From the Sector

Reset
2 results
31.05.2024

Saralon and STFI: Stretchable silver inks for e-textiles

With the next generation of soft and stretchable electronics, reproducible and stretchable conductive inks are playing an increasingly important role in areas such as smart textiles, medical textiles or wearables. Saralon produces a range of stretchable conductive inks including Saral StretchSilver 500 for e-textile applications.

While electronic applications integrated into textiles gain popularity, printed stretchable conductive inks emerge as a transformative alternative for the complicated approach of weaving conductive yarns and fibres.

Just like choosing the right fabric and additives is vital for smart textile development, selecting the right conductive ink matters too. There are challenges to consider, such as conductivity, ink penetration into the fabric, changes in physical properties most importantly stretchability, printing process controllability, and reproducibility. That's why research and analysis are essential when deciding on the best conductive ink for a project.

With the next generation of soft and stretchable electronics, reproducible and stretchable conductive inks are playing an increasingly important role in areas such as smart textiles, medical textiles or wearables. Saralon produces a range of stretchable conductive inks including Saral StretchSilver 500 for e-textile applications.

While electronic applications integrated into textiles gain popularity, printed stretchable conductive inks emerge as a transformative alternative for the complicated approach of weaving conductive yarns and fibres.

Just like choosing the right fabric and additives is vital for smart textile development, selecting the right conductive ink matters too. There are challenges to consider, such as conductivity, ink penetration into the fabric, changes in physical properties most importantly stretchability, printing process controllability, and reproducibility. That's why research and analysis are essential when deciding on the best conductive ink for a project.

Together with the Saxon Textile Research Institute e.V. (STFI) Saralon conducted some performance tests benchmarking our Saral StretchSilver Ink against some competitor product.

Results:
Conductivity:

Saral StretchSilver 500 consistently demonstrated superior conductivity, regardless of line width.

Fluctuations at lower widths:
Both inks exhibited fluctuations at narrower printed lines, but the Alternative Ink displayed significantly higher variations.

Reproducibility Insights:
Saral StretchSilver 500 maintained stable resistance at 2mm and beyond, while the Alternative Ink noticeably struggled.

Elongation behaviour:
Saral StretchSilver 500 harmoniously coexists with the textile. Its application has minimal impact on the fabric's stretching properties, ensuring stability. The Alternative Ink, on the other hand, leads to significant changes in textile’s elongation properties. With this ink, stretching demands considerably higher forces.

Foto: DITF
05.05.2022

Forschungsprojekt SensorStrick 4.0: Fehler früh erkennen und Kosten sparen

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Für hochelastische smarte Textilprodukte werden Garne verwendet, die häufig sowohl aus leitfähigen als auch nichtleitfähigen Komponenten bestehen. Dazu werden zum Beispiel konventionelle hochelastische Garne mit leitfähigen Feinstdrähten umwunden. Die Elastizität der Garnkomponente bleibt auf diese Weise weitgehend erhalten. Beim Stricken werden die Fäden jedoch so stark belastet, dass die leitfähigen Garnkomponenten geschädigt werden können. Da dabei häufig nicht das gesamte Garn bricht, wird bei den derzeitigen Produktionsabläufen der Fehler während des Strickprozesses nicht erkannt. Im Extremfall ist das fertige Strickteil Ausschuss. Bei fully fashioned gestrickten Teilen ist der Schaden wegen der relativ geringen Produktivität des Flachstrickprozesses und des relativ hohen Verlusts an Produktionszeit besonders groß.

Um Fehler der elektrischen Eigenschaften bereits während des Herstellungsprozesses zu erkennen, werden im Forschungsprojekt SensorStrick 4.0 Prozess- und Umgebungsdaten bei der Textilproduktion in verschiedenen Prozessstufen erfasst.

Dazu werden Umwinde- und Flachstrickmaschinen mit verteilter Sensorik ausgerüstet, die Temperatur, Feuchte, Licht, Näherung und Fadenzugkraft sowie die Fadengeschwindigkeit misst. Zusätzlich überwachen Mikrofone die Geräusche in der direkten Produktionsumgebung. Diese akustischen Messdaten weisen zum Beispiel auf Vibrationen hin und können besonders gut mit künstlicher Intelligenz ausgewertet werden. Bei der Umwindegarnherstellung werden die erfassten Prozessgrößen direkt für die Steuerung der Prozessparameter verwendet.

Darüber hinaus werden neue kostengünstige Sensoren entwickelt. Für laufende Garne wurde zum Beispiel ein Prinzip mit vier Messröhrchen entwickelt, die schnell und berührungsfrei messen, wie leitfähig das durchlaufende Garn ist und wie seine sensorischen Eigenschaften sind. Diese Sensoren sind so ausgelegt, dass sie in möglichst vielen Textilprozessen eingesetzt werden können ohne sie aufwendig an unterschiedliche Abläufe anpassen zu müssen.

Die Garne werden also sowohl bei der Umwindegarnherstellung als auch im anschließenden Strickprozess überwacht. Tritt ein Bruch der leitfähigen Garnkomponente auf, wird er sofort entdeckt. Luftfeuchtigkeit und Umgebungstemperatur beeinträchtigen die Messgenauigkeit nicht. Die Überwachung der Prozesse funktioniert nicht nur bei Gestricken, sondern auch bei anderen textilen Flächen.

Im weiteren Projektverlauf werden die Sensoren bei der Herstellung von hochelastischen Umwindegarnen und Strickteilen eingesetzt und dabei getestet wie effektiv die auftretenden Fehler erkannt werden.

Mit diesen neu entwickelten Verfahren können fehlerhafte Halbzeuge rechtzeitig aus der Prozesskette genommen werden. Teure zusätzliche Kontrollen während späterer Prozessschritte werden überflüssig.

More information:
DITF E-Textiles Garne
Source:

DITF