and Industry
  • Functionalization & Finishing

Further information about the conference and the call for abstracts (including the submission form) can be found on the website.

Source:

Aachen-Dresden-Denkendorf International Textile Conference

Ecodown Fibers Sync Photo: Thermore
07.05.2025

Thermore: New thermal insulation made of 100% recycled fibers

Thermore, a pioneer in responsible thermal insulation, introduces Ecodown Fibers Sync — a free fiber inspired by the physics of stellar fusion. This new development represents a perfect balance between high performance, luxurious touch, and mindful design. At the core of Ecodown Fibers Sync lies the power of dual-performance fibers, engineered to offer exceptional ultra-lofty softness and resilience. The result is a next-generation insulation with a cloud-like handfeel that resists clumping — a rare combination that ensures lasting volume, even after multiple washes.

This highly flexible insulation offers unmatched versatility, making it ideal for both streamlined for technical outerwear and voluminous for fashion silhouettes. Faithful to Thermore’s legacy, Ecodown Fibers Sync also marks a step forward in sustainable progress. Crafted entirely from 100% recycled fibers sourced from post-consumer PET bottles, it reflects the brand’s enduring commitment to a more responsible design. Every fiber tells a story of transformation — from waste to warmth, from plastic to purpose.

Thermore, a pioneer in responsible thermal insulation, introduces Ecodown Fibers Sync — a free fiber inspired by the physics of stellar fusion. This new development represents a perfect balance between high performance, luxurious touch, and mindful design. At the core of Ecodown Fibers Sync lies the power of dual-performance fibers, engineered to offer exceptional ultra-lofty softness and resilience. The result is a next-generation insulation with a cloud-like handfeel that resists clumping — a rare combination that ensures lasting volume, even after multiple washes.

This highly flexible insulation offers unmatched versatility, making it ideal for both streamlined for technical outerwear and voluminous for fashion silhouettes. Faithful to Thermore’s legacy, Ecodown Fibers Sync also marks a step forward in sustainable progress. Crafted entirely from 100% recycled fibers sourced from post-consumer PET bottles, it reflects the brand’s enduring commitment to a more responsible design. Every fiber tells a story of transformation — from waste to warmth, from plastic to purpose.

In line with Thermore’s quality standards, Ecodown Fibers Sync is certified GRS (Global Recycled Standard), confirming the authenticity of its recycled content and traceability throughout the production chain. Ecodown Fibers Sync is bluesign® and OEKO-TEX® Standard 100 certified, ensuring that the product is free from harmful substances and meets the highest criteria for environmental and human safety. With this launch, Thermore redefines what thermal insulation can be — not just a functional layer, but a core element of a garment’s identity.

Source:

Thermore

29.04.2025

DEMGY acquires TOOL GAUGE, now DEMGY Pacific

On March 31, 2025, DEMGY Group took a decisive step in its international development strategy by acquiring the American company TOOL GAUGE, which specializes in the manufacture of plastic components for the interior of aircraft cabins. This acquisition will enable DEMGY to consolidate their position as one of the world leaders in high value-added plastics processing for civil and military aeronautics.

With this operation, DEMGY is extending its footprint on the North American market, a strategic territory for the aerospace sector. The American company, now renamed DEMGY Pacific, is thus joining a group already present in France, Germany, Romania and the United States, bringing the total number of the group's industrial sites to 10.

Recognized expertise for the benefit of American aerospace
Based in Tacoma, Washington State, TOOL GAUGE has nearly 60 years of experience in the processing of high-performance polymers and the machining of precision parts. Recognized for its operational excellence, it has been awarded the Silver Performance Excellence Award by Boeing for 9 consecutive years.

On March 31, 2025, DEMGY Group took a decisive step in its international development strategy by acquiring the American company TOOL GAUGE, which specializes in the manufacture of plastic components for the interior of aircraft cabins. This acquisition will enable DEMGY to consolidate their position as one of the world leaders in high value-added plastics processing for civil and military aeronautics.

With this operation, DEMGY is extending its footprint on the North American market, a strategic territory for the aerospace sector. The American company, now renamed DEMGY Pacific, is thus joining a group already present in France, Germany, Romania and the United States, bringing the total number of the group's industrial sites to 10.

Recognized expertise for the benefit of American aerospace
Based in Tacoma, Washington State, TOOL GAUGE has nearly 60 years of experience in the processing of high-performance polymers and the machining of precision parts. Recognized for its operational excellence, it has been awarded the Silver Performance Excellence Award by Boeing for 9 consecutive years.

The company has two complementary production units: one dedicated to plastic injection, particularly for interior fittings in aircraft cabins, and the other specializing in the machining of metal and plastic parts. This technical expertise considerably strengthens DEMGY's offering to major clients in the aerospace sector.

Airbus, Boeing: DEMGY stands out as a key partner
This strategic acquisition enables DEMGY to become a tier 1 supplier for Boeing and Airbus, as well as a tier 2 supplier for all their equipment manufacturers in Europe and North America. This positioning considerably strengthens the group's visibility and attractiveness on the global aerospace market.

"By strengthening its leadership in high value-added plastics processing for the aerospace and defense industries, the DEMGY Group has become one of the world's leading, if not the leading, supplier of plastic parts for cabin interiors directly to Airbus and Boeing, as well as to all American and European aircraft equipment manufacturers," says Pierre-Jean LEDUC, Chairman and CEO of DEMGY Group. "This enables us to deploy our high and extreme performance plastics solutions on a much larger scale".

Integration driven by DEMGY Group's cross-functional synergies
DEMGY Pacific will be managed by Mike Walter, also President of DEMGY Chicago, and Eric Wilmoth, Vice-President of Operations. Both will be tasked with implementing industrial and commercial synergies with all the entities of the group, particularly in terms of injection, assembly and decoration.

This integration will promote the development of global solutions to meet the growing demands of the aerospace industry in terms of lightness, performance and durability.

Target of 200 million euros: managed growth
With its 10 industrial sites and 950 employees, DEMGY forecasts sales of over 130 million euros by 2025. Our group's ambition is to reach 200 million euros by 2030, capitalizing on its unique know-how, capacity for innovation and proximity to major customers.

Materials lightening at the heart of decarbonization
For several years, DEMGY has been committed to reducing the carbon footprint of industries, by designing polymer materials that are lighter than metal, durable and recyclable.Thanks to our circular Multiplasturgy® offer, we integrate eco-design from the product development phase.

Examples of PET fine denier spunbond nonwovens (c) Freudenberg Performance Materials
23.04.2025

Freudenberg Performance Materials: Fine denier spunbond nonwovens for industrial applications

The fine filament nonwoven technology from Freudenberg Performance Materials is made from a wide variety of polymers and blends using mono or bico fibers. The high flexibility and broad customization options provide benefits in a wide range of markets and applications – from roofing membranes to liquid filtration, as well as specific applications such as dehumidification products and artificial turf.

Freudenberg’s innovative fine denier spunbond materials rely on flexible manufacturing capabilities, which enable a high level of customization. They can be made of PET, PE or PP, not only as 100% composition but also in many different combinations, e.g. PET/PE, PET/coPET or PET/mPP, using mono or bico fibers with titer ranging from 2.5 to 3 dtex. The material weight spans 17 to 140gsm. The nonwovens are strongly bonded thanks to thermal bonding provided either by flat calendering or point sealing. The technology enables lightweight solutions with high tensile and tear strength, as well as a smooth and uniform surface.

The fine filament nonwoven technology from Freudenberg Performance Materials is made from a wide variety of polymers and blends using mono or bico fibers. The high flexibility and broad customization options provide benefits in a wide range of markets and applications – from roofing membranes to liquid filtration, as well as specific applications such as dehumidification products and artificial turf.

Freudenberg’s innovative fine denier spunbond materials rely on flexible manufacturing capabilities, which enable a high level of customization. They can be made of PET, PE or PP, not only as 100% composition but also in many different combinations, e.g. PET/PE, PET/coPET or PET/mPP, using mono or bico fibers with titer ranging from 2.5 to 3 dtex. The material weight spans 17 to 140gsm. The nonwovens are strongly bonded thanks to thermal bonding provided either by flat calendering or point sealing. The technology enables lightweight solutions with high tensile and tear strength, as well as a smooth and uniform surface.

Advantages for the construction industry
Suited for construction applications such as roofing & facade membranes, vapor barriers and house wrappings, Freudenberg lightweight fine denier nonwovens complement the well-known Terbond®, Texbond® and Colback® solutions for the construction market. They deliver mechanical strength and, in particular, a high nail tear strength as required by the market. Moreover, they have high UV and temperature resistance and stability thanks to the PET composition.

Filtration applications
The fine denier technology is also marketed under the Filtura® brand, specifically suited for liquid filtration, e.g. coolants & lubricants. The technology provides high efficiency and a regular surface, as well as new capabilities with PET-PA and PET-PE nonwovens. Support media applications for glass fiber, nano and activated carbon also benefit from the lightweight fine denier nonwovens as protective layers.

Packaging and coating: Efficient converting and high durability
The fully synthetic PET/PE fine denier materials are ideal for packaging applications such as desiccant bags and other dehumidifier products. They enable the efficient and fast production of such pouches due to their exceptional hot sealing capabilities, with no need for chemical binders or additional treatments. Freudenberg’s technology provides high strength, high abrasion resistance and high durability, allowing for long-lasting desiccant bags.

In the coating industry, too, Freudenberg’s fine denier spunbonds contribute to enhanced process efficiency. The materials are chemically resistant and have good thermal stability. High-quality coating results can be achieved by using these materials as coating substrates, thanks to their smooth and even surface. The material properties can be customized for coating, laminating and concealing applications thanks to different combinations of polymers, fiber types and bonding technologies. For example, a specific very lightweight flat bonded variant of the material is an ideal coating substrate for cold wax depilatory strips, providing the necessary high mechanical strength and material flexibility.

Other applications for Freudenberg’s fine filament technology are crop covers in agriculture, decoration applications and other industrial or consumer applications.

Source:

Freudenberg Performance Materials

AZL Open Day © DF Fotografie – Dominik Fröls
23.04.2025

AZL Open Day: Insights into the Future of Lightweight Design

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

Technically and economically viable lightweight production based on fiber-reinforced plastics and multi-material systems requires an integrated approach. Due to the almost unlimited combination possibilities of different materials and the very complex interactions between materials, component design, manufacturing processes and the machine and system components, an optimal production process requires a direct link between materials science, process engineering and production technology.

As the official center for “Composite-based Lightweight Production” of the RWTH Aachen Campus, AZL Aachen GmbH uses its strong network to provide these capacities and possibilities on an interdisciplinary basis. Within walking distance, researchers and students are working on the latest technologies for the cost-efficient development and production of lightweight components on one of the largest research landscapes in Europe - the RWTH Aachen Campus: Aachen Center for Integrative Lightweight Production of RWTH Aachen University, Fraunhofer Institute for Production Technology IPT, Fraunhofer Institute for Laser Technology ILT, Institute for Automotive Engineering (ika) of RWTH Aachen University, Institute for Plastic Processing in Industry and Craft at RWTH Aachen University, Institute of Structural Mechanics and Lightweight Design (SLA) of RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Production Engineering of E-Mobility Components (PEM) of RWTH Aachen University, Welding and Joining Institute (isf) of RWTH Aachen University.

Exklusive insights into the latest lightweight technologies

Once a year, the AZL Open Day offers an exclusive and unique insight into the R&D capacities of the institutes in the field of lightweight construction and sustainable mobility. This year, nine AZL partner institutes opened their machine halls and research laboratories on April 9, 2025 to provide interested industrial players with comprehensive insights into their current focus areas along the value chain. Among other things, the institutes presented high-precision laser processes for plastics processing, new joining processes for thermoplastic composites, 5-axis CNC machining with real-time quality management, large-format 3D printing and their own tape lines & tape integration. Design, prototyping and testing of products & solutions such as crash-optimized vehicle structures, thermoplastic pressure vessels, digital twins for structural-mechanical monitoring as well as prototyping and recycling approaches for battery systems were also demonstrated. The range of topics, key activities & infrastructure, seen at the Open Day, enables new technologies to be tested under real production conditions and efficiently brought to market maturity.

“The AZL Open Day is a great opportunity to discover the numerous technology centers, labs, prototyping and testing facilities that are available on the Aachen campus, that makes it unique in its kind. The AZL organization and teams located there are a true catalyst for new projects and development for the Composites industry: they are creating the link between Market analysis & technology scouting, academic research resources and business opportunities with their industrial partners. They are currently working on several topics that are at the forefront of Composites” reports Éric Pierrejean, CEO of the JEC Group. Apart from being there as an interested participant, he also gave the audience an insight into the key topics and trends in the composites industry as seen at this year's JEC World Show.

Efficient use of established infrastructures & know-how

As a one-stop shop for lightweight solutions, AZL offers an interface for successful cooperation between research and industry. In close coordination between scientific developments and specific customer requirements, solutions are developed in a targeted and tailor-made manner: as part of the AZL partnership, consortial projects or individual projects. In addition to the know-how of the institutes, cooperation with the AZL's industrial partner network also enables direct access to the necessary infrastructure of components, materials, tools and machine and system parts, which can be tested, developed or newly constructed in integrated process chains on a large scale.

Thanks to the close networking between science, industry and the AZL team of experts, companies can access an established infrastructure and utilize synergies for their projects.
The date for the next AZL Open Day will be announced in the second half of the year.

 

Source:

AZL Aachen GmbH