From the Sector

Reset
6 results
07.05.2024

Drupa: touchpoint textile showcases textile printing solutions

By establishing touchpoint textile, drupa has created a special forum to showcase pioneering applications in digital textile printing. The highlight will be the Digital Textile Micro Factory – a fully connected, integrated process chain starting with the customer enquiry and design through to large-format digital textile printing.

touchpoint textile represents drupa’s growing expansion into new markets comprising such segments as packaging production, large-format or industrial and functional printing next to packaging production. All of these segments are undergoing the same transformation processes and offer enormous growth potential. The special forum revolves around the opportunities and challenges of digital textile printing, brings together renowned exhibitors, industry partners and brand owners and provides scope for cross-industry cooperation, new projects as well as product and manufacturing ideas. The operational content partners of touchpoint textile include the German Institutes for Textile and Fibre Research Denkendorf (DITF), as Europe’s largest textile research centre, as well as ESMA, the European Specialist Printing Manufacturers Association.

By establishing touchpoint textile, drupa has created a special forum to showcase pioneering applications in digital textile printing. The highlight will be the Digital Textile Micro Factory – a fully connected, integrated process chain starting with the customer enquiry and design through to large-format digital textile printing.

touchpoint textile represents drupa’s growing expansion into new markets comprising such segments as packaging production, large-format or industrial and functional printing next to packaging production. All of these segments are undergoing the same transformation processes and offer enormous growth potential. The special forum revolves around the opportunities and challenges of digital textile printing, brings together renowned exhibitors, industry partners and brand owners and provides scope for cross-industry cooperation, new projects as well as product and manufacturing ideas. The operational content partners of touchpoint textile include the German Institutes for Textile and Fibre Research Denkendorf (DITF), as Europe’s largest textile research centre, as well as ESMA, the European Specialist Printing Manufacturers Association.

Digital Textile Micro Factory: on-demand and virtual products – on the path towards sustainable production
In cooperation with 12 partners from industry and research the DITF will demonstrate a Digital Textile Micro Factory live at drupa and, hence, a fully connected, integrated process chain from design to finished product. This will present new possibilities for digitalisation and direct customer involvement, for instance in the form of 3D apparel simulations complete with links to design networks for creative input. Digital workflows and virtual products are integrated directly in the manufacturing process. As a special highlight for all trade visitors the technology partners of this Micro Factory will demonstrate an automated on-demand production, textile printing, cutting and sorting – without any manual interaction. Such decentralised and digitally connected design and production chains will enable the textile industry to respond to customers’ requests and trends in a more targeted manner in future. This means, touchpoint textile 2024 technologically points the way to a future without shelf-warmers. In addition, the carbon footprint for the complete process from virtual development to finished product will be modelled and presented at the trade fair.  

2024 will see the design competition “drupa – textile design talents” being held for the first time. This was conceived of by the DITF and will be implemented by the partner Mitwill. This provides up-coming textile designers and newcomers with a unique opportunity to introduce their ideas and visions to a professional audience.

Broad industry support
A project as comprehensive as the Micro Factory requires many strong partners. The companies “on board” here include: Assyst/Germany (3D simulation for digital apparel twins), Mitwill Textiles Europe/France (creative design network), D.G.I. Digital Graphics Incorporation/South Korea, Multi-Plot Europe/Germany (large-format textile printing), LEONHARD KURZ Stiftung/Germany, Zünd/Switzerland (digital cutting), robotfactory/Denmark, Asco/The Netherlands (presenting an innovative buffer solution between digital printing and cutting, automated sorting of cut parts from the cutter by robotfactory) as well as Brother/Japan (for small-format textile printing and bonding technology). Vaude and berger textiles will be sponsoring the touchpoint. Another key partner is the Albstadt-Sigmaringen University that is supporting the project as a conceptual sponsor and which has set itself the clear mission to incorporate these new topics into its curriculum. This means the staff of the future will be geared up to the new challenges ahead.

Another partner of touchpoint textile is the European Specialist Printing Manufacturers Association (ESMA), which is responsible for the lecture programme. ESMA represents industrial, functional and specialist printing and acts as an organiser of educational events in the field of textile printing. At drupa speakers from research, development, and industry will address issues related to printing and finishing techniques, workflows, market developments and sustainability, to name but a few. The focus will also be on trends and applications that unlock ever new potential through the interplay of digital printing and textile printing substrates. The lectures are divided into the categories Research, Finishing, Print Systems & Hardware, Substrates, Inks & Chemistry and Software & Electronics. Assyst, for example, will deliver talks on the virtual development of apparel as well as the research project ECOShoring, which is funded by the “Deutsche Bundesstiftung Umwelt” – DBU (German Federal Environmental Foundation) and focuses on personalised and on-demand sustainable manufacturing. Other speakers represent Adobe, Balta Group, Barbieri Electronic, Brother, Centexbel, CST, DITF, Fujifilm Speciality Ink Systems, HS Albsig, Kornit Digital, Meteor Inkjet, Mimaki, Mitwill, Multiplot, Print-Rite, RWTH Aachen, Seiko Instruments, Tiger Coatings, Xaar, Zünd and the list is updated on regular basis.

drupa will be held at the Düsseldorf Exhibition Centre from 28 May to 7 June 2024.

Source:

Messe Düsseldorf

DITF: Modular cutting tool recognized with JEC Composites Innovation Award Photo: Leitz
Hermann Finckh (DITF) and Andreas Kisselbach (Leitz GmbH & Co. KG)
16.02.2024

DITF: Modular cutting tool recognized with JEC Composites Innovation Award

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

Hermann Finckh received the JEC Composites Innovation Award in the category Equipment Machinery & Heavy Industries for the innovation MAXIMUM WEIGHT REDUCTION OF COMPOSITE TOOLS. The research team from the German Institutes of Textile and Fiber Research Denkendorf (DITF) developed a new modular cutting tool for woodworking machines, which was produced and successfully tested by the industrial partner Leitz GmbH & Co. KG.

The extremely lightweight planing tool was made from carbon fiber-reinforced plastics (CFRPs) instead of aluminum using a completely new modular construction principle. As a result, it weighs 50 percent less than conventional tools. It enables significantly higher working speed, which enables a one-and-a-half-fold increase in productivity. The development of the extreme-lightweight principle was performed by numerical simulation and every solution was virtually tested in advance. A patent application has been filed for the concept.

DITF: Recyclable event and trade fair furniture made of paper (c) DITF
Structurally wound paper yarn element with green sensor yarn.
26.01.2024

DITF: Recyclable event and trade fair furniture made of paper

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

A lot of waste is generated in the trade fair and event industry. It makes sense to have furniture that can quickly be dismantled and stored to save space - or simply disposed of and recycled. Paper is the ideal raw material here: locally available and renewable. It also has an established recycling process. The German Institutes of Textile and Fiber Research (DITF) and their project partners have jointly developed a recycling-friendly modular system for trade fair furniture. The "PapierEvents" project was funded by the German Federal Environmental Foundation (DBU).

Once the paper has been brought into yarn form, it can be processed into a wide variety of basic elements using the structure winding process, creating a completely new design language.

The unusual look is created in the structure winding process. In this technology developed at the DITF, the yarn is deposited precisely on a rotating mandrel. This enables high process speeds and a high degree of automation. After the winding process, the individual yarns are fixed, creating a self-supporting component. A starch-based adhesive, which is also made from renewable and degradable raw materials, was used in the project for the fixation.

The recyclability of all the basic elements developed in the project was investigated and confirmed. For this purpose the research colleagues at the project partner from the Department of Paper Production and Mechanical Process Engineering at TU Darmstadt (PMV) used the CEPI method, a new standard test procedure from the Confederation of European Paper Industries.

Sensor and lighting functions were also implemented in a recycling-friendly manner. The paper sensor yarns are integrated into the components and detect contact.

Also, a modular system for trade fair and event furniture was developed. The furniture is lightweight and modular. For example, the total weight of the counter shown is well under ten kilograms and individual parts can easily be shipped in standard packages. All parts can be used several times, making them suitable for campaigns lasting several weeks.

A counter, a customer stopper in DIN A1 format and a pyramid-shaped stand were used as demonstrators. The research work of the DITF (textile technology) and PMV (paper processing) was supplemented by other partners: GarnTec GmbH developed the paper yarns used, the industrial designers from quintessence design provided important suggestions for the visual and functional design of the elements and connectors and the event agency Rödig GmbH evaluated the ideas and concepts in terms of usability in practical use.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

DITF: Pleated textile tube for ventilation of surgical fields Photo: Wandres GmbH micro-cleaning
06.11.2023

DITF: Pleated textile tube for ventilation of surgical fields

The German Institutes of Textile and Fiber Research Denkendorf (DITF) will be exhibiting at the MEDICA medical technology trade fair in Düsseldorf from November 13 to 16, 2023. At the joint stand of Baden-Württemberg International, a new development will be shown, that can reduce infections during operations.

These nosocomial infections occur when surgical wounds are contaminated by microbes. They can lead to serious complications. The task of the contract development was to create a porous ring tube that reduces the risk of contamination during operations. Germ-free air is introduced into the operating field via the so-called airflow ring, thereby shielding pathogenic germs.

The tube is knitted from polyester and folded. This pleating ensures that the circular shape remains stable, but the tube is still flexible. The outside of the tube is coated so that the air is directed into the inner area of the airflow ring. The ring is attached to the skin with a biocompatible adhesive so that it fits tightly on curved areas of the body such as the face or around joints. The position of the ring can be easily changed.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) will be exhibiting at the MEDICA medical technology trade fair in Düsseldorf from November 13 to 16, 2023. At the joint stand of Baden-Württemberg International, a new development will be shown, that can reduce infections during operations.

These nosocomial infections occur when surgical wounds are contaminated by microbes. They can lead to serious complications. The task of the contract development was to create a porous ring tube that reduces the risk of contamination during operations. Germ-free air is introduced into the operating field via the so-called airflow ring, thereby shielding pathogenic germs.

The tube is knitted from polyester and folded. This pleating ensures that the circular shape remains stable, but the tube is still flexible. The outside of the tube is coated so that the air is directed into the inner area of the airflow ring. The ring is attached to the skin with a biocompatible adhesive so that it fits tightly on curved areas of the body such as the face or around joints. The position of the ring can be easily changed.

The functionality of the airflow ring was successfully demonstrated in tests with nebulized colony-forming bacteria.

The tests showed that the ring also withstands significantly worse conditions than in an operating theater, e.g. in doctors' surgeries and in situations with lower hygiene standards.

(c) Carsten Fulland, Zenvision
Finale Struktur als Buckyball mit den entwickelten Knoten und Pultrusions-Profilen
18.05.2023

DITF: Bioverbundwerkstoff auf der Architektur-Biennale

Die diesjährige Architektur-Biennale in Venedig sieht sich als „Laboratory of the Future“. Bioverbundwerkstoffe sind in der Architektur nicht nur Zukunftsmusik. Die Deutschen Institute für Textil- und Faserforschung (DITF) haben einen nachhaltigen Werkstoff für Stützprofile und Verbindungsknoten entwickelt, die während der Biennale vom 20. Mai bis 26. November im Palazzo Mora ausgestellt werden. Die ultraleichten Bauteile sind das Ergebnis eines Gemeinschaftsprojekts von Partnern aus Forschung und Industrie, das vom Bundesministerium für Ernährung und Landwirtschaft gefördert wurde. Sie werden zukünftig im Bereich der mobilen Architektur und bei Pavillons und Architekturen mit geringer Traglast eingesetzt.

Die DITF hatten die Aufgabe, für den Bioverbundwerkstoff geeignete Materialen auszuwählen und Fertigungsprozesse zu entwickeln. Um einen möglichst hohen Bioanteil zu erreichen, wurden Hanf- und Flachsfasern sowie ein Harzsystem verwendet, das auf epoxidiertem Leinsamenöl basiert. Diese natürlichen Ressourcen wurden sowohl im Pultrusionsverfahren als auch im Heißpressverfahren eingesetzt.

Die diesjährige Architektur-Biennale in Venedig sieht sich als „Laboratory of the Future“. Bioverbundwerkstoffe sind in der Architektur nicht nur Zukunftsmusik. Die Deutschen Institute für Textil- und Faserforschung (DITF) haben einen nachhaltigen Werkstoff für Stützprofile und Verbindungsknoten entwickelt, die während der Biennale vom 20. Mai bis 26. November im Palazzo Mora ausgestellt werden. Die ultraleichten Bauteile sind das Ergebnis eines Gemeinschaftsprojekts von Partnern aus Forschung und Industrie, das vom Bundesministerium für Ernährung und Landwirtschaft gefördert wurde. Sie werden zukünftig im Bereich der mobilen Architektur und bei Pavillons und Architekturen mit geringer Traglast eingesetzt.

Die DITF hatten die Aufgabe, für den Bioverbundwerkstoff geeignete Materialen auszuwählen und Fertigungsprozesse zu entwickeln. Um einen möglichst hohen Bioanteil zu erreichen, wurden Hanf- und Flachsfasern sowie ein Harzsystem verwendet, das auf epoxidiertem Leinsamenöl basiert. Diese natürlichen Ressourcen wurden sowohl im Pultrusionsverfahren als auch im Heißpressverfahren eingesetzt.

Die Verarbeitung von Naturfasern zu leistungsstarken Produkten ist anspruchsvoll, weil diese dicker, ungleichmäßiger, feuchter und auch empfindlicher sind als Hochleistungsfasern aus Glas, Carbon oder Aramid. Bisher wurden Naturfasern zum überwiegenden Teil mit erdölbasierten Harzen oder Harzen mit einem sehr geringen Bioanteil in der Pultrusion verarbeitet. Die daraus hergestellten Verbünde erreichten keine ausreichende Faser- Matrixhaftung, weshalb die mechanischen Eigen-schaften unbefriedigend waren. An den DITF konnten diese material- und prozessbedingten Probleme weitgehend gelöst werden. Hierbei war beispielsweise die Vortrocknung der Naturfaser-Rovings in der Pultrusion ein entscheidender Lösungsweg. Was bei den DITF im Labormaßstab gelang, ließ sich auch im Industriemaßstab umsetzen. Für den LightPRO Shell Pavillon, den Buckyball und für die Biennale-Ausstellung produzierte der Projektpartner CG-TEC insgesamt 800 Meter Rohrprofil, die als Stützelement verwendet wurden. Für den Knoten, der die Stützprofile verbindet, haben die Projektpartner ein Design entworfen, nach dessen Vorlage ein passendes Formwerkzeug für das Heißpressverfahren gefertigt wurde. Zum Projektende wurden an den DITF mit diesem Formwerkzeug über 60 Verbindungsknoten für den Buckyball hergestellt, von dem man jetzt einen Ausschnitt in Venedig besichtigen kann.

Praxistests haben gezeigt, dass der an den DITF entwickelte Bioverbundwerkstoff für vielfältige Anwendungen in der Architektur geeignet ist. Im Vergleich zu Glasfaserkunststoffen splittern Bioverbundwerkstoffe bei einem Crash nicht. Zudem sind sie ein nachhaltiger Baustoff. Sie verbrauchen bei ihrer Herstellung viel weniger Energie und binden langfristig eine große Menge Kohlenstoff. Sie bringen aufgrund ihrer geringen Dichte wenig Gewicht auf die Waage und sind daher für viele Anwendungen im Leichtbau geeignet. Ziel des Leichtbaus ist es, Rohstoffe, Energie und damit Kosten zu sparen. Der Einsatz von Bioverbundwerkstoffen bietet der Bauindustrie ein hohes Potenzial, neue ressourcenschonende Wege zu gehen.

Das Forschungsprojekt LeichtPRO wurde von der Fachagentur für Nachwachsende Rohstoffe (FNR) im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft gefördert.

04.01.2022

Cellulose Fibres: New Technologies for Pulp, Fibres and Yarns

  • Session "New Technologies for Pulp, Fibres and Yarns"

Cellulose fibres are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibres through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp cellulosic fibres and yarns. In addition, examples of non-wovens,  packaging and composites will offer a look beyond the horizon of conventional application fields.

  • Session "New Technologies for Pulp, Fibres and Yarns"

Cellulose fibres are a true material miracle as they offer a steadily expanding, broad range of applications. Meanwhile markets are driven by technological developments and policy frameworks, especially bans and restrictions on plastics, as well as an increasing number of sustainability requirements. The  presentations will provide valuable information on the various use-opportunities for cellulosic fibres through a policy overview, a special session on sustainability, recycling and alternative feedstocks, as well as the latest developments in pulp cellulosic fibres and yarns. In addition, examples of non-wovens,  packaging and composites will offer a look beyond the horizon of conventional application fields.

The extensive fifth conference session, “New Technologies for Pulp, Fibres and Yarns”, includes the participation of eight speakers and promises the reveal of various innovations and new approaches. These address the processing of pulp, fibres and yarn, with the aim of realizing most sustainable and efficient solutions. The broad spectrum of topics ranges from processing cellulose with ionic liquids, material farming and chemical modification of pulp to functionalised fibres for feel-good textiles.

Speakers of the Session "New Technologies for Pulp, Fibres and Yarns"

  • Antje Ota - Deutsche Institute für Textil- und Faserforschung (DITF) (DE): The Versatility of the HighPerCell® Technology for Cellulose Filament
  • Carlo Centonze - HEIQ (CH): HeiQ AeoniQ – Cellulose Yarn Focussed on Climate and Circularity
  • Manuel Steiner - LIST Technology AG (CH): Cellulose Dissolving Technology Platform
  • Dominik Mayer - Kelheim Fibres (DE): Functionalized Viscose Fibres for Wellbeing Textiles: How Infrared Celliant® Viscose supports a Healthy and Sustainable Lifestyle
  • Michael Sturm - TITK (DE): Method for the Evaluation of the dissolution Power and dissolution Quality of Cellulosic Raw Materials dissolved in New Ionic Liquids
  • Kaoutar Aghmih - Hassan II University (MA): Rheology and Dissolution of Cellulose in Ionic Liquid Solutions
  • Ofir-Aharon Kuperman - Weizmann Institute of Science (IL): Material Farming and Biological Fabrication of Cellulose Fibers with Tailored Properties
  • Taina Kamppuri - VTT Technical Research Center of Finnland (FI): Chemically Modified Kraft Pulps to Improve the Sustainability of Regenerated Fibres