Textination Newsline

Reset
410 results
North Carolina State University
17.01.2023

Embroidery as Low-Cost Solution for Making Wearable Electronics

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

In the study published in Nano Energy, researchers tested multiple designs for power-generating yarns. To make them durable enough to withstand the tension and bending of the embroidery stitching process, they ultimately used five commercially available copper wires, which had a thin polyurethane coating, together. Then, they stitched them onto cotton fabric with another material called PTFE.

“This is a low-cost method for making wearable electronics using commercially available products,” Yin said. “The electrical properties of our prototypes were comparable to other designs that relied on the same power generation mechanism.”

The researchers relied on a method of generating electricity called the “triboelectric effect,” which involves harnessing electrons exchanged by two different materials, like static electricity. They found the PTFE fabric had the best performance in terms of voltage and current when in contact with the polyurethane-coated copper wires, as compared to other types of fabric that they tested, including cotton and silk. They also tested coating the embroidery samples in plasma to increase the effect.

“In our design, you have two layers – one is your conductive, polyurethane-coated copper wires, and the other is PTFE, and they have a gap between them,” Yin said. “When the two non-conductive materials come into contact with each other, one material will lose some electrons, and some will get some electrons. When you link them together, there will be a current.”
Researchers tested their yarns as motion sensors by embroidering them with the PTFE fabric on denim. They placed the embroidery patches on the palm, under the arm, at the elbow and at the knee to track electrical signals generated as a person moves. They also attached fabric with their embroidery on the insole of a shoe to test its use as a pedometer, finding their electrical signals varied depending on whether the person was walking, running or jumping.

Lastly, they tested their yarns in a textile-based numeric keypad on the arm, which they made by embroidering numbers on a piece of cotton fabric, and attaching them to a piece of PTFE fabric. Depending on the number that the person pushed on the keypad, they saw different electrical signals generated for each number.

“You can embroider our yarns onto clothes, and when you move, it generates an electrical signal, and those signals can be used as a sensor,” Yin said. “When we put the embroidery in a shoe, if you are running, it generates a higher voltage than if you were just walking. When we stitched numbers onto fabric, and press them, it generates a different voltage for each number. It could be used as an interface.”

Since textile products will inevitably be washed, they tested the durability of their embroidery design in a series of washing and rubbing tests. After hand washing and rinsing the embroidery with detergent, and drying it in an oven, they found no difference or a slight increase in voltage. For the prototype coated in plasma, they found weakened but still superior performance compared with the original sample. After an abrasion test, they found that there was no significant change in electrical output performance of their designs after 10,000 rubbing cycles.

In future work, they plan to integrate their sensors with other devices to add more functions.
“The next step is to integrate these sensors into a wearable system,” Yin said.

The study, “Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction,” was published online in Nano Energy. Co-authors included Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao and Bao Yang. Funding was provided by North Carolina State University through the NC State Faculty Research & Professional Development Fund and the NC State Summer REU program.

 

Source:

North Carolina State University, Rong Yin, Laura Oleniacz

Photo Pixabay
10.01.2023

Fraunhofer: Optimized production of nonwoven masks

Producing infection control clothing requires a lot of energy and uses lots of material resources. Fraunhofer researchers have now developed a technology which helps to save materials and energy when producing nonwovens. A digital twin controls key manufacturing process parameters on the basis of mathematical modeling. As well as improving mask manufacturing, the ProQuIV solution can also be used to optimize the production parameters for other applications involving these versatile technical textiles, enabling manufacturers to respond flexibly to customer requests and changes in the market.

Producing infection control clothing requires a lot of energy and uses lots of material resources. Fraunhofer researchers have now developed a technology which helps to save materials and energy when producing nonwovens. A digital twin controls key manufacturing process parameters on the basis of mathematical modeling. As well as improving mask manufacturing, the ProQuIV solution can also be used to optimize the production parameters for other applications involving these versatile technical textiles, enabling manufacturers to respond flexibly to customer requests and changes in the market.

Nonwoven infection control masks were being used in their millions even before the COVID-19 pandemic and are regarded as simple mass-produced items. Nevertheless, the manufacturing process used to make them needs to meet strict requirements regarding precision and reliability. According to DIN (the German Institute for Standardization), the nonwoven in the mask must filter out at least 94 percent of the aerosols in the case of the FFP-2 mask and 99 percent in the case of the FFP-3 version. At the same time, the mask must let enough air through to ensure that the wearer can still breathe properly. Many manufacturers are looking for ways to optimize the manufacturing process. Furthermore, production needs to be made more flexible so that companies are able to process and deliver versatile nonwovens for a wide range of different applications and sectors.

ProQuIV, the solution developed by the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, fulfills both of these aims. The abbreviation “ProQuIV” stands for “Production and Quality Optimization of Nonwoven Infection Control Clothing” (Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen). The basic idea is that manufacturing process parameters are characterized with regard to their impact on the uniformity of the nonwoven, and this impact is then linked to properties of the end product; for example, a protective mask. This model chain links all relevant parameters to an image analysis and creates a digital twin of the production process. The digital twin enables real-time monitoring and automatic control of nonwoven manufacturing and thus makes it possible to harness potential for optimization.

Dr. Ralf Kirsch, who works in the Flow and Material Simulation department and heads up the Filtration and Separation team, explains: “With ProQuIV, the manufacturers need less material overall, and they save energy. And the quality of the end product is guaranteed at all times.”

Nonwoven manufacturing with heat and air flow
Nonwovens for filtration applications are manufactured in what is known as the
meltblown process. This involves melting down plastics such as polypropylene and forcing them through nozzles so they come out in the form of threads referred to as filaments. The filaments are picked up on two sides by air flows which carry them forward almost at the speed of sound and swirl them around before depositing them on a collection belt. This makes the filaments even thinner: By the end of the process, their thickness is in the micrometer or even submicrometer range. They are then cooled, and binding agents are added in order to create the nonwoven. The more effectively the temperature, air speed and belt speed are coordinated with each other, the more uniform the distribution of the fibers at the end and therefore the more homogeneous the material will appear when examined under a transmitted light microscope. Lighter and darker areas can thereby be identified — this is referred to by experts as cloudiness. The Fraunhofer team has developed a method to measure a cloudiness index on the basis of image data. The light areas have a low fiber volume ratio, which means that they are less dense and have a lower filtration rate. Darker areas have a higher fiber volume and therefore a higher filtration rate. On the other hand, the higher air flow resistance in these areas means that they filter a smaller proportion of the air that is breathed in. A larger proportion of the air flows through the more open areas which have a less effective filtration effect.

Production process with real-time control
In the case of ProQuIV, the transmitted light images from the microscope are used to calibrate the models prior to use. The experts analyze the current condition of the textile sample and use this information to draw conclusions about how to optimize the system — for example, by increasing the temperature, reducing the belt speed or adjusting the strength of the air flows. “One of the key aims of our research project was to link central parameters such as filtration rate, flow resistance and cloudiness of a material with each other and to use this basis to generate a method which models all of the variables in the production process mathematically,” says Kirsch. The digital twin monitors and controls the ongoing production process in real time. If the system deviates slightly from where it should be — for example, if the temperature is too high — the settings are corrected automatically within seconds.

Fast and efficient manufacturing
“This means that it is not necessary to interrupt production, take material samples and readjust the machines. Once the models have been calibrated, the manufacturer can be confident that the nonwoven coming off the belt complies with the specifications and quality standards,” explains Kirsch. ProQuIV makes production much more efficient — there is less material waste, and the energy consumption is also reduced. Another advantage is that it allows manufacturers to develop new nonwoven-based products quickly — all they have to do is change the target specifications in the modeling and adjust the parameters. This enables production companies to respond flexibly to customer requests or market trends.

This might sound logical but can be quite complex when it comes to development. The way that the values for filtration performance and flow resistance increase, for example, is not linear at all, and they are not proportional to the fiber volume ratio either. This means that doubling the filament density does not result in double the filtration performance and flow resistance — the relationship between the parameters is much more complex than that. “This is precisely why the mathematical modeling is so important. It helps us to understand the complex relationship between the individual process parameters,” says ITWM researcher Kirsch. The researchers are able to draw on their extensive expertise in simulation and modeling for this work.

More applications are possible
The next step for the Fraunhofer team is to reduce the breathing resistance of the nonwovens for the wearer without impairing the protective effect. This is made possible by electrically charging the fibers and employing a principle similar to that of a feather duster. The electric charge causes the textile fabric to attract the tiniest of particles which could otherwise slip through the pores. For this purpose, the strength of the electrostatic charge is integrated into the modeling as a parameter.

The Fraunhofer researchers’ plans for the application of this method extend far beyond masks and air filters. Their technology is generally applicable to the production of nonwovens — for example, it can also be used in materials for the filtration of liquids. Furthermore, ProQuIV methods can be used to optimize the manufacture of nonwovens used in sound-insulating applications.

Source:

Fraunhofer Institute for Industrial Mathematics ITWM

04.01.2023

Circular Economy: It could all be so simple... or not

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

Interview with Henning Wehland & Robert Kapferer, Circularity Germany

I'm a very curious guy by nature. That's why I offered to help out at a well-known hot dog station in Münster (Germany) this year, to draw attention to the shortage of staff in the gastronomy. I wrote an article about it on LinkedIn, which was in turn reacted to by Ines Chucholowius.
From her profile, I could see that she is a consultant for strategic marketing and communication in the textile industry. Not entirely serious, she offered me a job in her office. Like pushing a button, the pictures in my mind set in: Textile industry, exciting! Merchandising, contacts in the industry, collaborations, and I agreed to a short chat, at the end of which we spoke on the phone and arranged to meet.
 
She told me about her website TEXTINATION.de. And we were already involved in an exciting, heated exchange about perception and truth in the textile industry. Without further ado, we left it at that and I went home with a chunk of new information about an exciting field. Our dialogue on social media continued and eventually Ines offered me the chance to feed my die-hard curiosity with the support of TEXTINATION.de. I could write a blog on the site, about people, products, service providers, producers, startups or trends that interest me, to add to my half-knowledge about the textile industry.

Textile waste into the front ... new T-shirt out the back
During this exchange and a long brainstorming session, certain terms kept tickling my attention:
Circular economy, recycling, recyclable material loops. Circular Economy, Recycling, Recyclables. Even though there are many different definitions and some even distinguishing between different aspects: the former thought from waste that flows back into production as a secondary raw material, a more modern approach avoiding waste already in production - the general consensus is really only that circular economy is a cycle in which waste is used as a source for something new.

Sounds like useful additions for all areas of the manufacturing real economy to me. Ines introduced me to Robert Kapferer: He runs a startup called Circularity Germany in Hamburg. His company, founded in 2021 and consisting of Robert and another partner, is an offshoot of the Dutch-based company Circularity B.V. Its founder Han Hamers, with a degree in child psychology and a professional background in the textile dyeing industry, had the idea five years ago for a production facility that spins new yarn exclusively from textile production waste and old textiles turning it into T-shirts, polo shirts and sweatshirts.
Whether this works, and if so, how, is what I wanted to find out, and Ines and I arranged to meet Robert for a 90-minute online conference.

Robert, originally an industrial engineer, comes from a less sustainable industry. He worked for 11 years as managing director for AVECO Material und Service GmbH, where he was responsible for the workwear of more than 50,000 employees.

At the beginning of our conversation, he emphasizes that a moment in January 2021 changed his life and from then on, he wanted to dedicate himself to the topic of circular economy with all his might. That was when he met Han Hamers, who inspired him to found Circularity Germany. His enthusiasm and passion for the subject sound credible, and he begins to describe the differences between chemical and mechanical recycling methods. In summary, the mechanical process of shredding and the subsequent spinning shortens the fibers and thus restricts their properties for further processing. The advantage lies primarily in the comparatively uncomplicated, fast and more cost-efficient process. In the chemical variant, chemical waste remains, but the processed materials are broken down again into their basic building blocks in such a way that they have almost all the same properties as a so-called virgin raw material. Circularity Germany stands for the mechanical process.

And then comes the sentence that gets all our attention: "We've advanced a spinning technology so much that it relies exclusively on waste-based raw materials."
This sentence almost doesn't stand out because Robert still talks - quite excitingly - about the fact that they are planning a production and manufacturing facility where everything from knitting yarn to relatively fine thread can be spun and then further processed into fabric. And here Ines and I ask intensively: Essential requirements for industrial production still seem to be unresolved, and necessary processes are still in the planning stage. For example, the question of whether to work with pre-consumer or post-consumer waste. Pre-consumer waste is cutting waste from the production of clothes, which corresponds to about 10% of the processed material. Post-consumer waste we know as used textiles.

As long as production still takes place in India, Circularity currently uses mainly pre-consumer waste. These come exclusively from sewing factories in the Tirupur region in the south of India. When using used textiles, which exist in large quantities in Germany (according to a study, 28-40% of all garments produced are thrown away unworn), Circularity produces blended yarns of cotton and polyester. The company does not offer pure cotton yarns.

Textiles are treated with chemicals to varying degrees - workwear in particular cannot do without them. The fact that Han Hemers is also collecting used textile stocks from the Dutch army in order to reintroduce them renewed into the consumer cycle is therefore not reassuring. Military clothing has to be finished with all kinds of additives.

Therefor I ask how he can dispel doubts in a consumer’s mind like mine, with a healthy half-knowledge of mask deals and greenwashing, that a well-intentioned vision will be followed by a dark awakening. This concern cannot yet be resolved after the conversation.

We limit ourselves to what is planned: Robert has the dream of reversing the globalized process of textile production. He wants to end the decoupling of cotton growing regions and far-flung production such as Asia with subsequent shipping of ready-made goods to Europe. In the future, existing used textiles and/or cutting wastes are to be collected on site, recycled and processed locally into new textiles.

I believe him in having this dream. However, some of my questions about sustainability remain unanswered - which is why I have my doubts about whether the idea is currently capable of performing and competing.
What are the reasons for this? For one thing, I think it's always difficult to do necessary pioneering work. Especially when listening to smart comments at the regulars' table that large companies are already working intensively on the principle of circular economy. But sometimes, apart from the term "circular economy" and a vague commitment to it, not much remains.

Circularity Germany is committed to developing a technology based exclusively on waste. The interview points out that this also includes making production more environmentally friendly and eliminating transport routes, which further reduces the burden on the environment. When all the requirements for realizing this dream have been met and a product that is competitive in terms of both quality and price can be launched on the market, it is up to the consumer to decide. Here one would have the credible argument of sustainability and a socially and environmentally fair process. Circularity would then not have to worry about PR.

It needs to be given time and, above all, attention. But perhaps the industry should get involved right here and now, and invest in startups like this and make sure that problems are cleared out of the way. Because one thing has become clear to us in this conversation:

It could all be so simple. Circular economy is achievable, but the road there is still costly and rocky. That's why we wish Robert and his team every success and, above all, perseverance. Thank you for the interview.

Short and sweet: the profile of the company in the attached factsheet for download.

 

 

(c) DITF
20.12.2022

New 3D printing process for sustainable fiber composite components

Nature works often with fiber composites. The construction principles of nature require little material and energy and thus ensure the survival of animals and plant species. Examples include wood, plant stalks, chitinous shells, bones or tissues such as tendons and skin. Mussel shells or spider silk are also composite tissues. We can take advantage of these principles to design and manufacture bio-based, sustainable fiber reinforced composites, which are currently in high demand. Bio-based fiber reinforced composites consist of natural fibers or cellulose fibers embedded in a bio-based matrix. The bio-based components offer properties comparable to those of commonly used glass fiber composites. The German Institutes of Textile and Fiber Research (DITF), together with Arburg GmbH + Co KG, are developing an energy- and material-efficient 3D printing process for manufacturing of such lightweight bio-based fiber composites.

Nature works often with fiber composites. The construction principles of nature require little material and energy and thus ensure the survival of animals and plant species. Examples include wood, plant stalks, chitinous shells, bones or tissues such as tendons and skin. Mussel shells or spider silk are also composite tissues. We can take advantage of these principles to design and manufacture bio-based, sustainable fiber reinforced composites, which are currently in high demand. Bio-based fiber reinforced composites consist of natural fibers or cellulose fibers embedded in a bio-based matrix. The bio-based components offer properties comparable to those of commonly used glass fiber composites. The German Institutes of Textile and Fiber Research (DITF), together with Arburg GmbH + Co KG, are developing an energy- and material-efficient 3D printing process for manufacturing of such lightweight bio-based fiber composites.

In fiber composites, which occur naturally, reinforcing fibers such as collagen or cellulose fibrils are embedded in a matrix of lignin, hemicellulose or collagen. The fiber strands align with the stress patterns. Tissues are formed mostly via solution-based physio-chemical processes that take place at ambient temperature. Similar to nature, new 3D printing processes with continuous fiber reinforcement also allow the deposition of fiber strands in the right place (topology optimization) and in the appropriate direction in accordance to the load. However, natural fibers such as cellulose fibers are sensitive to higher temperatures. Therefore, they cannot be processed in the commonly employed thermoplastic 3D printing process.

The result of the research work is 3D-printed fiber composite components consisting of cellulose continuous fibers embedded in a cellulose-based matrix. Newly developed 3D-printing process enables to manufacture the composites at ambient temperature. This means that - as in nature - the material and component can be produced simultaneously in a single operation at ambient temperature.

The cellulose fiber strand is first stabilized with a binder for processing in the printer. The specially designed print head transforms the binder into a matrix with which the cellulose continuous fibers are encased. Since the cellulose fibers and the matrix have similar chemical structures, the composite component is particularly stable. The mechanical properties, such as breaking strength, are exceptionally good. The solution-based and energy-efficient manufacturing method developed by the research team can also be used in other composite materials manufacturing processes. It is particularly suitable for processing temperature-sensitive materials that are in high demand, such as natural or cellulose fibers.

The " CellLoes-3D-Druck" research project is funded by the German Federal Ministry of Education and Research as part of the "Biologisierung der Technik" ideas competition.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf

Image: Gaharwar Laboratory
13.12.2022

New inks for 3D-printable wearable bioelectronics

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive human tissue, much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive human tissue, much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

“The impact of this work is far-reaching in 3D printing,” said Dr. Akhilesh Gaharwar, associate professor in the Department of Biomedical Engineering and Presidential Impact Fellow. “This newly designed hydrogel ink is highly biocompatible and electrically conductive, paving the way for the next generation of wearable and implantable bioelectronics.”1 

The ink has shear-thinning properties that decrease in viscosity as force increases, so it is solid inside the tube but flows more like a liquid when squeezed, similar to ketchup or toothpaste. The team incorporated these electrically conductive nanomaterials within a modified gelatin to make a hydrogel ink with characteristics that are essential for designing ink conducive to 3D printing.

“These 3D-printed devices are extremely elastomeric and can be compressed, bent or twisted without breaking,” said Kaivalya Deo, graduate student in the biomedical engineering department and lead author of the paper. “In addition, these devices are electronically active, enabling them to monitor dynamic human motion and paving the way for continuous motion monitoring.”

In order to 3D print the ink, researchers in the Gaharwar Laboratory designed a cost-effective, open-source, multi-head 3D bioprinter that is fully functional and customizable, running on open-source tools and freeware. This also allows any researcher to build 3D bioprinters tailored to fit their own research needs.

The electrically conductive 3D-printed hydrogel ink can create complex 3D circuits and is not limited to planar designs, allowing researchers to make customizable bioelectronics tailored to patient-specific requirements.

In utilizing these 3D printers, Deo was able to print electrically active and stretchable electronic devices. These devices demonstrate extraordinary strain-sensing capabilities and can be used for engineering customizable monitoring systems. This also opens up new possibilities for designing stretchable sensors with integrated microelectronic components.

One of the potential applications of the new ink is in 3D printing electronic tattoos for patients with Parkinson’s disease. Researchers envision that this printed e-tattoo can monitor a patient’s movement, including tremors.

This project is in collaboration with Dr. Anthony Guiseppi-Elie, vice president of academic affairs and workforce development at Tri-County Technical College in South Carolina, and Dr. Limei Tian, assistant professor of biomedical engineering at Texas A&M.
This study was funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke and the Texas A&M University President’s Excellence Fund. A provisional patent on this technology has been filed in association with the Texas A&M Engineering Experiment Station.

1 This study was published in ACS Nano.

Source:

Alleynah Veatch Cofas, Texas A & M University

(c) INNATEX – international trade fair for sustainable textiles
06.12.2022

51st INNATEX targets the topic of conventional retail

International trade fair for Green Fashion focuses on new formats and strategic partnerships:

From 21 to 23 January 2023, INNATEX will be taking place for the 51st time in ac-cordance with its usual daily schedule. So far, well over 200 brands have regis-tered from Saturday to Monday in Hofheim-Wallau, near Frankfurt am Main, getting back towards pre-COVID levels. Its motto, ‘One Goal, Endless Styles’, refers not only to the diversity and solidarity in the INNATEX community but also to the fact that Green Fashion is a fundamental business area for the future.

International trade fair for Green Fashion focuses on new formats and strategic partnerships:

From 21 to 23 January 2023, INNATEX will be taking place for the 51st time in ac-cordance with its usual daily schedule. So far, well over 200 brands have regis-tered from Saturday to Monday in Hofheim-Wallau, near Frankfurt am Main, getting back towards pre-COVID levels. Its motto, ‘One Goal, Endless Styles’, refers not only to the diversity and solidarity in the INNATEX community but also to the fact that Green Fashion is a fundamental business area for the future.

Sustainability: a business model fit for the future
“We are seeking to promote constant new development in a sustainable textile industry through new formats and cooperation agreements,” says Alexander Hitzel, INNATEX Project Manager. “We are currently working with the Retail Federation (HDE) on addressing conventional retailers. In addition, we are planning creative and entirely novel concepts for the presentation of labels, as well as a business panel designed to deliver insights and hard facts for the trade. Sustainability projects are only truly sustainable if they are also selfsupporting business models.

From live presentations and strategic communication to fundraising campaigns
But, he says, the demand for established natural fibres and specifically designed production and certification options is also rising. The International Association of the Natural Textile Industry (IVN) will again be on site to offer its expertise and provide information on the implementation of the new German Supply Chain Act. The DesignDiscoveries support program, which will be on display in a freshly designed Special Area, offers selected newcomer labels a platform for their creative ideas. Applications are still open until 15 December.

“At INNATEX, retailers can seek out trends and discover new ideas and products, directly compare an unbeatable range of collections and articles from different suppliers, and get down to networking – those are the benefits of this ordering fair,” says Hitzel.

INNATEX is collaborating for the first time with the organisation Europe Cares, which provides humanitarian assistance for ‘people on the move’. Surplus goods that exhibitors can donate to the campaign will be used for the benefit of refugees at Europe’s borders.

Source:

INNATEX

Photo: Pim Top for FranklinTill
29.11.2022

Heimtextil Trends 23/24: Textiles Matter

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Preview 23/24 presented future-oriented design concepts and inspiration for the textile furnishing sector. With ‘Textiles Matter’, Heimtextil 2023 wants to set the benchmark for tomorrow’s forward-facing and sustainable textile furnishing. Hence, the focus is on circularity. Marta Giralt Dunjó of futures research agency FranklinTill (Great Britain) presented the design prognoses for 23/24. At the coming Heimtextil in Frankfurt am Main from 10 to 13 January 2023, the presentations of new products will generate stimulating impulses in the Trend Space.

The Heimtextil Trend Council – consisting of FranklinTill Studio (London), Stijlinstituut Amsterdam and Denmark’s SPOTT Trends & Business agency – offers insights into the future of the national and international market. The focus is more than ever before on sustainability and the circular economy, the main factors in setting the trends for the season 23/24.

Textiles Matter: bear responsibility
Textiles are an integral part of modern life. The material applications and the manufacturing processes are no less multifarious than user expectations. And this represents a great challenge for the international textile industry, which obtains its raw materials from a broad spectrum of sources and uses numerous processes to make a huge variety of products. This offers a great potential for the sustainable development of the textile industry in the future. The Heimtextil Trends show ways in which this potential can be utilized and sustainable developments promoted. Under the motto ‘Textiles Matter’, visitors can explore concepts for increased circularity, which will generate new impulses for the sustainable market of the future.

"Considering the state of environmental emergency we are currently living through, the textile industry has a responsibility to examine its processes, and change for the better. That is why for this edition of the Heimtextil Trends we are taking a material’s first approach, and focusing on the sourcing, design, and sustainability of materials. Textiles Matter showcases the potential of circularity and celebrates design initiatives that are beautiful, relevant and importantly sustainable”, explains Marta Giralt Dunjó of FranklinTill.

Change via circularity
The Trend Space at the coming Heimtextil 2023 will revolve around ideas and solutions for circularity in the textile sector. How can textiles be produced in a sustainable way? What recycling options are there? What does the optimum recycling of textile products look like? Within the framework of the circular economy, materials are continuously reused. On the one hand, this reduces the need for new raw materials and, on the other hand, cuts the amount of waste generated. In the technical cycle, inorganic materials, such as nylon, polyester, plastic and metal, can be recycled with no loss of quality. In the biological cycle, organic materials, such as linen and bast fibres, are returned to nature at the end of their useful life. This is the basis of the four trend themes: ‘Make and Remake’, ‘Continuous’, ‘From Earth’ and ‘Nature Engineered’.

Make and Remake
Pre-used materials, deadstock and remnant textiles are given a new lease of life with the focus shifting to the aesthetics of repair and taking the form of a specific design element of the recycled product. Bright and joyful colours and techniques, such as overprinting, overdyeing, bricolage, collage and patchwork, result in new and creative products. Layered colour patterns and graphics lead to bold and maximalist, yet conscious, designs.

Continuous
The Continuous trend theme describes closed-loop systems in which materials are recycled into new, waste-free products again and again. Putative waste materials are separated out and reprocessed as new fibres, composites and textiles. Thus, synthetic and cellulose yarns can be produced zero-waste. Thanks to technically advanced reclamation processes, the materials retain their original quality and aesthetic. Practicality, essentialism and longevity determine the design of Continuous products.

From Earth
This theme focuses on the natural world and harmony with the nature of organic materials. Natural colours communicate warmth and softness. Imperfect textures, signs of wear and irregularities create ecological and earth-born aesthetics. Earthen and botanic shades, natural variation and tactile richness dominate the From Earth segment. Unrefined and raw surfaces, unbleached textiles and natural dyes celebrate materials in their original states.

Nature Engineered
Nature Engineered uses mechanical means to elevate and perfect organic materials, such as bast fibres, hemp, linen and nettles. Cutting-edge techniques process natural textiles into sophisticated and smart products. Combined with shades of beige and brown, clean lines and shapes are the distinguishing features of this theme.

More information:
Heimtextil Trends FranklinTill
Source:

Heimtextil, Messe Frankfurt

Photo: Bcomp
22.11.2022

Made in Switzerland: Is Flax the New Carbon?

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

“Innovations are key to the success of our transformation towards electromobility, digitalisation and sustainability. Our award ceremony recognises innovation and cooperative partnership with our suppliers – especially in challenging times,” said Joachim Post, member of the Board of Management of BMW AG responsible for Purchasing and Supplier Network at the ceremony held at BMW Welt in Munich.

BMW first started to work with Bcomp’s materials in 2019 when they used high-performance natural fibre composites in the BMW iFE.20 Formula E car. From this flax fibre reinforced cooling shaft, the collaboration evolved and soon after, the proprietary ampliTex™ and powerRibs™ natural fibre solutions were found successfully substituting selected carbon fibre components in DTM touring cars from BMW M Motorsport. By trickling down and expanding into other vehicle programs, such developments highlight the vital role that BMW M Motorsports plays as a technology lab for the entire BMW Group. This continues in the form of the latest collaboration with Bcomp to include a higher proportion of renewable raw materials in the successor of the BMW M4 GT4.

With the launch of the new BMW M4 GT4, it will be the serial GT car with the highest proportion of natural fibre components. Bcomp’s ampliTex™ and powerRibs™ flax fibre solutions can be found throughout the interior on the dashboard and centre console, as well as on bodywork components such as the hood, front splitter, doors, trunk, and rear wing. Aside from the roof, there are almost no carbon fibre reinforced plastic (CFRP) components that were not replaced by the renewable high-performance flax materials. “Product sustainability is increasing in importance in the world of motorsport too,” says Franciscus van Meel, Chairman of the Board of Management at BMW M GmbH.

Bcomp is a leading solutions provider for natural fibre reinforcements in high performance applications from race to space.

The company started as a garage project in 2011 with a mission to create lightweight yet high performance skis. The bCores™ were launched and successfully adopted by some of the biggest names in freeride skiing. The founders, material science PhDs from École Polytechnique Fédérale de Lausanne (EPFL), used flax fibres to reinforce the balsa cores and improve shear stiffness. Impressed by the excellent mechanical properties of flax fibres, the development to create sustainable lightweighting solutions for the wider mobility markets started.

Flax is an indigenous plant that grows naturally in Europe and has been part of the agricultural history for centuries. It requires very little water and nutrients to grow successfully. In addition, it acts as a rotational crop, thus enhancing harvests on existing farmland. Neither cultivation nor processing of the flax plants requires any chemicals that could contaminate ground water and harvesting is a completely mechanical process. After harvesting the entire flax plant can be used for feed, to make oil and its fibres are especially used for home textiles and clothing. The long fibre that comes from the flax plant possesses very good mechanical properties and outstanding damping properties in relation to its density, making it especially suited as a natural fibre reinforcement for all kinds of polymers.

The harvesting and processing of flax takes place locally in the rural areas it was grown in. Using European flax sourced through a well-established and transparent supply chain it allows to support the economic and social structure in rural areas thanks to the large and skilled workforce required to sustain the flax production. When it comes to the production of technical products like the powerRibs™ reinforcement grid, Bcomp is investing in local production capacities close to its headquarters in the city of Fribourg, Switzerland, thus creating new jobs and maintaining technical know-how in the area. The production is built to be as efficient as possible and with minimal environmental impact and waste.

Further strengthening the local economy, Bcomp aims to hire local companies for missions and with the headquarters being located in Fribourg’s “Blue Factory” district, Bcomp can both benefit from and contribute to the development of this sustainable and diverse quarter.

Source:

Bcomp; BMW Group

Photo Pixabay
16.11.2022

Green chemistry transforms facemasks into Ethernet cables

Swansea University academics have pioneered a process which converts the carbon found in discarded facemasks to create high-quality single-walled carbon nanotubes (CNT) which were then used to make Ethernet cable with broadband quality.
 
The study, which has been published in Carbon Letters, outlines how this new green chemistry could be used to upcycle materials which would otherwise be thrown away and transform them into high value materials with real-world applications. The CNTs produced by this technique have the potential not only to be used in Ethernet cables, but also in the production of lightweight batteries used in electric cars and drones.

Swansea University academics have pioneered a process which converts the carbon found in discarded facemasks to create high-quality single-walled carbon nanotubes (CNT) which were then used to make Ethernet cable with broadband quality.
 
The study, which has been published in Carbon Letters, outlines how this new green chemistry could be used to upcycle materials which would otherwise be thrown away and transform them into high value materials with real-world applications. The CNTs produced by this technique have the potential not only to be used in Ethernet cables, but also in the production of lightweight batteries used in electric cars and drones.

Professor Alvin Orbaek White, of Swansea University’s Energy Safety Research Institute (ESRI):
“Single-use facemasks are a real travesty for the recycling system as they create vast amounts of plastic waste - much of it ending up in our oceans. During the study, we established that the carbon inside the facemask can be used as a pretty good feedstock to make high-quality materials like CNTs.

“CNTs are highly sought-after because they have preferential physical properties and tend to be much more costly on an industrial scale. So, through this study, we demonstrated that we could make very high value materials by processing the CNTs from what are, essentially, worthless waste facemasks.”

The team also studied the energy costs involved in using this process and concluded that the technique was green not only in levels of resource consumption but also in the product value generation as opposed to waste creation. Also, the Ethernet cable produced using the CNTs was good quality and adhered to Category 5 transmission speeds while easily exceeding the benchmarks set for broadband internet in most countries, including the UK.

Professor Orbaek White said:
“Using CNT films in batteries instead of metal films has a lower impact on the environment as the use of carbon offsets the need for mining and extraction activities. This is a crucial piece of work as it contributes to not only a circular economy but is also scalable and is viable for industrial processing and has green chemistry at its core.”

Source:

Swansea University

© ITM/TUD - Biomimetic fish fin with dielectric elastomer actors und fiber reinforcement.
08.11.2022

Funding for Fibre-Elastomer Composites: Intelligent materials for robotics and prostheses

  • Successful approval of the 2nd funding period of the DFG Research Training Group 2430 "Interactive fibre-elastomer composites"

Researchers based in Dresden are going to develop a completely new class of materials in which actuators and sensors are integrated directly into flexible fibre composites – contrary to the state of the art. To this end, the German Research Foundation (DFG) approved the 2nd phase of Research Training Group 2430 "Interactive Fibre-Elastomer Composites" at TU Dresden in cooperation with the Leibniz Institute of Polymer Research Dresden. The spokesperson is Professor Chokri Cherif from the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) at TU Dresden. A total of 22 doctoral students will be supported in eleven interdisciplinary sub-projects over the next 4.5 years, in addition to material and project funding.
 

  • Successful approval of the 2nd funding period of the DFG Research Training Group 2430 "Interactive fibre-elastomer composites"

Researchers based in Dresden are going to develop a completely new class of materials in which actuators and sensors are integrated directly into flexible fibre composites – contrary to the state of the art. To this end, the German Research Foundation (DFG) approved the 2nd phase of Research Training Group 2430 "Interactive Fibre-Elastomer Composites" at TU Dresden in cooperation with the Leibniz Institute of Polymer Research Dresden. The spokesperson is Professor Chokri Cherif from the Institute for Textile Machinery and High-Performance Textile Materials Technology (ITM) at TU Dresden. A total of 22 doctoral students will be supported in eleven interdisciplinary sub-projects over the next 4.5 years, in addition to material and project funding.
 
As a result the simulation-based development of intelligent material combinations for so-called self-sufficient fibre composites shall be available. Actuators and sensors are already integrated into the structures and no longer placed subsequently, as it is actual the case. In the first funding phase, the important basis for the large two-dimensional deformations in soft, biomimetic structures were developed. The further funding by the DFG is a confirmation of the outstanding results achieved so far. Building on this, the second funding phase will focus on ionic and helical actuator-sensor concepts. Combined with intelligent design and control algorithms, self-sufficient, three-dimensionally deforming material systems will emerge. This will make these systems more robust, complex preforming patterns can be customised at the desired location - reversibly and contact-free.
 
Fibre composites are used increasingly in moving components due to their high specific stiffness and strengths as well as the possibility of tailoring these properties. By integrating adaptive functions into such materials, the need for subsequent actuator placement is eliminated and the robustness of the system is significantly improved. Actuators and sensors based on textiles, such as those being researched and developed at the ITM, are particularly promising in this respect, as they can be integrated directly into the fibre composites during the manufacturing process.

With their innovative properties, interactive fibre-elastomer composites are predestined for numerous fields of application in mechanical and vehicle engineering, robotics, architecture, orthotics and prosthetics: Examples include systems for precise gripping and transport processes (e.g. in hand prostheses, closures and deformable membranes) and components (e.g. trim tabs for land and water vehicles).

More information:
robot Fibers Composites Funding
Source:

TU Dresden: Institute for Textile Machinery and High Performance Textile Materials (ITM)

Photo: Performance Days
18.10.2022

Eco Award & Performance Award for innovative winter fabrics 24/25

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

  • Jury presents two awards for outstanding fabric Innovation

The next PERFORMANCE DAYS will take place from November 3-4, 2022 at the MOC Ordercenter in Munich. Visitors also have the opportunity to follow the events online. Thanks to the new platform The Loop, all important information is available all year round, including current trends, new material innovations and extended tools for ease of use. The focus of the curated PERFORMANCE FORUM continues in winter honoring the winners of both awards. This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD.

Sustainable & innovative: the award winners of the Winter 2024/25 season
As part of the winter edition of the sourcing fairs, the fabric highlights plus accessory trends in the individ-ual categories for the winter season 2024/25 will be on display at the PERFORMANCE FORUM.
 
Particularly striking this year was the high levels of innovation and quality of many submitted fabrics on the one hand, but on the other hand – also as a result of this year’s Focus Topic – the sustainable component. “We wish to enable our visitors to make the best decision in terms of material selection, also in terms of CO2 neutrality and ultimately also in terms of textile recyclability,” states Marco Weichert, CEO of PERFORMANCE DAYS.  

Nevertheless, the road to CO2 neutrality remains a long one, yet the approaches adopted with the Focus Topic ongoing until the coming spring can be seen in a positive light. In general, manufacturers are increasingly relying on the use of natural fibers when possible, such as Tencel™ or other plant fibers – most of them also prove a low CO2 balance during production. The issue of recycling comes with many new facets and wide spanning trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining in importance, as is the return of fabrics to the textile cycle.

In the Marketplace, visitors have the opportunity to view over 19,000 products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order for visitors to experience the fabrics in terms of haptics, design and structure in as realistic a form as possible, the PERFORMANCE FORUM has been equipped with innovative 3D technology, including innovative tools such as 3D images, video animations and U3MA data for download.

The jury has also presented two awards for outstanding fabrics for the Winter Season 2024/25 – with the PERFORMANCE AWARD going to Long Advance Int. Co Ltd., and the ECO PERFORMANCE AWARD to PontetortoSpa.

The ECO PERFORMANCE AWARD goes to “9203/M/RC” from PontetortoSpa: High Performance despite maximum sustainability
The fabric is a blend of 23 % hemp, 69 % recycled polyester and 9 % recycled elastane. Moreover, the material boasts a low CO2 footprint during production and focuses on low release levels of microplastics into the environment. “9203/M/RC” belongs to Pontetorto's Techno Stretch organic series, which boast an excellent 4-way stretch with great elasticity. In addition, it guarantees fast drying and optimal breathability. The polyester yarn is manufactured by the mechanical recycling of plastic bottles. Hemp, the most water–repellent among natural fibers, allows for quick drying and provides optimal comfort. Hemp is considered an extremely sustainable natural fiber due to its origin from an anti–bacterial plant that requires neither pesticides nor chemical fertilizers during its growth and consumes extremely little water.

PERFORMANCE AWARD for “LPD-22015-Y4E” from Long Advanced Int. Co. Ltd.: Perfect recycling for top performance
The monocomponent 2layer fabric is a mixture of 45 % polyester mechanical stretch and 55 % recycled polyester from recycled textiles, laminated with a PET Membrane, with a weight of 147 grams.
The special feature of the “LPD 22015-Y4E” is the recycling of fabric and cutting waste. Waste is thus returned to the textile cycle and used to spin new yarn. In the future, manufacturers will have to ensure that all fabric can be recycled. Accordingly, the production of waste is then reduced by 30 % compared to conventional processes. Furthermore, the jury praised the feel and the extraordinary look of the material.

The entire PERFORMANCE FORUM including both awards can be experienced live at the fair on October 26-27, 2022 in Portland, Oregon, and in Munich at the PERFORMANCE DAYS fair on November 03-04, 2022. As of now, all innovative materials can also be found online in the Marketplace of the PERFORMANCE DAYS Loop, with the option to order free samples directly from the exhibitor.

Submarine sensors have lots to tell us about the situation below the surface. Fraunhofer IZM has mounted sensor systems on the two manta ray fins of the unmanned underwater vehicle designed by EvoLogics. (c) EvoLogics GmbH
11.10.2022

Textile Skin & Smart Sensors: Robo-Ray in Search of Munitions

Giant arsenals of unexploded ordinance are sitting on the ocean floor, lost in battle or dumped as waste. The risky job of detecting these underwater hazards is currently given to submarines specially fitted for the purpose. But even they cannot get to some of the tighter or harder to reach spots, forcing expert divers to go down and take over the often life-threatening work.

A German research consortium including Fraunhofer IZM is now using a submarine robot that is as nimble and mobile as a manta ray and equipped with innovative connected sensors on its fins to gather more information about its surroundings. It can measure water pressure so precisely that metal objects can be detected on the ocean floor, even if they are covered by sediment.

Giant arsenals of unexploded ordinance are sitting on the ocean floor, lost in battle or dumped as waste. The risky job of detecting these underwater hazards is currently given to submarines specially fitted for the purpose. But even they cannot get to some of the tighter or harder to reach spots, forcing expert divers to go down and take over the often life-threatening work.

A German research consortium including Fraunhofer IZM is now using a submarine robot that is as nimble and mobile as a manta ray and equipped with innovative connected sensors on its fins to gather more information about its surroundings. It can measure water pressure so precisely that metal objects can be detected on the ocean floor, even if they are covered by sediment.

Unmanned underwater vehicles or UUVs have been in use for several years, but high-tech pioneers for reliable underwater communication and innovative bionics like EvoLogics GmbH have let themselves be inspired by marine life like manta rays and adapted their look and technical anatomy to the submarine world.

With the enormous “wingspan” of their fins, manta rays are known to cover vast distances, while their extremely flexible vertebrae means that they can make surprisingly sharp turns on their seemingly weightless journey through the sea. Their robotic cousins can be very agile as well, but they were not smart enough yet to replace the professional divers who had to scour the sea floor for hours, looking for lost ordinance from the First or Second World War or other hazardous metal waste before offshore wind farms could be built or intercontinental cables could be put down. Now, the new robo ray will make it possible to detect submarine hazards with a whole battery of sensors.

The “Bionic RoboSkin” project, supported by Germany’s Ministry of Education and Research, is working to give the manta-shaped UUVs a flexible bionic sensor skin to help them navigate their underwater world. The skin is made from a compound fabric that is fitted with sensor elements and water-resistant connectors to supply the sensors with power and transmit their data. Researchers from Fraunhofer IZM have taken on the challenge of developing these integrated sensor modules with which the UUVs can detect touch or the proximity of objects and virtually see and analyze their surroundings. The project consortium is headed by EvoLogics GmbH and includes other experts in the field from TITV Greiz, Sensorik Bayern GmbH, the diving specialists of BALTIC Taucherei- und Bergungsbetrieb Rostock GmbH, and GEO-DV GmbH, all with one mission: To create a new generation of robots that can support their human partners with a range of semi or fully automated services and functions.

Their capabilities will not be limited to the sea: The researchers are looking at a second use case for a land-based robot sensor platform, fittingly called “Badger” or “Dachs” in German. It will navigate by GPS and be fitted with ground penetrating radar to detect metal objects below ground or conduct other ground survey work in harder to reach places (including tunneling work).

Under the robotic manta ray’s deceptively lifelike shell lies intricate technology: A permeable and therefore pressure-neutral fabric skin is created and fitted with integrated microelectronics for touch, flow, motion, and position sensors. This textile skin is then pulled tight over the robotic fins, creating a soft robotics machine that can sense its surroundings. The team at Fraunhofer IZM is responsible for the electronics that make this possible: They developed sensor nodes suitable for submersible use that can collect and pre-process the sensor data. These nodes do not only have to be fit for purpose, they also need to be extremely miniaturized to fit underneath the thin fabric skin and integrate the necessary connectors. In active operations below the waterline, these sensors can track parameters like acceleration, pressure, or absorbency. The researchers also included LEDs in the circuit board design that let the robotic manta rays communicate with human divers, for instance to signal a turn.

All of these components and sensor packages are integrated by means of a highly miniaturized embedding method and protected from the cold and wet environment by a robust case. Despite this, the footprint of the embedded modules is amazingly small at 23 x 10.5 x 1.6 mm³, fitting a complete sensor package and microcontroller in something the size of a common door key. The case itself works as a conductor by creating the mechanical and electrical contact with the sensor skin itself. The researchers chose a modular two-part design from their original vision of the product: The embedding module combines the individual electronic components on a millimeter scale for exceptional integration; the module case acts as the mechanical interface with the skin and makes the system as robust as it has to be for its destined purpose. The coupling between module and case relies on a seemingly simple clipping action: Small pins on the connector surface on the skin and tiny hooks on the sensor module itself snap together to form an easily de- and attachable interface. The resulting system is modular to allow easy reconfiguration.

The researchers at Fraunhofer IZM will now subject their robotic manta ray to a series of tests with their project partners. The results and findings from the “Bionic RoboSkin” project will likely be of use for many other projects and contribute to more pressure-neutral and reliable packaging solutions for flexible, mobile, and smarter service robots.

The “Bionic RoboSkin” project is supported through the VDI/VDE-IT by the Ministry of Education and Research (funding code 16ES0914) as part of the federal government’s research and innovation campaign 2016 to 2020 “Microelectronics from Germany – Driver of Innovation for the Digital Economy”.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

First tests with free-form tiles made of wood short fiber filament. (Photo: LZH) Photo: LZH. First tests with free-form tiles made of wood short fiber filament.
19.09.2022

Sustainability in 3D Printing: Components made of Natural Fibers

3D printing has been in use in architecture for a while, and now it is to become ecologically sustainable as well: Together with partners, the LZH is researching how to produce individual building elements from natural fibers using additive manufacturing.

3D printing has been in use in architecture for a while, and now it is to become ecologically sustainable as well: Together with partners, the LZH is researching how to produce individual building elements from natural fibers using additive manufacturing.

In the project 3DNaturDruck, architectural components such as facade elements shall be created from natural fiber-reinforced biopolymers in 3D printing. To this end, the scientists will develop the corresponding composite materials from biopolymers with both natural short fibers and natural continuous fibers and optimize them for processing with the additive manufacturing process FDM (Fused Deposition Modeling). The project partners' goal is to enable smart and innovative designs that are both ecological and sustainable.
 
The goal: highly developed components made from sustainable materials
Within the project, different natural fiber-reinforced biopolymer composites will be investigated. The partners are researching both processing methods with very short natural fibers, such as from wood and straw, and a method for printing continuous fibers from hemp and flax in combination with biopolymers. The LZH then develops processes for these new materials and adapts the tools and nozzle geometries of the FDM printer. A pavilion with the 3D-printed facade elements is planned as a demonstrator on the campus of the University of Stuttgart.
 
The project partners want to explore how additive manufacturing can be used to simplify manufacturing processes for architectural components. Natural fiber-reinforced biopolymers are particularly suitable for producing components with complex geometries in just a few steps and with low material and cost requirements. With their research, the partners are also working on completely new starting conditions for the fabrication of newly developed architectural components: For example, the topology optimization of components according to their structural stress can be easily implemented with additive manufacturing.

Enabling the natural fiber trend in architecture also using additive manufacturing
There is great interest in the use of natural fibers in structural components in architecture and construction because natural fibers have several advantages. They have good mechanical properties combined with low weight and are widely available. As a renewable resource with in some cases very short renewal cycles, they are also clearly a better ecological alternative than synthetic fibers.

In additive manufacturing, large-format elements for the architectural sector have so far mostly been manufactured with polymers based on fossil raw materials. Research in the project 3DNaturDruck should now make the use of natural fibers in architecture possible for additive manufacturing as well.

About 3DNaturDruck
The project 3DNaturDruck is about the design and fabrication of 3D-printed components made of biocomposites using filaments with continuous and short natural fibers.

The project is coordinated by the Department of Biobased Materials and Materials Cycles in Architecture (BioMat) at the Institute of Building Structures and Structural Design (ITKE) at the University of Stuttgart. In addition to the LZH, project partners include the Fraunhofer Institute for Wood Research Wilhelm-Klauditz-Institut (WKI) and the industrial companies Rapid Prototyping Technologie GmbH (Gifhorn), ETS Extrusionstechnik (Mücheln), 3dk.berlin (Berlin) and ATMAT Sp. Z o.o. (Krakow, Poland).

The project is funded by the German Federal Ministry of Food and Agriculture through the Fachagentur Nachwachsende Rohstoffe e.V. under the funding code 2220NR295C.

Source:

Laser Zentrum Hannover e.V.

Foto: Unsplash
05.09.2022

McKinsey zum Strommix 2030: Deutschland auf Erdgas angewiesen

  • Erneuerbaren-Ausbau ist Herkulesaufgabe
  • Geschwindigkeit muss zur Erreichung der Ziele massiv zunehmen
  • Indikatoren zum Status der Energiewende in Deutschland verbessern sich leicht: Anteil Erneuerbarer am Bruttostromverbrauch im ersten Halbjahr 2022 bei 49%

Die Rahmenbedingungen für die Energiewende in Deutschland haben sich durch den russischen Angriff auf die Ukraine dramatisch verändert. Die neuen geopolitischen Realitäten und die EU-Entscheidung, zukünftig auf russisches Gas zu verzichten, treffen auch den Stromsektor – denn flexible Gaskraftwerke sollen helfen, die Volatilität erneuerbarer Energien auszugleichen. Vom massiven Ausbau der Erneuerbaren, über eine stärkere Nutzung des Stroms aus Europa bis hin zu weitgehender Selbstversorgung auf Basis von Kohle und Kernkraft – eine Analyse dreier Szenarien für den Strommix im Jahr 2030 zeigt: Deutschland bleibt weiterhin auf Erdgas angewiesen.

  • Erneuerbaren-Ausbau ist Herkulesaufgabe
  • Geschwindigkeit muss zur Erreichung der Ziele massiv zunehmen
  • Indikatoren zum Status der Energiewende in Deutschland verbessern sich leicht: Anteil Erneuerbarer am Bruttostromverbrauch im ersten Halbjahr 2022 bei 49%

Die Rahmenbedingungen für die Energiewende in Deutschland haben sich durch den russischen Angriff auf die Ukraine dramatisch verändert. Die neuen geopolitischen Realitäten und die EU-Entscheidung, zukünftig auf russisches Gas zu verzichten, treffen auch den Stromsektor – denn flexible Gaskraftwerke sollen helfen, die Volatilität erneuerbarer Energien auszugleichen. Vom massiven Ausbau der Erneuerbaren, über eine stärkere Nutzung des Stroms aus Europa bis hin zu weitgehender Selbstversorgung auf Basis von Kohle und Kernkraft – eine Analyse dreier Szenarien für den Strommix im Jahr 2030 zeigt: Deutschland bleibt weiterhin auf Erdgas angewiesen. Diese Zahlen liefert der aktuelle Energiewende-Index (EWI) von McKinsey. Aktuelles Fazit – und eine Verbesserung im Vergleich zum vorherigen EWI aus dem März 2022: 6 der 15 untersuchten Indikatoren  zum Status der Energiewende in Deutschland sind in ihrer Zielerreichung stabil realistisch – 6 stehen auf der Kippe, drei sind unrealistisch. Positiv entwickelte sich vor allem der Indikator Anteil Erneuerbarer am Bruttostromverbrauch, der wegen des guten Wetters im ersten Halbjahr von 41% auf fast 49% zulegte.

Erneuerbaren-Ausbau ist Herkulesaufgabe
„Deutschlands Energiewende steht vor der größten Bewährungsprobe ihrer Geschichte“, sagt Thomas Vahlenkamp, Senior Partner von McKinsey. „Unsere Szenarienanalyse zeigt: Erdgas wird auch zukünftig eine Rolle im Strommix spielen müssen. Wichtig ist es daher, die Importabhängigkeit durch Streuung von Lieferanten zu verringern. Teil der Strategie muss es außerdem sein, vermehrt grünen Wasserstoff für die Verstromung verfügbar zu machen.“

Wo Deutschland im Jahr 2030 bei der Energiewende stehen wird, kommt demzufolge entscheidend auf den Ausbau der Erneuerbaren Energien (EE) und die Situation am Gasmarkt an. Mit ihrer neuen Ambition, den EE-Anteil in Deutschland bis zum Ende dieses Jahrzehnts auf 80 % zu erhöhen, hat sich die Bundesregierung viel vorgenommen. Vahlenkamp: „Dieses Ziel zu erreichen, ist eine Herkulesaufgabe. Dafür muss die komplette Wertschöpfungskette rund um den EE-Ausbau befähigt werden: angefangen bei der Aufstockung der Produktionskapazitäten über schnellere Genehmigungsverfahren bis hin zur Anwerbung bzw. Weiterqualifikation ausreichend vieler Fachkräfte für den Bau und Betrieb der Anlagen.“ Um das 80%-Ziel zu erreichen, müssten jährlich PV-Anlagen mit einer Kapazität von 18 GW errichtet werden; in der Onshore-Windkraft müssten pro Jahr 1.800 Anlagen in Betrieb gehen – umgerechnet fünf pro Tag – und in der Offshore-Windkraft müsste sich die Kapazität nahezu vervierfachen. Auch Erdgas wird weiter eine Rolle spielen. Eine Entspannung der Lage aufgrund der breiteren Streuung von Lieferanten erscheint ebenso denkbar wie eine Fortschreibung der aktuell angespannten Situation. Die Folgen von letzterem wurden im aktuellen EWI modelliert. Vor diesem Hintergrund liegt es nahe, dass Politik und Energiewirtschaft danach streben, dass alle neuen Gaskraftwerke zugleich alternativ auch mit grünem Wasserstoff betrieben werden können.

Jedes der im aktuellen EWI modellierten Szenarien geht davon aus, dass der Strombedarf wie von der Bundesregierung prognostiziert bis 2030 auf 750 TWh ansteigt und der CO2-Preis bei 100 €/t liegt.

Im Basisszenario werden alle Vorgaben der  Bundesregierung zum EE-Ausbau bis 2030 erreicht (215 GW Solar PV, 115 GW Onshore- und 30 GW Offshore-Windkraft). Der Atomausstieg 2022 und der Kohleausstieg bis 2038 finden wie geplant statt; 17 GW Kohlekraftwerke sind 2030 noch in Betrieb. In diesem Szenario steigt 2030 die Produktion aus Erneuerbaren inklusive Biomasse, Wasserkraft und Geothermie auf 751 TWh – das entspricht einem EE-Anteil von 84 % an der deutschen Bruttostromproduktion (Netzverluste und Exporte eingeschlossen). Trotzdem – und ungeachtet der hohen Gaspreise – werden noch immer 68 TWh aus Erdgas erzeugt. Wasserstoff wiederum trägt mit 48 TWh zur Deckung der Stromnachfrage bei, umgerechnet rund 3 Mio. t. Zur Sicherstellung einer lückenlosen Versorgung bleibt Kohlestrom mit 63 TWh weiterhin ein wichtiger Energieträger, wenngleich die Stromproduktion aus Kohle gegenüber 2021 um mehr als 61 % sinken würde. In diesem Szenario würde Deutschland in Phasen hohen EE-Ertrags sogar mehr Strom produzieren als für den Eigenbedarf nötig (rund 91 TWh) und somit zum Netto-Stromexporteur.

Im Szenario „Strom aus Europa“ strebt Deutschland die europäische Integration im Stromsektor an und wird zum Netto- Stromimporteur. Der Grund: Es wird davon ausgegangen, dass Deutschland zwar den EE-Ausbau beschleunigt, aber seine ambitionierten Ziele nicht vollständig erreicht, weil nicht jedes Jahr Zubaurekorde zu erzielen sind. Vielmehr wird angenommen, dass die Ausbauraten einen Mittelwert aus historischem Durchschnitt und historischer Bestleistung bilden. 2030 werden nach diesem Szenario 112 GW Solar PV, 93 GW Onshore- und 23 GW Offshore-Windkraft installiert sein. Die stärkste Abweichung gegenüber dem ersten Szenario weist dabei Solar PV auf, da die Ausbauziele der Bundesregierung für diese Technologie im Vergleich die mit Abstand ambitioniertesten sind. In dem Szenario „Strom aus Europa“ wird simuliert, was passiert, wenn Deutschland hinter die ambitionierten EE-Ausbauziele zurückfällt. Stattdessen werden 33 TWh aus anderen europäischen Ländern importiert, hauptsächlich aus Dänemark, Norwegen und Schweden. Auf eine vermehrt CO2-intensive Stromproduktion wird damit verzichtet. Die Produktion aus Kohle allerdings ist in diesem Szenario trotz der Importe mit 88 TWh deutlich höher als im Basisszenario. Die Erzeugung aus Erdgas liegt mit 69 TWh auf einem vergleichbaren Niveau.

Im Szenario „Weitgehende Selbstversorgung“ versucht Deutschland, seine Energieabhängigkeit von anderen Ländern zu reduzieren und – falls keine Eigenproduktion möglich ist – seine Lieferanten breiter zu streuen. Zur Sicherstellung der Energieversorgung wird zum einen der Kohleausstieg nicht vollständig umgesetzt, so dass 2030 weiterhin Kohlekraftwerke mit einer Leistung von rund 34 GW zur Verfügung stehen. Zum anderen wird die Kapazität von Biomassekraftwerken von rund 9 auf 14 GW erhöht, indem die existierenden Anlagen am Netz gehalten und die jährlich geplanten Ausschreibungsmengen von 600 MW als Neuanlagen hinzugefügt werden. Hierzu müssten ausreichende Flächen für den Anbau von Energiepflanzen bereitgestellt werden, die dann allerdings weder für die Produktion von Nahrungsmitteln oder Biokraftstoff zur Verfügung stünden noch renaturiert werden könnten. Der EE-Ausbau vollzieht sich wie im Szenario „Strom aus Europa“, während sich Stromimport und -export hier in etwa die Waage halten. Hinsichtlich der Nutzung von Atomkraft werden zwei Varianten modelliert: Weiterbetrieb der Atommeiler bis mindestens 2030 und Abschaltung wie geplant. In diesem Szenario „Weitgehende Selbstversorgung“ werden die ambitionierten EE-Ausbauziele 2030 ebenfalls unterschritten und nur rund 520 TWh aus Erneuerbaren erzeugt – rund ein Drittel weniger als im Basisszenario. Stattdessen geht das Szenario von einer weit gehenden Ausnutzung der inländischen Ressourcen aus: Da der Kohleausstieg nicht wie geplant vollzogen worden ist, kann mehr Kohlestrom die Lücke schließen (+91 TWh bzw. +145 % im Vergleich zum Basisszenario). Gleichzeitig rechnet das Szenario mit einer teilweisen Kompensierung durch eine deutlich höhere Produktion von Biomasse (80 TWh gegenüber 49 TWh im Basisszenario). Erdgas- und wasserstoffbasierte Stromerzeugung gehen auf 65 bzw. 38 TWh zurück, denn Kohle ist trotz der CO2-Kosten immer noch günstiger. Die Werte ändern sich leicht, wenn Atomkraftwerke bis 2030 weiterlaufen: In diesem Fall wird die CO2-intensive Kohle- und Gasstromproduktion durch rund 30 TWh Atomstrom zumindest teilweise substituiert, so dass nur noch 143 TWh aus Kohle (-7 %) und 64 TWh (-1 %) aus Gas erzeugt werden. Der EE-Anteil liegt in diesem Szenario (sowohl mit als auch ohne Atomkraft) bei knapp über 67 % und damit unter dem Zielwert von 80 %.

Energiewende-Index September 2022: die 15 Indikatoren im Überblick
Die jüngste Entwicklung der 15 Indikatoren liefert ein gemischtes Bild. Gegenüber dem letzten Energiewende-Index vom März sinkt die Zahl der Indikatoren mit unrealistischer Zielerreichung von fünf auf drei und die mit stabil realistischer Zielerreichung steigt von drei auf sechs. Weitere sechs Indikatoren stehen auf der Kippe.

Der EE-Anteil am Bruttostromverbrauch steigt von 41 % in 2021 auf 49 % in der  ersten Jahreshälfte 2022. Die Verbesserung ist vor allem auf deutlich günstigere Witterungsverhältnisse zurückzuführen. Obwohl der Ausbau der Erneuerbaren weiterhin stockt, bewegt sich die Zielerreichung des Indikators weiter im stabil realistischen Bereich und steigt von 111 % auf 133 %. Allerdings dürfte es mit dem neuen Ziel der Bundesregierung, den EE-Anteil bis 2030 auf 80 % zu erhöhen, zunehmend schwieriger werden, auf dem Zielpfad zu bleiben. Der EE-Anteil am Bruttoendenergieverbrauch stieg um 0,4 Prozentpunkte auf 19,7 %. Hauptgrund ist die wirtschaftliche Erholung in 2021 und der damit einhergehende gestiegene Energiebedarf. Da die Zielmarke jedoch um 1,2 Prozentpunkte angehoben worden ist, sinkt die Zielerreichung des Indikators deutlich von 121 % auf 107 %. Sowohl Haushaltsstrompreis als auch Industriestrompreis haben sich trotz gestiegener Stromkosten deutlich verbessert. Das mag auf den ersten Blick überraschen, liegt aber in der Berechnungsmethodik des Indikators begründet, der die deutsche Strompreisentwicklung im Vergleich zum europäischen Durchschnitt abbildet: Steigen also die Preise im europäischen Ausland stärker als in Deutschland, verbessert sich der Indikator. Beim Haushaltsstrompreis betrug die Differenz zwischen Deutschland und dem europäischen Durchschnitt 2021 noch 22,7 %, im Juni 2022 dagegen nur mehr 16,2 %. Verbessert hat sich der Indikator vor allem deshalb, weil die Preise im europäischen Ausland schneller steigen als in Deutschland. Die Zielerreichung steigt von 111 % auf 137 %. Ob der Trend anhält, ist jedoch fraglich – steigende Großhandelspreise werden wahrscheinlich mit Verzögerung an die Endkunden weitergereicht. Andererseits wiederum dürfte der Wegfall der EEG-Umlage im Juli 2022 auf die hiesigen Haushaltsstrompreise mittelfristig entlastend wirken. Auch der Industriestrompreis ist zuletzt in Deutschland deutlich geringer gestiegen als im Ausland und liegt jetzt nur noch 16 % über dem europäischen Durchschnitt (Vorhalbjahr: 32 %). Der Indikator springt dadurch von 56 % auf jetzt 128 % Zielerreichung und wechselt damit in den realistischen Bereich. Auch hier bedeutet die Verbesserung des Indikators lediglich, dass die Preissteigerungen im Ausland (+33 %) höher ausgefallen sind als in Deutschland (+17 %). Verantwortlich ist dafür vor allem der höhere Anteil an Gebühren und Entgelten am deutschen Industriestrompreis, die durch die steigenden Energiepreise nicht beeinflusst werden. Für den Indikator Ausfall Stromversorgung wurden keine neuen Daten veröffentlicht. Er verharrt deshalb bei einer Zielerreichung von 117 %. Gleiches gilt für die Verfügbare Kapazität für Import aus Nachbarländern. Damit verbleibt auch dieser Indikator mit einer Zielerreichung von 208 % im realistischen Bereich.

Sechs Indikatoren auf der Kippe
Die aktuellen Hochrechnungen für den CO2e-Ausstoß und den Primärenergieverbrauch sehen beide Indikatoren auf der Kippe. Die Emissionen belaufen sich wie schon im Halbjahr zuvor auf 762 Mio. t CO2e; damit verharrt der Zielerreichungsgrad hier bei 84 %. Der Primärenergieverbrauch wiederum liegt nach wie vor bei 12.265 PJ – das entspricht einer Zielerreichung von 70 %. Für den Indikator Sektorkopplung Wärme wurden neue Hochrechnungen veröffentlicht. Der EE-Anteil am Endenergieverbrauch im Bereich Wärme und Kälte liegt danach aktuell bei 16,5 % und damit 0,9 Prozentpunkte über dem Wert des Vorhalbjahres. Damit bewegt sich der Indikator im Zielkorridor, steht aber auf der Kippe. Um dort auch in Zukunft zu bleiben, müsste der EE-Anteil bis Ende dieses Jahres auf 20,2 % steigen. Der Anteil der Gesamtenergiekosten Haushalte am Warenkorb der Verbraucher stieg zuletzt von 10,3 % auf 11,2 %. Damit sinkt die Zielerreichung erneut von 96 % auf jetzt 78 % und der Indikator bewegt sich in der Kategorie „auf der Kippe“ weiter nach unten. Grund hierfür sind die gestiegenen Preise für Benzin und Diesel, aber auch für Erdgas, wo sich die Neukundenpreise für Haushalte innerhalb eines Jahres vervielfacht haben. Für den Indikator Arbeitsplätze in erneuerbaren Energien liegen weiterhin keine neuen Daten vor. Er verharrt deshalb bei seiner bisherigen Zielerreichung von 96 %. Die gesicherte Reservemarge wird seit 2019 nicht mehr von den Übertragungsnetzbetreibern (ÜNB) veröffentlicht. Deshalb wird ab dieser Index-Ausgabe die Reservemarge basierend auf der Methodik und den Kernannahmen der ÜNB sowie öffentlich zugänglichen Daten neu berechnet. Im Ergebnis steht die Reservemarge aktuell mit 0,2 % nur knapp über Null und damit stärker denn je auf der Kippe. Der Rückgang gegenüber dem letzten von den ÜNB veröffentlichten Stand (2,3 %) erklärt sich aus der Stilllegung einiger fossiler Kraftwerke. Werden dann Ende dieses Jahres noch Kernkraftwerke mit einer Gesamtleistung von rund 4 GW heruntergefahren, fällt die Reservemarge aller Voraussicht nach bereits in den negativen Bereich. Bei einem Kohleausstieg bis 2030 wären es sogar mehr als 40 GW, die noch in diesem Jahrzehnt vom Netz gehen würden. Das würde die gesicherte Reservemarge massiv unter Druck setzen und fordert Anpassungen im Strommarktdesign, um die Versorgungssicherheit auch in Zukunft jederzeit zu gewährleisten.

Zielerreichung für drei Indikatoren unrealistisch
Der Indikator Sektorkopplung Verkehr sinkt leicht von 44 % auf 43 %. 2021 waren insgesamt 1,3 Mio. E-Fahrzeuge zugelassen, doch es wären 2,8 Mio. nötig, um im Plan zu bleiben. Ganz unerreichbar ist das 2030er-Ziel dennoch nicht, da die E-Mobilität derzeit überproportional wächst, während der Energiewende-Index in seiner Berechnung von einer linearen Entwicklung ausgeht. Die Kosten für Netzeingriffe sind mit aktuell 8,1 € pro MWh weiterhin weit vom Startwert (1 € pro MWh) entfernt. Gegenüber der ersten Jahreshälfte hat sich dieser Wert aufgrund geringerer Aufwendungen für das Einspeisemanagement allerdings leicht verbessert. Der Zielerreichungsgrad steigt von 39 % auf 50 % . Kaum Fortschritte gibt es beim Indikator Ausbau Transportnetze: Zwar wurden in den vergangenen beiden Quartalen rund 160 km fertiggestellt; die Gesamtlänge beträgt jetzt 2.005 km. Allerdings bleibt der Ausbau weiter deutlich hinter dem Zielwert von 4.977 km insgesamt und knapp 500 km pro Halbjahr zurück. Die Zielerreichung des Indikators beträgt 37 %.

Source:

McKinsey & Company, Deutschland

(c) Messe München GmbH
16.08.2022

ISPO Shanghai: Record number of visitors in new location

With a record of nearly 21,000 specialist visitors as well as 350 brands from 200 exhibiting companies, ISPO Shanghai took place as a one-off happening in the Nanjing International Exhibition Center (NIEC) from 29 to 31 July, 2022.

ISPO Shanghai presented the latest trends and innovative products from the areas of camping lifestyle, outdoors and running as well as health and fitness, watersports, climbing, surfing, boxing and yoga in the Nanjing International Exhibition Center (NIEC). The key topics of textiles and technology, sports design, and e-commerce were newly integrated, further strengthening ISPO Shanghai’s position as one of the most important sports and lifestyle trade fairs in the Asia-Pacific region.

With a record of nearly 21,000 specialist visitors as well as 350 brands from 200 exhibiting companies, ISPO Shanghai took place as a one-off happening in the Nanjing International Exhibition Center (NIEC) from 29 to 31 July, 2022.

ISPO Shanghai presented the latest trends and innovative products from the areas of camping lifestyle, outdoors and running as well as health and fitness, watersports, climbing, surfing, boxing and yoga in the Nanjing International Exhibition Center (NIEC). The key topics of textiles and technology, sports design, and e-commerce were newly integrated, further strengthening ISPO Shanghai’s position as one of the most important sports and lifestyle trade fairs in the Asia-Pacific region.

Due to the difficult pandemic situation, the meeting of the Asian sports and outdoors community at ISPO Shanghai 2022 took place in Nanjing for one time only. It achieved a new record with 21,000 specialist visitors, reflecting the industry’s determination to present and develop sporting goods and related industries together even in difficult times. For comparison, 17,800 visitors came in 2020, and 19,000 the following year. The many sports professionals and sports fans, as well as up-and-coming sports and free-time trends such as camping, surfing and frisbee, demonstrated the numerous possibilities in the sports market and underlined the fact that even the outdoors sector is booming following the coronavirus pandemic.

The industry discussed innovations and new opportunities at the five big topic forums – namely the summit for the sustainable development of the outdoors industry in the Asia-Pacific region, the trend forum for sports fashion, the innovation salon for the outdoor sports industry, the summit for cross-border e-commerce in the Chinese sporting goods industry and for fitness and rehabilitation.

The main focus was on the topic of sustainability. ISPO has been driving this topic for years: Starting with the “Brands for Good” initiative in 2018, ISPO offers not only a platform for brands’ initiatives on sustainable development, but also actively participates in the discussion about sustainable products and their production.

Tobias Gröber, Executive Director of the Consumer Goods Business Unit at Messe München and Head of the ISPO Group, says: “The urban sports style that we showed at ISPO Shanghai this year, including frisbee, surfing and climbing, is continuing to develop. Seasons and categories are becoming increasingly blurred, which is why we will continue to expand the product segments on our Chinese platforms and pursue a cross-category approach. In future, ISPO will concentrate on expanding its offering and will also include new sports and outdoor topics such as cycling and off-road vehicles.”

The next ISPO Shanghai will be held at the Shanghai New International Expo Center (SNIEC) again in June 2023, while ISPO Beijing 2022 will take place from December 9 to 11, 2022 at the National Convention Center in Beijing.

Source:

Messe München GmbH

(c) Fraunhofer IKTS
02.08.2022

Fraunhofer technology: High-tech vest monitors lung function

Patients with severe respiratory or lung diseases require intensive treatment and their lung function needs to be monitored on a continuous basis. As part of the Pneumo.Vest project, Fraunhofer researchers have developed a technology whereby noises in the lungs are recorded using a textile vest with integrated acoustic sensors. The signals are then converted and displayed visually using software. In this way, patients outside of intensive care units can still be monitored continuously. The technology increases the options for diagnosis and improves the patient’s quality of life.

For over 200 years, the stethoscope has been a standard tool for doctors and, as such, is a symbol of the medical profession. In television hospital dramas, doctors are seen rushing through the halls with a stethoscope around their neck. Experienced doctors do indeed use them to listen very accurately to heartbeats and the lungs and, as a result, to diagnose illnesses.

Patients with severe respiratory or lung diseases require intensive treatment and their lung function needs to be monitored on a continuous basis. As part of the Pneumo.Vest project, Fraunhofer researchers have developed a technology whereby noises in the lungs are recorded using a textile vest with integrated acoustic sensors. The signals are then converted and displayed visually using software. In this way, patients outside of intensive care units can still be monitored continuously. The technology increases the options for diagnosis and improves the patient’s quality of life.

For over 200 years, the stethoscope has been a standard tool for doctors and, as such, is a symbol of the medical profession. In television hospital dramas, doctors are seen rushing through the halls with a stethoscope around their neck. Experienced doctors do indeed use them to listen very accurately to heartbeats and the lungs and, as a result, to diagnose illnesses.

Now, the stethoscope is getting some help. As part of the Pneumo.Vest project, researchers of the Fraunhofer Institute for Ceramic Technologies and Systems IKTS at the Berlin office have developed a textile vest with integrated acoustic sensors, presenting a high-performance addition to the traditional stethoscope. Piezoceramic acoustic sensors have been incorporated into the front and back of the vest to register any noise produced by the lungs in the thorax, no matter how small. A software program records the signals and electronically amplifies them, while the lungs are depicted visually on a display. As the software knows the position of each individual sensor, it can attribute the data to its precise location. This produces a detailed acoustic and optical picture of the ventilation situation of all parts of the lungs. Here is what makes it so special: As the system collects and stores the data permanently, examinations can take place at any given time and in the absence of hospital staff. Pneumo.Vest also indicates the status of the lungs over a period of time, for example over the previous 24 hours. Needless to say, traditional auscultation can also be carried out directly on the patients. However, instead of carrying out auscultation manually at different points with a stethoscope, a number of sensors are used simultaneously.

“Pneumo.Vest is not looking to make the stethoscope redundant and does not replace the skills of experienced pneumologists. However, auscultation or even CT scans of the lungs only ever present a snapshot at the time of the examination. Our technology provides added value because it allows for the lungs to be monitored continuously in the same way as a long-term ECG, even if the patient is not attached to machines in the ICU but has instead been admitted to the general ward,” explains Ralf Schallert, project manager at Fraunhofer IKTS.

Machine learning algorithms aid with diagnosis
Alongside the acoustic sensors, the software is at the core of the vest. It is responsible for storing, depicting and analyzing the data. It can be used by the doctor to view the acoustic events in specific individual areas of the lungs on the display. The use of algorithms in digital signal processing enables a targeted evaluation of acoustic signals. This means it is possible, for example, to filter out heartbeats or to amplify characteristic frequency ranges, making lung sounds, such as rustling or wheezing, much easier to hear.

On top of this, the researchers at Fraunhofer IKTS are developing machine learning algorithms. In the future, these will be able to structure and classify complex ambient noises in the thorax. Then, the pneumologist will carry out the final assessment and diagnosis.

Discharge from the ICU
Patients can also benefit from the digital sensor alternative. When wearing the vest, they can recover without requiring constant observation from medical staff. They can transfer to the general ward and possibly even be sent home and move about more or less freely. Despite this, the lungs are monitored continuously, and any sudden deterioration can be reported to medical personnel straight away.

The first tests with staff at the University Clinic for Anesthesiology and Intensive Therapy at the University of Magdeburg have shown that the concept is successful in practice. “The feedback from doctors was overwhelmingly positive. The combination of acoustic sensors, visualization and machine learning algorithms will be able to reliably distinguish a range of different lung sounds,” explains Schallert. Dr. Alexander Uhrig from Charité – Universitätsmedizin Berlin is also pleased with the technology. The specialist in infectiology and pneumology at the renowned Charité hospital was one of those who initiated the idea: “Pneumo.Vest addresses exactly what we need. It serves as an instrument that expands our diagnostic options, relieves the burden on our hospital staff and makes hospital stays more pleasant for patients.”

The technology was initially designed for respiratory patients, but it also works well for people in care facilities and for use in sleep laboratories. It can also be used to train young doctors in auscultation.

Increased need for clinical-grade wearables
With Pneumo.Vest, the researchers at Fraunhofer IKTS have developed a product that is cut out for the increasingly strained situation at hospitals. In Germany, 385,000 patients with respiratory or lung diseases require inpatient treatment every year. Over 60 percent are connected to a ventilator for more than 24 hours. This figure does not account for the current increase in respiratory patients due to the COVID-19 pandemic. As a result of increasing life expectancy, the medical industry also expects the number of older patients with breathing problems to increase. With the help of technology from Fraunhofer IKTS, the burden on hospitals and, in particular, costly ICUs can be relieved as their beds will no longer be occupied for quite as long.

It should be added that the market for such clinical-grade wearables is growing rapidly. These are compact medical devices that can be worn directly on the body to measure vital signs such as heartbeat, blood oxygen saturation, respiratory rate or skin temperature. As a medical device that can be used flexibly, Pneumo.Vest fits in perfectly with this development. But do not worry: Doctors will still be using the beloved stethoscope in the future.

Fraunhofer “M³ Infekt” cluster project
Pneumo.Vest is just one part of the extensive M³ Infekt cluster project. Its objective is to develop monitoring systems for the decentralized monitoring of patients. The current basis of the project is the treatment of COVID-19 patients. With the SARS-CoV2 virus, it is common for even mild cases to suddenly deteriorate significantly. By continuously monitoring vital signs, any deterioration in condition can be quickly identified and prompt measures for treatment can be taken.

M3 Infekt can also be used for a number of other symptoms and scenarios. The systems have been designed to be modular and multimodal so that biosignals such as heart rate, ECG, oxygen saturation, or respiratory rate and volume can be measured, depending on the patient and illness.

A total of ten Fraunhofer institutes are working on the cluster project under the leadership of the Fraunhofer Institute for Integrated Circuits IIS in Dresden. Klinikum Magdeburg, Charité – Universitätsmedizin Berlin and the University Hospitals of Erlangen and Dresden are involved as clinical partners.

Source:

Fraunhofer Institute for Ceramic Technology and Systems IKTS

photo: pexels
26.07.2022

Composites Germany – Results of the 19th Market Survey

  • Current crises are dampening mood in composites industry
  • Pessimistic outlook
  • Subdued investment climate
  • Varying expectations for application industries
  • GRP is still a growth driver
  • Composites Index continues to decline

This is the 19th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future developments in the market.

  • Current crises are dampening mood in composites industry
  • Pessimistic outlook
  • Subdued investment climate
  • Varying expectations for application industries
  • GRP is still a growth driver
  • Composites Index continues to decline

This is the 19th time that Composites Germany has identified the latest performance indicators for the fibre-reinforced plastics market. The survey covered all the member companies of the three major umbrella organisations of Composites Germany: AVK, Leichtbau Baden-Württemberg and the VDMA Working Group on Hybrid Lightweight Construction Technologies.

As before, to ensure a smooth comparison with the previous surveys, the questions in this half-yearly survey have been left unchanged. Once again, the data obtained in the survey is largely qualitative and relates to current and future developments in the market.

Current crises are dampening mood in composites industry
Both the economy in general and industry in particular are struggling with numerous challenges at the moment. The Covid-19 pandemic has now had a negative impact for over two years and is still affecting a range of segments of the composites industry. One area that has been hit especially hard by the resulting losses is the mobility sector. Another major strain has been a sharp rise in energy costs recently. Above all, we can expect price increases in fuel and gas to become a central issue over the next few months. In addition, there are still problems along international supply chains, coupled with steep increases in raw material prices, partly due to bottlenecks in the supply. The war in Ukraine has put an additional strain on many business sectors, affecting their supply chains, in particular.

In the current survey, both these and other effects have had a major negative impact on the mood in the composites industry.

The assessment index for the current general economic situation is showing a clear decline.

Compared to the last survey, the assessment of the respondents’ own business situations has dropped significantly and for the first time in eighteen months. However, this decline has been far less severe than during the onset of the Covid-19 pandemic.

Pessimistic outlook
Furthermore, there has been a substantial decline in expectations for the future market development. The key figures for the general economic situation have been declining sharply and have reached an all-time low since the beginning of the survey. The respondents are also less optimistic about future expectations for their own companies.

However, respondents are less extreme when assessing the business situations of their own companies. Despite negative spikes, this curve is far less steep, showing that respondents are expecting less dramatic effects on their own companies than on the industry as a whole.

Subdued investment situation
Although, as expected, the investment climate has also become subdued, it should be noted that, in all, expectations are still relatively high. 70% of all respondents believe that machine investments are possible, or they are planning for it. This figure is somewhat lower than in the previous market survey, but it shows a far less dramatic development than the other factors mentioned above .

Varied expectations for application industries
We already mentioned the high level of heterogeneity of applications in the composite sector. In the survey, respondents were asked to provide assessments of market developments in various core sectors.

Their expectations clearly differ substantially from one another.

The proportion of pessimistic expectations has generally been rising for all application industries. While these expectations are almost entirely within a single-digit range, there has been a clear rise in the proportion of those expecting a deterioration of the market in the various application industries. Similar to the last surveys, major drops are expected above all for the automotive, aviation and mechanical engineering sectors. For the first time, however, we can now also see rather negative expectations on the infrastructure and building sector. Yet this is a segment which often reacts quite slowly to temporary economic fluctuations and has so far shown itself to be relatively resilient towards the above-mentioned crises. It remains to be seen whether such forebodings will come true, or whether the construction industry will continue to hold its own in the face of the current negative forces.

Growth drivers remain stable
Geographically, the survey shows that the most important growth stimuli for the composites segment are expected to come from Germany, Europe and Asia.

Where materials are concerned, we are seeing a continuation of the ongoing paradigm shift. Whereas, in the first 13 surveys, respondents always mentioned CRP as the material with the most important growth drivers in its environment, the most important stimuli are now being expected to come consistently either from GRP or from all materials.

Composites Index continues to decline
The industry is currently going through an extremely tense and difficult period, characterised by rising costs, supply chain issues, lack of availability of certain semifinished products and raw materials, increasing political instability and very pessimistic expectations for the future. All the relevant indicators of the current composites survey are pointing downwards at the moment. After some slight recovery over the last 18 months, the Composite Index has therefore clearly been weakening this time and has been dropping to new low points, especially concerning future expectations.

Industry in general, but particularly also Germany’s composite industry, has always shown itself to be very resilient towards crises and has often cushioned negative developments quickly. The total production volume for composites in Europe last year already reached its pre-crisis level of 2019. Germany continues to be the most important manufacturing country in Europe, with a market share of nearly 20%. Hopefully, the slowdown in the coming months will be less severe than expected and the composites industry will remain on an upward trajectory. We will continue to be optimistic, as composites are highly diverse and therefore a key material of the future.

The next Composites Market Survey will be published in January 2023.

Source:

Composites Germany

Photo: Pixabay
19.07.2022

The future of fashion: Revolution between fast and slow fashion

The fashion industry is massively influenced by the change in social values. Which trends can be observed and in which direction is the fashion future developing - an excerpt from the Retail Report 20231 by Theresa Schleicher.

The fashion industry is massively influenced by the change in social values. Which trends can be observed and in which direction is the fashion future developing - an excerpt from the Retail Report 20231 by Theresa Schleicher.

The fashion industry has been slowed down by the global health pandemic and further affected by the measures taken in the wake of the Ukraine war: Fragile supply chains, increased transportation and energy costs, and rising prices are having an impact on the globalized fashion industry. Those who were moving the fastest are being hit the hardest. Fast fashion based on the principle of "faster and faster, cheaper and cheaper, more and more" - which has been in the fast lane for years - is now experiencing an unprecedented crash. Even without these momentous events, the fashion system would have reached its limits. What could have developed evolutionarily is now being revolutionized. Now and in the future, it will be particularly difficult for brands and retail companies that do not have a sharp profile or that have lost many customers in the attempt to offer mass-produced goods at prices that are still lower than those of their competitors.

New value paradigm in society - also for fashion
While fashion retailers and fashion brands are focusing on expanding online and have been putting their foot on the gas pedal since the corona pandemic at the latest, a parallel change in values is taking place in society. Many behaviors that have been practiced, tested and lived for months will continue to shape our consumer behavior and lifestyles in the future. The uncertainty in society as well as a shrinking economy and rising consumer prices as a result of the Ukraine war will further contribute to this shift in values.

The old paradigm was "primarily shaped by pragmatic factors such as price, quantity, safety and convenience, so consumer behavior was predominantly based on relatively simple cost-benefit calculations." The new value paradigm, on the other hand, is more strongly influenced by "soft factors". For example, the quality of a product is defined more holistically. In addition to price, "ecological, [...] ethical and social aspects are also taken into account. It is about positive or negative experiences that one has had with producers and about the visions that they pursue with their companies". This new value paradigm is forcing the large chain stores in particular to rethink. They have to develop their business models further in the direction of sustainability, transparency and responsibility - and show attitude. The influence of the neo-ecology megatrend combined with the push towards the sense economy is reshuffling the cards in the fashion industry.

The most important driver for the change in consumer behavior is climate protection, which is also becoming personally more important to more and more people because they are feeling the effects of climate change themselves in their everyday lives. The transition to a sustainable, bio-based and circular economy is accompanied by fundamental changes in the technical, economic and social environment.

Circular fashion as an opportunity for fast fashion
The development of the fashion industry - especially the fast fashion industry - towards a more circular economy is not a short-term trend, but one of the most long-term and at the same time forward-looking trends in retailing of all.

Even before the pandemic, a growing proportion of consumers placed value on sustainably produced clothing instead of constantly shopping the latest trends. A reset is needed, but the fashion industry faces a difficult question: How can it respond to the demand for new trends without neglecting its responsibility for the environment?

The solution for reducing emissions and conserving raw materials and resources seems obvious: produce less. On average, 2,700 liters of water are needed to produce a T-shirt - that much drinking water would last a person for two and a half years. In Europe, each person buys an average of 26 kilograms of textiles per year - and disposes eleven kilograms. Of this, almost 90 percent is incinerated or ends up in landfills. Overproduction, precarious working conditions during production and the use of non-sustainable materials are the major problems of the fast fashion industry. It is time to slow down fast fashion.

Fashion recycling by Design & Recycling as a Service
A first step towards keeping fashion and textiles in the cycle for longer is to recycle materials properly. In the future, recycling must be considered as early as the design stage - not only for sustainably produced fashion, but also for fast fashion. The H&M Group, for example, developed the Circulator for this purpose: The digital evaluation tool guides the designer through materials, components and design strategies that are best suited for the product depending on its purpose, and evaluates them in terms of their environmental impact, durability and recyclability.

However, more and more young companies are specializing in offering recycling for textiles as a service. They work directly with fashion retailers or fashion brands to enable the best possible recycling, re-circulation or even upcycling. Until now, it has not been worthwhile for large textile companies to invest in their own recycling systems. But Recycling as a Service is a market of the future, led by innovative start-ups such as Resortecs that are tackling previous hurdles in our recycling system. In the future, more and more new service providers will pop up around returns and recycling and help fashion retailers to align their material cycles more sustainably.

Secondhand conquers the fast fashion market
Another way to extend the life of clothing is to pass it on to new users. We are witnessing the triumph of vintage, retro and more - chic secondhand stores and chains like Resales and Humana are popping up everywhere. The renaming of secondhand to pre-owned or pre-loved also illustrates the increased appreciation of worn clothing. The trend toward secondhand also pays off economically for companies: The number of platforms whose business model revolves around the resale of clothing is increasing, and secondhand fashion is arriving in the middle of society. The luxury segment and especially vintage fashion are stable in price because the availability of these unique pieces is limited. Fast fashion, on the other hand, is available in sufficient quantities and is particularly interesting for price-sensitive customers, as secondhand is considered one of the most sustainable forms of consumption - meaning that fashion can be shopped with a clear conscience - and is usually even offered at a lower price than new goods. The second-hand market will continue to professionalize and become more socially acceptable. As a result, the fast fashion industry will also be forced to produce higher quality clothing in order to become or remain part of the circular system.

Slow fashion gains momentum thanks to technology
The development and orientation of fast fashion towards circular processes is also changing sustainable fashion. In the future, fast fashion and slow fashion can learn from each other to fully exploit their potential: fast fashion will become more sustainable, while slow fashion will focus on faster availability and delivery and make the customer experience as pleasant as possible. Fast and slow fashion are no longer compelling opposites - because the sustainable fashion movement can also benefit from technological innovations that are being established above all by the fashion platforms, and lift slow fashion to a new level.

At the same time, Sustainable Luxury is a new form of luxury consumption - especially in the field of designer fashion, sustainability is becoming the all-important criterion. Sustainability as a means of distinction for true luxury and sustainability as a basic prerequisite for a functioning fashion industry are increasingly converging. This is where the transition between a slowdown of fast fashion and an acceleration of slow fashion takes place.

Trend Sustainable Luxury
Luxury is defined less and less by the object and its possession and is increasingly becoming an expression of one's own lifestyle and values. Consumers' understanding of premium and luxury has changed - not least driven by the neo-ecology megatrend. In the future, it will no longer be just about owning something as expensive and ostentatious as possible. What began as a rebellion against careless consumption of luxury brands that promise high-end products but accept unfair and environmentally damaging manufacturing conditions in the process has increasingly become accepted as a value attitude. Luxury products have no less a claim than to improve the world.

Sustainable and ethical products and services made from innovative materials that have the power to solve problems and make the world a better place. At the same time, this highly ethically and morally charged form of sustainability is turning into a means of distinction: For the materials are so new, the manufacturing processes still so experimental, that the products are unique and often only available in very small quantities or on order. And this exclusive sustainability naturally comes at a price. After all, a company that pursues a mission is not concerned with simply cutting costs - certainly not at the expense of others or the environment. Instead of leather and fur, luxury fashion is now made from oranges, pineapples, hemp, cacti: there are more and more new, innovative and sustainable materials from which unique garments and accessories can be made.

Predictive, Pre-Order & Made-to-Order
Artificial intelligence and Big Data analysis can help predict fashion demand. Fast fashion leaders like Shein are characterized by agile production which is supported by AI algorithms for trend prediction fed with data from TikTok and other social media services. This could sustainably reduce overproduction and unsaleable goods in the future. As critical as Shein's practices are, the automation of processes also offers immense opportunities for a more sustainable fashion industry, as production only starts when goods are in demand.

AI support in the design process can be used to produce more sustainable fashion - and make it available more quickly. In a future of an avatar economy and in the world of virtual influencers, it may even be possible to dispense with part of the production process: Fashion will remain virtual - and thus more resource-efficient. Digital fashion will become increasingly important as the metaverse is built.

5 Key Takeaways on the Future of Fashion

  1. The current crisis in the fashion industry is an opportunity to move more in the direction of circular fashion. Above all, the new value paradigm in society, understanding quality more holistically and consuming more mindfully, is providing a push towards fairer, more ecological and more social fashion. Fast fashion and sustainability are not mutually exclusive.
  2. There are already first approaches to keep fast fashion in the cycle longer or to return it to the cycle. One important development is to consider recycling or reuse as early as the design and manufacturing process - known as recycling by design. In addition, there is a growing number of start-ups specializing in the optimized recycling of textiles and cooperating with major fashion players.
  3. Above all, the booming online trade in used fashion, often communicated as the pre-loved or pre-owned category, is making secondhand respectable for the mainstream. Such fashion, with a story and an aura of uniqueness, is also a cost-effective but more sustainable alternative to fast fashion.
  4. But slow fashion is also changing, especially due to the dominance of new technologies. Slow fashion can also benefit from processes that are currently manifesting themselves in the online fashion market, such as fast delivery or pre-order services. Slow fashion thus becomes more convenient, better and faster available. It will be easier for sustainably oriented fashion enthusiasts to consume according to their values and attitudes.
  5. The trend toward sustainable luxury continues: Sustainability as a means of distinction for a new form of luxury enables alternative manufacturing processes and innovative materials in the luxury fashion market. These are being showcased by an avant-garde and, if they prove successful, adapted by fast fashion.

1 https://onlineshop.zukunftsinstitut.de/shop/retail-report-2023/

Source:

Retail Report 2023 | Theresa Schleicher, Janine Seitz | June 2022

(c) Messe Karlsruhe, Jürgen Rösner
05.07.2022

The dream of owning a small home - or: How will we live tomorrow?

For the house and home textiles industry, the question is what consequences the current living trends will have for their furnishing concepts in the future: Adaptive habitat and modular houses, cohousing, senior citizens' residences or villages, between long-stay apartments, which are experiencing great growth in the hotel sector, and tiny houses for private users, suppliers will develop new ideas.

Since 2018, Messe Karlsruhe has been organizing Europe's largest Tiny House Festival. The NEW HOUSING - Tiny House Festival underlines the great interest in the Tiny House living trend.

For the house and home textiles industry, the question is what consequences the current living trends will have for their furnishing concepts in the future: Adaptive habitat and modular houses, cohousing, senior citizens' residences or villages, between long-stay apartments, which are experiencing great growth in the hotel sector, and tiny houses for private users, suppliers will develop new ideas.

Since 2018, Messe Karlsruhe has been organizing Europe's largest Tiny House Festival. The NEW HOUSING - Tiny House Festival underlines the great interest in the Tiny House living trend.

From 01 to 03 July 2022, around 7,000 Tiny House enthusiasts - significantly more than expected - came together at Messe Karlsruhe to experience the diversity and range of small, alternative forms of living. In a Tiny House village of 25 small houses on the open-air grounds of Messe Karlsruhe, they had the opportunity to network with each other and to find out and exchange information about living in the smallest of spaces from manufacturers, suppliers, self-builders, organizations and associations.

"The NEW HOUSING - Tiny House Festival pays outstanding attention to the trend towards sustainable living and thus has a forward-looking effect, especially here in Karlsruhe. As organizer of the festival and at the same time as initiator of the Tiny House Association, we bring the community together and set an example for smart developments in the topics of building and living," says Britta Wirtz, Managing Director of Messe Karlsruhe.

Project manager Frank Thieme adds: "Tiny Houses create quality living space on small areas that are not suitable for classic residential development, for example because they are only available temporarily. Here, the festival serves the trend of sustainable use of land to create living space and drives the development towards lower resource consumption and the use of innovative building materials."

On the open-air grounds of Messe Karlsruhe, companies were there to answer questions and provide first-hand information. Exhibitors from all over Germany were present, including market leaders as well as carpentry shops and start-ups that have built up a second mainstay with the construction of Tiny Houses.

For the first time, companies from other European countries, including Latvia, Poland and Belgium, also presented themselves. A new element in 2022 was an information mile in the entrance area of the trade fair with a wide range of advisory services for future Tiny House residents as well as suppliers and outfitters.

There, regional Tiny House organizations and the Tiny House Association, among others, were there to answer questions and provide information about their work. Regina Schleyer, chairwoman of the board of the Tiny House Association, which structurally represents over 2,000 members in German-speaking countries, says: "The number of visitors is really overwhelming. The interest is very high, people are very open-minded and interested in the association. We succeeded in presenting what local offers are being developed in the associations nationwide. We are truly very satisfied with the fair, a complete success."

The visitors traveled to Karlsruhe from all over Germany and beyond its borders to find out about small alternative forms of living. They particularly appreciated the opportunity to meet the manufacturers in person and to visit the Tiny Houses on site.

The lecture program at the festival complemented the exhibition and offered insights into successful self-build stories, topics such as self-sufficiency, sustainability and finding a suitable site, as well as informative literature. Topic-relevant lectures with experts shared tips and tricks as well as experiences within the Tiny House community.

The next NEW HOUSING - Tiny House Festival will take place from June 30 to July 2, 2023 at Messe Karlsruhe.

Source:

Messe Karlsruhe / Textination

Photo: Pixabay
28.06.2022

Individual plastic budget - Fraunhofer UMSICHT presents study results

When plastics enter the environment, this brings with it many negative effects: these range from suffocating living organisms to transfer within the food chain and physical effects on an ecosystem. In addition, there are dangers from the release of additives, monomers and critical intermediates of metabolic processes, the metabolites.

How great the long-term impact of plastic emissions actually is, is not yet clear at the present time. In order to create a political decision-making basis for dealing with plastic emissions, researchers from Fraunhofer UMSICHT and the Ruhr University Bochum have therefore developed a budget approach and an LCA impact assessment methodology in the "PlastikBudget" project from December 2017 to the end of August 2021. The researchers have now completed the project. The result: When driving a car, a person emits more than half of their individual plastic emission budget through tire wear.

When plastics enter the environment, this brings with it many negative effects: these range from suffocating living organisms to transfer within the food chain and physical effects on an ecosystem. In addition, there are dangers from the release of additives, monomers and critical intermediates of metabolic processes, the metabolites.

How great the long-term impact of plastic emissions actually is, is not yet clear at the present time. In order to create a political decision-making basis for dealing with plastic emissions, researchers from Fraunhofer UMSICHT and the Ruhr University Bochum have therefore developed a budget approach and an LCA impact assessment methodology in the "PlastikBudget" project from December 2017 to the end of August 2021. The researchers have now completed the project. The result: When driving a car, a person emits more than half of their individual plastic emission budget through tire wear.

How big is the long-term impact of plastic emissions?
Six percent of global petroleum consumption goes to the plastics industry - and the trend is rising. While the plastics industry is an important economic factor in many countries, more and more plastic waste ends up in soils and oceans. Mostly in the form of highly mobile, small to large plastic fragments, plastic emissions can no longer be recovered from the environment. At the same time, the long-term effects of plastic in the environment are hardly predictable.

Due to the global and cross-generational dimension of the problem, it is important that science, industry and consumers work together to find a solution. One goal of the joint project PlastikBudget is therefore to quantify today's plastic emissions and to derive a plastic emissions budget. On this basis, the researchers can formulate quantitative emission targets that can be used to legitimize political decisions. In particular, the path from empirically verified data and normative values to a concrete emissions budget forms the core objective of the project.

From research to per capita emissions budget
Starting with a basic research on plastic quantities in the environment, the project addresses two major topics: The development of a budget approach and the development of an impact assessment method that can be used in life cycle assessments to consider potential environmental impacts of plastic emissions. Participatory formats complete the project. In this way, the results are anchored in political and scientific discourse. In the course of the project, the researchers will answer the following questions: What quantities of plastic are currently being discharged and what quantities have already accumulated? What quantities of plastic in the environment are still acceptable? How long does it take for plastics to degrade in real environmental compartments? How are the risks posed by different plastic emissions adequately represented? Finally, from the answers, they calculate a value for current emissions and what they consider to be an acceptable emissions budget.

250 million tonnes of PPE for 7.8 billion people
To measure plastic pollution, the researchers in the PlastikBudget project have developed the persistence-weighted plastic emission equivalent (PPE for short). This represents a virtual mass that takes into account the period of time until a specific plastic emission is degraded, e.g. in soil, freshwater or seawater. Relevant properties for this are the location of the emission, the material type, the shape of the plastic emission as well as the size of the emitted plastic part and the final environmental compartment in which the plastic remains. In the case of plastics that degrade completely within one year, the plastic emission equivalent corresponds to the real mass. If the degradation time is longer, it increases accordingly.

"Based on the thesis that the total amount of plastics already accumulated in the environment today has just reached a critical quantity, we were able to calculate a global plastic emission budget of 250 million tonnes of PPE," explains Jürgen Bertling, project manager of the project and scientist at Fraunhofer UMSICHT. "If each of the 7.8 billion people is allocated the same emission rights, this results in an individual budget of 31.9 kilograms of PPE per person and year."

Driving consumes half of the individual plastic budget
However, tire wear from driving alone corresponds to a plastic emission equivalent of 16.5 kg PPE per year and thus consumes more than 50 per cent of an individual's budget. Even waste from ten coffee-to-go disposable cups would consume 13.5 kg of PPE per year, more than a third of one's budget. "This is because the plastics used in disposable cups are more difficult to degrade than the rubber in the tire," explains Jan Blömer from Fraunhofer UMSICHT, who played a key role in developing the calculation methodology. The consumption of a coil of polyamide for a lawn trimmer, which releases microplastics when used, also weighs in considerably at 5.1 kilograms of PPE. Microbeads in cosmetics or the one-time sanding of a front door, on the other hand, consume significantly less of the individual emissions budget with 1.1 kg PPE and 0.5 kg PPE, but are still quite relevant in the overall balance.

Many other everyday activities also lead to plastic emissions. Nevertheless, the researchers show that the calculated budget limits can be met in various scenarios. However, such a scenario also entails considerable effort and massive changes in the way we deal with plastics today. One possible scenario to meet the budget would be a reduction of emissions by more than 50 per cent, if at the same time at least 50 per cent of all emissions consisted of readily degradable plastics.

Further work on accounting for plastic emissions in life cycle assessments
The persistence-weighted plastic emission equivalent developed in the PlastikBudget project could also represent a new impact category in life cycle assessments in the future. "With the help of factors that reflect the persistence of plastics in the environment, it will be possible in future to compare different product alternatives in terms of their plastic emission footprints," says Dr Daniel Maga, who is coordinating the corresponding further development of the life cycle assessment methodology at Fraunhofer UMSICHT. A corresponding exchange with companies is taking place here. However, implementation in the life cycle assessment methodology and the associated software solutions requires broad acceptance in the scientific community and must be prepared in corresponding standardisation committees.

The project is part of the research priority "Plastics in the Environment" (PidU) of the Federal Ministry of Education and Research (BMBF), in which 18 collaborative projects with around 100 partners from science, industry, associations, municipalities and practice want to clarify fundamental questions about the production, use and disposal of plastics. The research focus "Plastics in the Environment - Sources, Shrinking, Solutions" is part of the Green Economy flagship initiative of the BMBF framework programme "Research for Sustainable Development" (FONA3).

Source:

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT