From the Sector

Reset
6 results
(c) Michael Kretzschmar
Awards Honorary Doctorate to Professor Dr. Paul Kiekens by Professor Dr. Ursula M. Staudinger, Rector of the TU Dresden
12.04.2023

TU Dresden awards Honorary Doctorate to Professor Paul Kiekens

In recognition of his extraordinary engineering achievements in the fields of textile mechanical engineering, textile technology as well as textile chemistry and surface modification of textile semi-finished products, Prof. Paul Kiekens was awarded the title of Doctor honoris causa (Dr.-Ing. h.c.) on April 5, 2023.
 
Prof. Kiekens was a university professor at Ghent University, Belgium, for almost 35 years and thus responsible for textile-oriented education and research. Intensive interaction with European business and science was always particularly important to him.
 

In recognition of his extraordinary engineering achievements in the fields of textile mechanical engineering, textile technology as well as textile chemistry and surface modification of textile semi-finished products, Prof. Paul Kiekens was awarded the title of Doctor honoris causa (Dr.-Ing. h.c.) on April 5, 2023.
 
Prof. Kiekens was a university professor at Ghent University, Belgium, for almost 35 years and thus responsible for textile-oriented education and research. Intensive interaction with European business and science was always particularly important to him.
 
Immediately after the fall of the Berlin Wall, he opened the way for international cooperation in teaching and research in the field of textile mechanical engineering, textile technologies, and textile chemistry for the only Eastern European university research institution with a textile orientation, the ITM (formerly ITB) at the Faculty of Mechanical Engineering of TU Dresden, and provided great and uncomplicated support. A close, lasting and intensive relationship developed, which had a trend-setting influence on the scientific career of Professor Paul Kiekens. This was reflected above all in the expert advice given for major projects.
 
These include, for example, the funded junior research group "Holistic approach to the development and modelling of a new generation of multiaxial fabrics for fibre composites to strengthen Saxon, French and Flemish industry in the high-performance sector" (SAXOMAX) and jointly acquiring the EU project "Large scale manufacturing technology for high performance lightweight 3D multifunctional composites" (3D-LightTrans). Especially in these large-scale projects, intensive cooperation with industrial partners was essential for success.
 
As early as the 1990s, Professor Paul Kiekens had the vision of creating a European network for universities in textile teaching and research. In 1994, the Association of Universities for Textiles (AUTEX) was founded with the aim of establishing teaching and research in the field of textile technology at an internationally respected level through joint concepts. Due to the prevailing cooperation at that time between Professor Dr. Paul Kiekens and Professor Dr. Peter Offermann, the TU Dresden, represented by the ITM (formerly ITB), has been a full member and decisively integrated in the network since its foundation on July 1, 1994. Thus Prof. Dr.-Ing. habil. Paul Kiekens has significantly promoted the international cooperation of the TU Dresden, Faculty of Mechanical Engineering with international university textile research institutions.
 
Professor Paul Kiekens was executive coordinator of AUTEX until his retirement. The internationally renowned symposium takes place annually as a part of AUTEX.

Source:

Technische Universität Dresden - Institute of Textile Machinery and High Performance Material Technology

© ITM/TU Dresden
Woven hemisphere for usage in radome antennaes
15.12.2022

AVK Innovation Award 2022 to young engineers from ITM at TU Dresden

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

Continuous simulation aided engineering from CAD design to integrally woven 2D and 3D preforms by means of highly complex weave development for spatial constructions is a unique at the ITM, which was indispensable for the development of these promising woven high-tech structures. This technology is completely new and has never been carried out in this way before. The fabric structures are characterised by a high innovation level due to their geometric diversity and purposes. It can be used in numerous applications and further more contributes to the development of completely new fields of application. The technology can be implemented on all Jacquard weaving machines with only an additional device and the preform geometry is only determined by the control of the Jacquard machine. The preform geometry can be used in the full working width of the weaving machine.

Professor Chokri Cherif, Institute Director of the ITM, and his team are very pleased about these continuous research success in the constantly growing research field of 3D weaving technology, which are achieved at the ITM in close cooperation with industry and users. "This award is a special honour for our institute and confirms that the many years of our excellent research in the field of near-net-shape 3D weaving for the fibre-reinforced plastics sector plays a significant role and that we are making a significant contribution to the sustainable and resource-efficient production of lightweight structures with our development".

Source:

ITM/TU Dresden

© ITM / TU Dresden
10.11.2021

Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 geht an Irina Kuznik

Die Verleihung der Förder- und Kreativitätspreise 2021 der Walter Reiners-Stiftung des VDMA, Fachverband Textilmaschinen an Studierende und Nachwuchswissenschaftler:innen deutscher Universitäten für Spitzenleistungen in Studium und Promotion fand am 09. November 2021 im Rahmen der Aachen-Dresden-Denkendorf International Textile Conference 2021 statt. Die bundesweit ausgeschriebenen Förder- und Kreativitätspreise wurden erneut online durch Herrn Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, verliehen.

Frau Dipl.-Ing. Irina Kuznik vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde mit dem 3.000 EUR dotierten Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 für ihre exzellente Diplomarbeit „Entwicklung zur umweltfreundlichen Herstellung neuartiger Chitosanfasergarne unter Einsatz von ionischen Flüssigkeiten" ausgezeichnet.

Die Verleihung der Förder- und Kreativitätspreise 2021 der Walter Reiners-Stiftung des VDMA, Fachverband Textilmaschinen an Studierende und Nachwuchswissenschaftler:innen deutscher Universitäten für Spitzenleistungen in Studium und Promotion fand am 09. November 2021 im Rahmen der Aachen-Dresden-Denkendorf International Textile Conference 2021 statt. Die bundesweit ausgeschriebenen Förder- und Kreativitätspreise wurden erneut online durch Herrn Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, verliehen.

Frau Dipl.-Ing. Irina Kuznik vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde mit dem 3.000 EUR dotierten Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 für ihre exzellente Diplomarbeit „Entwicklung zur umweltfreundlichen Herstellung neuartiger Chitosanfasergarne unter Einsatz von ionischen Flüssigkeiten" ausgezeichnet.

In ihrer Diplomarbeit entwickelte Frau Kuznik einen völlig neuen Ansatz zur ökologischen und ökonomischen Herstellung von Chitosangarnen. Unter Nutzung ionischer Flüssigkeiten als gut geeignetes, neuartiges Lösungsmittel für Chitosan lässt sich Chitosan mit geringen Deacetylierungsgraden sowie reines Chitin erfolgreich auflösen. In einem Nassspinnverfahren können damit erzeugte Spinnlösungen zu neuartigen Chitosan- bzw. Chitinmonofilamenten mit sehr guten morphologischen Eigenschaften hergestellt werden. Des Weiteren lässt sich die ionische Flüssigkeit mittels eines Verdampfungsverfahrens aus dem Abwasser zurückgewinnen und wiederaufbereitet werden.

More information:
VDMA Textilmaschinen chitosan
Source:

Technische Universität Dresden
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

ITM of TU Dresden – your research partner in the field of virtual product development at ISPO Munich © ITM/TU Dresden
Draping properties - variety of materials
01.02.2021

ITM presents itself for the first time at ISPO Munich Online 2021

  • ITM of TU Dresden – your research partner in the field of virtual product development at ISPO Munich
  • ISPO Munich Online 2021 – the world´s leading sports business platform from February 1st to 5th 2021

The Chair of Assembly Technology for Textile Products of ITM presents itself for the first time at ISPO Munich Online 2021 – showcasing its expertise in the field of virtual product development. Its know-how in the determination of material parameters, digital data processing, and data transfer will be presented as well as its competencies in 3D/4D body shape recording via scanning, data animation for the 3D product development for functional clothing, and simulation for wear comfort/usage visualization. The Chair of Assembly Technology for Textile Products of ITM has manifested its leading global position in the virtual product development sector by successfully completing a variety of national and international interdisciplinary research projects.

  • ITM of TU Dresden – your research partner in the field of virtual product development at ISPO Munich
  • ISPO Munich Online 2021 – the world´s leading sports business platform from February 1st to 5th 2021

The Chair of Assembly Technology for Textile Products of ITM presents itself for the first time at ISPO Munich Online 2021 – showcasing its expertise in the field of virtual product development. Its know-how in the determination of material parameters, digital data processing, and data transfer will be presented as well as its competencies in 3D/4D body shape recording via scanning, data animation for the 3D product development for functional clothing, and simulation for wear comfort/usage visualization. The Chair of Assembly Technology for Textile Products of ITM has manifested its leading global position in the virtual product development sector by successfully completing a variety of national and international interdisciplinary research projects.

Researchers of the Chair of Assembly Technology for Textile Products have been actively involved in the preparation and digital representation of material samples for the ISPO Textrends Forum. Thus, the material parameters of the ISPO Textrends Award textiles were determined for 3D fit simulations in Vidya (Assyst/Vizoo), automatically analyzed, and digitally processed by the specially developed "Material Analyzer" software. This software in addition to other state-of-the-art CAE infrastructure, such as the recently installed 4D Scanner Move4D, are essential for the further establishment and promotion of its leading position in the field of digitalization and virtual product development for garments for high-tech applications.

The researchers involved eagerly await future collaborations in this promising field of research. This pilot project presented at ISPO 2021 was coordinated by the company FOURSOURCE Group GmbH, thus enabling the characterization and 3D visualization of the award-winning materials that are presented to all visitors at ISPO 2021.

VDMA: Young talents honoured online (c) VDMA
The winners 2020 (from top left to bottom right): Dr. Frederik Cloppenburg, Philippa Böhnke, Juan Carlos Arañó Romero, Dr. Annett Schmieder, Maximilian Speiser, Harry Lucas jun.
03.12.2020

VDMA: Young talents honoured online

In early December, the chairman of the Walter Reiners Foundation of the VDMA Textile Machinery Association, Peter D. Dornier presented awards to six successful young engineers. Due to the Covid-19 pandemic, the award ceremony took place as a web conference for the first time.

Philippa Böhnke, ITM Dresden, and Juan Carlos Arañó Romero, ITA Aachen, were honoured with creativity awards for the cleverest bachelor or project work. The prizes are endowed with 3,000 euros each. Ms. Böhnke’s project dealt with composite implants for the repair and regeneration of bone defects. In his bachelor thesis, Mr. Arañó Romero has developed a spinning machine able to produce yarn with material from the moon. By this, the transport effort in space travel can be minimised, because insulating material for example necessary for a moon base can be produced on the moon directly.

In early December, the chairman of the Walter Reiners Foundation of the VDMA Textile Machinery Association, Peter D. Dornier presented awards to six successful young engineers. Due to the Covid-19 pandemic, the award ceremony took place as a web conference for the first time.

Philippa Böhnke, ITM Dresden, and Juan Carlos Arañó Romero, ITA Aachen, were honoured with creativity awards for the cleverest bachelor or project work. The prizes are endowed with 3,000 euros each. Ms. Böhnke’s project dealt with composite implants for the repair and regeneration of bone defects. In his bachelor thesis, Mr. Arañó Romero has developed a spinning machine able to produce yarn with material from the moon. By this, the transport effort in space travel can be minimised, because insulating material for example necessary for a moon base can be produced on the moon directly.

Harry Lucas, TU Chemnitz, and Maximilian Speiser, Reutlingen University, were awarded two promotion prizes in the category master thesis with prize money of 3,500 euros each. The master thesis of Mr. Lucas deals with the development of a new knitting head for jacquard knitted fabrics, enabling a large variety of colours e.g. in the production of fan scarfs. Mr. Speiser showed in his master thesis a solution for increasing energy efficiency in the nonwovens process.

This year, two promotion prizes of the German Textile Machinery Industry in the dissertation category were awarded to Dr. Frederik Cloppenburg, ITA Aachen, and Dr. Annett Schmieder, TU Chemnitz. In his dissertation Mr. Cloppenburg developed a model for the optimisation of roller cards in the nonwovens process. Ms. Schmieder introduced in her dissertation a damage analysis system for fibre ropes. The system detects when a rope must be replaced e.g. in transport applications.

The award ceremony 2021 shall take place with physical presence again. It is scheduled for early May at the fair Techtextil in Frankfurt.

Source:

VDMA

Dissertation and Creativity Award of the German Textile Machinery Foundation 2018 to go to Aachen (c) VDMA. Eric Otto, Susanne Fischer, Dr. Benjamin Weise, Peter D. Dornier (Chairman Walter Reiners-Stiftung), Alon Tal, Jan Merlin Abram (left to right)
01.10.2018

Dissertation and Creativity Award of the German Textile Machinery Foundation 2018 to go to Aachen

The Mechanical Engineering Industry Association (VDMA) has awarded two prizes to graduates of the Institut für Textiltechnik (ITA) of RWTH Aachen University - the dissertation prize and the creativity prize of the Walter Reiners Foundation of German Textile Machinery 2018. ITA alumnus Dr Benjamin Weise was awarded the dissertation prize for the development of novel fibres for textile charge storage devices. For their work on a guide to 4D product design, Jan Merlin Abram and Aalon Tal (both ITA students) were honoured with the creativity prize. The dissertation prize is endowed with €5,000 whilst the creativity prize contains a one-year scholarship of €250 per month. Peter D. Dornier, President of the Walter Reiners Foundation and Chairman of the Management Board of Lindauer DORNIER, presented the awards on the 18 September 2018 at the 18th Textile Machinery Forum in the Digital Capability Center in Aachen, Germany.

Graphene revolutionizes all-in-one - supercaps, reduction of terahertz radiation and antistatics

The Mechanical Engineering Industry Association (VDMA) has awarded two prizes to graduates of the Institut für Textiltechnik (ITA) of RWTH Aachen University - the dissertation prize and the creativity prize of the Walter Reiners Foundation of German Textile Machinery 2018. ITA alumnus Dr Benjamin Weise was awarded the dissertation prize for the development of novel fibres for textile charge storage devices. For their work on a guide to 4D product design, Jan Merlin Abram and Aalon Tal (both ITA students) were honoured with the creativity prize. The dissertation prize is endowed with €5,000 whilst the creativity prize contains a one-year scholarship of €250 per month. Peter D. Dornier, President of the Walter Reiners Foundation and Chairman of the Management Board of Lindauer DORNIER, presented the awards on the 18 September 2018 at the 18th Textile Machinery Forum in the Digital Capability Center in Aachen, Germany.

Graphene revolutionizes all-in-one - supercaps, reduction of terahertz radiation and antistatics

In his dissertation "Development of graphene-modified multifilament yarns for the production of textile charge storage devices", laureate Dr Benjamin Weise developed novel fibres made of polyamide and graphene and further processed them into textile surfaces. The newly developed polyamide graphene fibres are featuring a multitude of advantages:

  • Due to their high performance in the charge storage area, they are predestined for use in double-layer capacitors, so-called super capacitors, or supercaps in short. Compared to lithium-ion batteries, supercaps offer significantly higher power density and a longer lifetime as no chemical reactions are taking place. towing to the graphene platelets in the filaments, it is now possible for the first time to integrate a charge storage device directly into a textile without having to sew in a rechargeable battery. This new fibre is therefore suitable for prospective use in smart textiles, for instance in a textile defibrillator.
  • The new graphene-modified polyamide fibres can attenuate inident terahertz radiation up to 25 % of their original intensity. Terahertz radiation, for example, offers transmission rates of 100 Mbit/sec and is therefore of high interest for high-performance wireless communication. However, the radiation could damage sensible electronics as in aircrafts if this technology will be used widespread. Consequently, the shielding of the radiation is of high importance, e.g. in the form of fibre composite components in the aircraft, which protect the on-board electronics.
  • As the fibres are showcasing a dissipative electrical conductivity, personal protective equipment is another prospective field of application.  

The development of a pilot process for graphene-modified fibres and the production of textile demonstrators are novel and disruptive attainments of Dr Weise’s PhD thesis and the reason for the award ceremony to him. Due to its outstanding properties, the European Union is funding research on graphene within the frame of the "Graphene Flagship" with an overall budget of one billion Euro (source: http://graphene-flagship.eu/project/Pages/About-Graphene-Flagship.aspx).

Modular product design of 4D products is now possible in simplified form

How can three-dimensional products change their shape over time and thus become "four-dimensional"? The students Jan Merlin Abram and Aalon Tal provide answers to this question in their project work "Leitfaden zur Auslegung hybrider morphender Textilien am Beispiel eines Scharniers" (Guidelines for the Design of Hybrid Morphing Textiles Using the Example of a Hinge), for which they were awarded the creativity prize. In their work, the students offer a guideline for the development of a four-dimensional textile from the idea to the demonstrator. Four-dimensional textiles, for example, consist of a hybrid material of elastic textile on which three-dimensional structures are printed. The fourth dimension describes the change in shape and/or a property over a defined period of time (= morphing).  This change is caused by external influences such as light and heat.

Every year, the Foundation of the German Textile Machinery awards prizes for the best dissertation, diploma or master's thesis and the creativity prize for the smartest student research project. Further prizes were awarded to Eric Otto, ITM Dresden, and Susanne Fischer, Reutlingen University.

Source:

Institut für Textiltechnik of RWTH Aachen University

ITA