From the Sector

from to
Reset
113 results
BioTurf Bild TFI - Institut für Bodensysteme an der RWTH Aachen e.V.
BioTurf
01.07.2024

Aachen researchers develop sustainable artificial turf

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

The current European Football Championships 2024 in Germany will be played on natural turf, which is very costly to maintain, does not tolerate high frequency of use and has a limited service life of only 6 months in some cases. Artificial turf is easier to maintain and correspondingly popular. In Germany, there are estimated to be more than 5,000 artificial turf pitches and as many as 25,500 across the EU. The drawback: the enormous annual emission of microplastics in the form of infill material, the high CO2 impact and the not environmentally friendly disposal. Researchers in Aachen presented a sustainable alternative: BioTurf is a new artificial turf system made from bio-based polymers that no longer requires polymer infill material!

"Every year, around 500 kilograms of plastic granules are produced per artificial turf pitch, which have to be refilled as infill. This also corresponds to the amount that potentially enters the environment as microplastics per sports pitch," explains Dr Claudia Post from TFI. With an estimated 25,000 artificial turf pitches in the EU, artificial turf in Europe alone produces 12,750 tonnes of microplastics that end up in the environment every year! The TFI - Institut für Bodensysteme an der RWTH Aachen e.V., Institute for Research, Testing and Certification in Europe for Indoor Building Products, has developed the innovative artificial turf system together with the ITA (Institute for Textile Technology at RWTH Aachen University) and in collaboration with the company Morton Extrusionstechnik (MET), a specialist in artificial turf fibres.

"New artificial turf pitches will be phased out by 2031 at the latest due to the ban on plastic granules. Even now, artificial turf pitches with infill material are no longer being subsidised," says Dr Claudia Post. For grassroots sports, clubs, cities and local authorities, converting their existing artificial turf pitches will be a mammoth task in the coming years, as artificial turf pitches have to be replaced every 10-15 years. With BioTurf, an environmentally friendly alternative is now available! The surface can be played on like any other, whether running, passing or kicking. Short, heavily crimped blades support longer blades and this simple approach increases playing comfort. BioTurf fulfils all quality requirements and standards for the highest footballing demands.

"BioTurf is an innovative, holistic solution," emphasises Dirk Hanuschik from TFI. "We use rapeseed oil and agricultural waste that does not compete with food production. BioTurf is also almost completely recyclable".
This is in stark contrast to conventional artificial turf, which can currently only be thermally utilised, i.e. burned to generate heat.

As BioTurf does not require the traditional latex process at all, the energy-intensive drying process can be dispensed with, which has a positive effect on the price. Latex is also difficult to recycle. In contrast, BioTurf uses the new thermobonding technology. Here, the thermoplastic pile yarns are thermally fused to the backing. Further development steps still need to be taken in the endeavour to develop a 100% mono-material artificial turf, as a few percent polypropylene still needs to be processed in the backing in addition to the polyethylene fibre material in order to protect it during thermobonding. However, this does not hinder its recyclability.

Source:

TFI - Institut für Bodensysteme an der RWTH Aachen e.V.

The partners at the BioFibreLoop kick-off event. Photo: DITF
The partners at the BioFibreLoop kick-off event.
01.07.2024

BioFibreLoop has been started

The German Institutes of Textile and Fiber Research Denkendorf (DITF) are coordinating the research project, which is funded as part of the European Union's Horizon Europe research and innovation program. The aim of BioFibreLoop is to develop recyclable outdoor and work clothing made from renewable bio-based materials. The kick-off event took place in Denkendorf on June 26 and 27, 2024.

The textile industry is facing two challenges: on the one hand, production must become more sustainable and environmentally friendly and, on the other, consumers are expecting more and more smart functions from clothing.

In addition, the production of functional textiles often involves the use of chemicals that are harmful to the environment and health and make subsequent recycling more difficult.

Intelligent innovations must therefore ensure that harmful chemicals are replaced, water is saved and more durable, recyclable bio-based materials are used, thereby reducing the usually considerable carbon footprint of textile products. Digitalized processes are intended to ensure greater efficiency and a closed cycle.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) are coordinating the research project, which is funded as part of the European Union's Horizon Europe research and innovation program. The aim of BioFibreLoop is to develop recyclable outdoor and work clothing made from renewable bio-based materials. The kick-off event took place in Denkendorf on June 26 and 27, 2024.

The textile industry is facing two challenges: on the one hand, production must become more sustainable and environmentally friendly and, on the other, consumers are expecting more and more smart functions from clothing.

In addition, the production of functional textiles often involves the use of chemicals that are harmful to the environment and health and make subsequent recycling more difficult.

Intelligent innovations must therefore ensure that harmful chemicals are replaced, water is saved and more durable, recyclable bio-based materials are used, thereby reducing the usually considerable carbon footprint of textile products. Digitalized processes are intended to ensure greater efficiency and a closed cycle.

For example, the BioFibreLoop project uses laser technology to imitate natural structures in order to produce garments with water and oil-repellent, self-cleaning and antibacterial properties. At the end result of the research work will be affordable, resource and environmentally friendly, yet high-performance and durable fibers and textiles made from renewable sources such as lignin, cellulose and polylactic acid will be available. All processes are aimed at a circular economy with comprehensive recycling and virtually waste-free functionalization based on nature's example. In this way, greenhouse gas emissions could be reduced by 20 percent by 2035.

The technology for the functionalization and recycling of bio-based materials is being developed in three industrial demonstration projects in Austria, the Czech Republic and Germany. At the end of the project, a patented circular, sustainable and reliable process for the production of recyclable functional textiles will be established.

The BioFibreLoop project has a duration of 42 months and a total budget of almost 7 million euros, with 1.5 million going to the coordinator DITF.

The consortium consists of 13 partners from nine countries who contribute expertise and resources from science and industry:

  • German Institutes of Textile and Fiber Research Denkendorf (DITF), Coordinator, Germany
  • Next Technology Tecnotessile Società nazionale di ricerca R. L., Italy
  • Centre Technologique ALPhANOV, France
  • G. Knopf’s Sohn GmbH & Co. KG, Germany
  • FreyZein Urban Outdoor GmbH, Austria
  • BEES - BE Engineers for Society, Italy
  • BAT Graphics Vernitech, France
  • Interuniversitair Micro-Electronica Centrum, Belgium
  • Idener Research & Development Agrupacion de Interes Economico, Spain
  • Teknologian tutkimuskeskus VTT Oy, Finland
  • Det Nationale Forskningscenter for Arbejdsmiljø, Denmark
  • Steinbeis Innovation gGmbH, Germany
  • NIL Textile SRO, Czech Republic
Source:

Deutsche Institute für Textil- und Faserforschung

Synthetic leather made from recyclable and bio-based PBS Photo: DITF
10.06.2024

Synthetic leather made from recyclable and bio-based PBS

A new type of pure synthetic leather meets the requirements of the European Ecodesign Regulation. Made from a bio-based plastic, it is biodegradable and meets the requirements for a closed recycling process.

A new type of pure synthetic leather meets the requirements of the European Ecodesign Regulation. Made from a bio-based plastic, it is biodegradable and meets the requirements for a closed recycling process.

Many synthetic leathers consist of a textile substrate to which a polymer layer is applied. The polymer layer usually consists of an adhesive layer and a top layer, which is usually embossed. The textile backing and the top coat are usually completely different materials. Woven, knitted, or nonwoven fabrics made of PET, PET/cotton, or polyamide are often used as textile substrates. PVC and various polyurethanes are commonly used for coatings. The use of these established composite materials does not meet today's sustainability criteria. Recycling them by type is very costly or even impossible. They are not biodegradable. The search for alternative materials for the production of artificial leather is therefore urgent. In 2022, the EU adopted the Sustainable Products Initiative (SPI) ("Green Deal"). It includes an eco-design regulation that considers a product's life cycle in the conservation of resources. For textile and product design, this means incorporating closing the loop or end-of-life into product development.

In an AiF project carried out in close cooperation between the DITF and the Freiberg Institute gGmbH (FILK), it has now been possible to develop a synthetic leather in which both the fiber material and the coating polymer are identical. The varietal purity is a prerequisite for an industrial recycling concept.

The aliphatic polyester polybutylene succinate (PBS) was recommended as the base material because of its properties. PBS can be produced from biogenic sources and is now available on the market in several grades and in large quantities. Its biodegradability has been demonstrated in tests. The material can be processed thermoplastically. This applies to both the fiber material and the coating. Subsequent product recycling is facilitated by the thermoplastic properties.

In order to realize a successful primary spinning process and to obtain PBS filaments with good textile mechanical properties, process adjustments had to be made in the cooling shaft at the DITF. In the end, it was possible to spin POY yarns at relatively high speeds of up to 3,000 m/min, which had a tenacity of just under 30 cN/tex when stretched. The yarns could be easily processed into pure PBS fabrics. These in turn were used at FILK as a textile base substrate for the subsequent extrusion coating, where PBS was also used as a thermoplastic.

With optimized production steps, PBS composite materials with the typical structure of artificial leather could be produced. Purity and biodegradability fulfill the requirements for a closed recycling process.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

Teijin Carbon Europe GmbH receives ISCC PLUS certification (c) Teijin Carbon Europe GmbH
06.06.2024

Teijin Carbon Europe GmbH receives ISCC PLUS certification

Teijin Carbon Europe has been awarded ISCC PLUS certification (Certificate Number: ISCC-PLUS-Cert-DE100-15897124). This ISCC PLUS certification covers Tenax™ Carbon Fiber produced at the Heinsberg-Oberbruch plant in Germany. This accreditation enables the Teijin Group to offer its customers sustainable products that contribute to circular economy. Teijin has selected the ISCC certification route as the International Sustainability and Carbon Certification (ISCC) is an independent organisation and the leading certification system in this field.

Teijin Carbon Europe has been awarded ISCC PLUS certification (Certificate Number: ISCC-PLUS-Cert-DE100-15897124). This ISCC PLUS certification covers Tenax™ Carbon Fiber produced at the Heinsberg-Oberbruch plant in Germany. This accreditation enables the Teijin Group to offer its customers sustainable products that contribute to circular economy. Teijin has selected the ISCC certification route as the International Sustainability and Carbon Certification (ISCC) is an independent organisation and the leading certification system in this field.

The ISCC PLUS certification is a voluntary system which administers the circular economy of chemicals, plastics, packaging, textiles and renewable raw materials. Raw materials which are made from sustainable source materials (e.g. via recycling or bio-based sources) are labelled with a sustainability declaration (country of origin of the raw material, quantity and type of sustainable raw material, user ID, etc.). This document then follows the product during further processing – even over several stages – until it is used by the end customer. If all partners in the chain are ISCC PLUS certified, the documents can be passed on clearly and reliably.

The Teijin Group is globally establishing a carbon fiber production and supply system based on ISCC PLUS certification. The attractiveness of ISCC PLUS certification for the Teijin Group is exemplified by the future production of sustainable carbon fibers. Teijin uses various chemical building blocks for the internal production of polyacrylonitrile. Conventional and sustainable raw materials can now be purchased and processed on the global market. In future, Teijin also intends to purchase materials that are obtained via recycling or directly based on a bio-based source.

These raw materials will then be processed into a sustainable polyacrylonitrile precursor. As the production processes are identical to those used in the conventional production of carbon fibers, the mechanical and chemical properties are identical. Based on the sustainability declaration, a clear mass balance is used to differentiate between sustainable and conventional products.

The Teijin Group obtained ISCC PLUS certification for carbon fiber and the polyacrylonitrile (PAN) precursor fiber produced at Teijin's Mishima Plant in Shizuoka Prefecture, Japan in June 2023, and began mass production of carbon fiber based on the certification in December of the same year. The Teijin Group benefits from this approach as customers are offered products that contribute to the circular economy or continue to use conventional raw materials.

Source:

Teijin Carbon Europe GmbH

23.05.2024

World of Wipes Innovation Award® 2024: And the finalists are ….

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the World of Wipes Innovation Award®. The Award will be presented at the annual World of Wipes® (WOW) International Conference, June 17-20, at the Hyatt Regency Minneapolis in Minneapolis, Minnesota.

The three products vying for this Award are multi-purpose cleaning wipes from Kimberly-Clark Professional, a bio-binder technology from OrganoClick, and facial care wipes from Rockline Industries. The winner will be announced on Thursday morning, June 20th.

The three companies competing for the Award are:

INDA, the Association of the Nonwoven Fabrics Industry, announced the three finalists for the World of Wipes Innovation Award®. The Award will be presented at the annual World of Wipes® (WOW) International Conference, June 17-20, at the Hyatt Regency Minneapolis in Minneapolis, Minnesota.

The three products vying for this Award are multi-purpose cleaning wipes from Kimberly-Clark Professional, a bio-binder technology from OrganoClick, and facial care wipes from Rockline Industries. The winner will be announced on Thursday morning, June 20th.

The three companies competing for the Award are:

  • Scott® Xtreme Multi-Purpose Cleaning Wipes by Kimberly-Clark Professional:
    Scott® Xtreme Multi-Purpose Cleaning Wipes are great for tackling extreme cleaning tasks, like removing oil, grease, grime, paint, adhesives, caulk, and more, yet are gentle enough to clean hands.  Featuring a patented citrus cleaning solution, the dual-action cleaning fabric incorporates a textured side to increase scrubbing action for cleaning tough soils and a smooth side for wiping surfaces clean.  Scott® Xtreme Multi-Purpose Cleaning Wipes are truly a must-have for any DIY job and cleaning on-the-go.
  • OC-Biobinder® Lily1450 by OrganoClick:
    OC-Biobinder® represents a series of bio-based and biodegradable binders intended for the nonwoven and paper industry. They are produced from renewable raw materials and residual streams from the food industry and replace traditional fossil-based plastic binders. OC-Biobinder® is available with many different properties adapted to the production of home compostable nonwoven materials such as premium napkins, table cloths and wet wipes.
  • Facial Care Wipe with Glycine Amino Acid Complex by Rockline Industries:
    Rockline’s development of a facial wipe product containing a unique multifunctional complex of two glycines, a phospholipid compound and a blend of glycols allows for a multitude of skincare benefits as well as providing a self-preserving system for cellulosic nonwovens. Believed to be the first application of glycines in a wet wipe formulation, the product offers improved skin smoothness, elasticity, and hydration alongside an anti-aging claim.

INDA’s Technical Advisory Board selected the finalists based on the creativity, uniqueness, and technical sophistication employed in finding novel ways to expand the utilization of nonwovens. Categories considered for the award were wipes-related raw materials, roll goods, converting, packaging, active ingredients, binders, additives, and end-use products.

The 2023 World of Wipes Innovation Award winner was Indorama Ventures and Polymateria for their Nonwoven Wipe Using Biotransformation Technology. This innovative spunlace wipe utilized advanced biotransformation technology developed jointly by Indorama Ventures and Polymateria. Meeting the BSI PAS 9017 specification, this wipe in the event it becomes fugitive, and exposed to heat, sunlight, air and moisture will transform into a harmless, bioavailable wax at its end-of-life, eliminating microplastic pollution. Compatible with mechanical recycling and combatting 'fugitive' waste, this wipe represents a significant leap towards eco-friendly, sustainable nonwoven hygiene products.

Source:

World of Wipes Innovation Award® 2024

03.05.2024

Stahl joins GO!PHA alliance

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

Stahl has joined the Global Organization for PHA (GO!PHA), a non-profit platform that advocates and advances the use of polyhydroxyalkanoates (PHAs), a naturally occurring polymer that offers a lower-impact, bio-based alternative to traditional fossil-based plastic feedstocks.  

GO!PHA is a coalition of over 60 stakeholders ranging from producers and formulators to users as well as universities and research institutes. The members, all early adopters of PHAs, work together to increase understanding of this relatively new PHA technology and advance the science behind these renewable, compostable and biodegradable materials. As a member of the network, Stahl will have the opportunity to join forces with the wider PHA value chain to help move PHAs beyond the testing phase and accelerate the potential application of the technology in the coatings market. 

More information:
Stahl PHA polymers GO!PHA
Source:

Stahl

ANDRITZ: Start-up of production line for sustainable wipes Photo: Teknomelt
ANDRITZ neXline wetlace CCP at Teknomelt, Türkiye
24.04.2024

ANDRITZ: Start-up of production line for sustainable wipes

International technology group ANDRITZ has successfully started up a new nonwovens production line supplied to Teknomelt Teknik Mensucat San. ve Tic. A.S. in Kahramanmaras, Türkiye. The new neXline wetlace CCP (carded-carded-pulp) line produces nonwoven roll goods for biodegradable, plastic-free wet wipes

By combining the benefits of two technologies, spunlace and wetlaid, the line enables the use of bio-based fibers, like viscose and wood pulp, to produce a high-performance and sustainable wipe with the same technical product characteristics and performances as a conventional wipe made of synthetic fibers while protecting the environment.

Teknomelt is one of the leading manufacturers of nonwoven meltblown, spunbond, SMS and SMMS fabrics in Türkiye. The company serves a wide range of markets, exporting 45% of its production. With the new ANDRITZ Wetlace CCP line, the company is expanding its range of sustainable nonwovens production for wipes. 

International technology group ANDRITZ has successfully started up a new nonwovens production line supplied to Teknomelt Teknik Mensucat San. ve Tic. A.S. in Kahramanmaras, Türkiye. The new neXline wetlace CCP (carded-carded-pulp) line produces nonwoven roll goods for biodegradable, plastic-free wet wipes

By combining the benefits of two technologies, spunlace and wetlaid, the line enables the use of bio-based fibers, like viscose and wood pulp, to produce a high-performance and sustainable wipe with the same technical product characteristics and performances as a conventional wipe made of synthetic fibers while protecting the environment.

Teknomelt is one of the leading manufacturers of nonwoven meltblown, spunbond, SMS and SMMS fabrics in Türkiye. The company serves a wide range of markets, exporting 45% of its production. With the new ANDRITZ Wetlace CCP line, the company is expanding its range of sustainable nonwovens production for wipes. 

Source:

ANDRITZ AG

Archroma: New bio-based durable water repellent finish Photo: Archroma
22.04.2024

Archroma: New bio-based durable water repellent finish

Archroma has introduced a new bio-based durable water repellent (DWR) finish that helps mills and brands produce apparel that is soft to the touch and yet offers robust rain and stain protection and an improved sustainability profile.

PHOBOTEX® NTR-50 LIQ is designed to provide great water repellence on all kinds of fibers while achieving a soft handle and avoiding undesired effects like yellowing and chalk marking. It performs especially well on synthetic fibers and their blends, making it ideal for apparel, outdoor wear and home textiles.

The new DWR is based on 50% renewable carbon content based on ASTM D6866 and is free of per- and polyfluoroalkyl substances (PFAS) and formaldehyde. It is also crosslinker-free, which makes it more flexible in use. While offering good wash durability on its own, PHOBOTEX® NTR-50 LIQ can be combined with a crosslinker like ARKOPHOB® NTR-40, which has a biocarbon content of 40%, to further boost wash and/or dry-cleaning resistance.

Archroma has introduced a new bio-based durable water repellent (DWR) finish that helps mills and brands produce apparel that is soft to the touch and yet offers robust rain and stain protection and an improved sustainability profile.

PHOBOTEX® NTR-50 LIQ is designed to provide great water repellence on all kinds of fibers while achieving a soft handle and avoiding undesired effects like yellowing and chalk marking. It performs especially well on synthetic fibers and their blends, making it ideal for apparel, outdoor wear and home textiles.

The new DWR is based on 50% renewable carbon content based on ASTM D6866 and is free of per- and polyfluoroalkyl substances (PFAS) and formaldehyde. It is also crosslinker-free, which makes it more flexible in use. While offering good wash durability on its own, PHOBOTEX® NTR-50 LIQ can be combined with a crosslinker like ARKOPHOB® NTR-40, which has a biocarbon content of 40%, to further boost wash and/or dry-cleaning resistance.

Sportswear, fashion and home textiles treated with the PHOBOTEX® NTR-50 LIQ durable water repellent qualify for the High IQ® Repel assurance program. The High IQ® program assures consumers that these products deliver performance, protection and comfort and meet strict environmental standards.

Source:

Archroma

The insulation of various aerogel fibres is illustrated using the example of a cushion Source: ITA
The insulation of various aerogel fibres is illustrated using the example of a cushion
18.04.2024

Bio-based insulation textiles instead of synthetic insulation materials

Using bio-based and bio-degradable, recyclable insulation textiles to sustainably insulate heat and reduce energy consumption and the carbon footprint - the Aachen-based start-up SA-Dynamics has developed a solution for this dream of many building owners together with industrial partners. SA-Dynamics won the second Innovation Award in the "New Technologies on Sustainability & Recycling" category at the leading textile trade fairs Techtextil and Texprocess for this development.

The bio-based recyclable insulation textiles consist of 100 percent bio-based aerogel-fibres. They contain up to 90 percent air, trapped in the nano-pore system of the aerogel-fibres. The bio-based raw material is sustainably sourced and certified. The insulation textiles made from bio-based aerogel fibres are said to insulate the same or even better than synthetic insulating materials of fossil origin like PET, PE or PP and mineral or stone wool.

Using bio-based and bio-degradable, recyclable insulation textiles to sustainably insulate heat and reduce energy consumption and the carbon footprint - the Aachen-based start-up SA-Dynamics has developed a solution for this dream of many building owners together with industrial partners. SA-Dynamics won the second Innovation Award in the "New Technologies on Sustainability & Recycling" category at the leading textile trade fairs Techtextil and Texprocess for this development.

The bio-based recyclable insulation textiles consist of 100 percent bio-based aerogel-fibres. They contain up to 90 percent air, trapped in the nano-pore system of the aerogel-fibres. The bio-based raw material is sustainably sourced and certified. The insulation textiles made from bio-based aerogel fibres are said to insulate the same or even better than synthetic insulating materials of fossil origin like PET, PE or PP and mineral or stone wool.

"By using bio-based aerogels, we are doing away with fossil-based materials and doing something for the environment and climate," explains Maximilian Mohr, Chief Technical Officer (CTO) at SA-Dynamics. "We are thus meeting the regulatory measures of the EU and the governments of many countries for more climate and environmental protection. By using bio-based, recyclable aerogels, we can revolutionise the world of construction.“

The Aachen-based start-up SA-Dynamics is made up of researchers from the Institut für Textiltechnik (ITA) and the Institute of Industrial Furnace Construction and Heat Engineering (IOB) at RWTH Aachen University.

The bio-based aerogel fibres originate from the LIGHT LINING research project of the BIOTEXFUTURE innovation area. The LIGHT LINING research project focussed on sports and outdoor textiles. The research results are transferable to the construction sector.

The Techtextil and Texprocess Innovation Awards ceremony will take place on 23 April 2024 at 12.30 pm in Hall 9.0 in Frankfurt/Main, Germany.

Source:

RWTH Aachen, ITA

Devan Stain Release: PFC-free release technology for water and oil based stains Photo: Devan Chemicals
18.04.2024

Devan Stain Release: PFC-free release technology for water and oil based stains

Devan Chemicals launched its latest textile finishing technology “Devan Stain Release”, that ensures that both water and oil based stains can easily be washed off.

Devan ‘s new release finish prevents water and oil based stains such as ketchup, mud, grass, tea, vegetable and corn oils from adhering deeply to the fibres and allows stains to be washed off easily from the surface. The technology combines both stain release and wicking properties, fitting for applications where this dual benefit is required. This technology is PFC-free and has 40% of bio-based content. Unlike many PFC-based solutions that require mixing of multiple products, Devan Stain Release is an easy to apply and ready-to-use product that doesn’t necessitate mixing of different products. The finish doesn’t require reactivation after washing at home with high temperature. Soft handle is maintained.

Devan Chemicals launched its latest textile finishing technology “Devan Stain Release”, that ensures that both water and oil based stains can easily be washed off.

Devan ‘s new release finish prevents water and oil based stains such as ketchup, mud, grass, tea, vegetable and corn oils from adhering deeply to the fibres and allows stains to be washed off easily from the surface. The technology combines both stain release and wicking properties, fitting for applications where this dual benefit is required. This technology is PFC-free and has 40% of bio-based content. Unlike many PFC-based solutions that require mixing of multiple products, Devan Stain Release is an easy to apply and ready-to-use product that doesn’t necessitate mixing of different products. The finish doesn’t require reactivation after washing at home with high temperature. Soft handle is maintained.

Devan Stain Release is applicable across a wide range of textile applications, including school uniforms, garments, workwear, apparel, home textiles, bedding accessories and mattress ticking. The technology enhances the longevity of fabrics by reducing the need for frequent washing, ultimately contributing to a more sustainable consumption cycle.

Source:

Devan Chemicals

Archroma at Techtextil 2024 Photo: Archroma
12.04.2024

Archroma at Techtextil 2024

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

Archroma will introduce its new Super Systems+ concept and highlight product innovations at Techtextil 2024, being held in Frankfurt, Germany from April 23 to 26.

A highlight of Archroma’s participation in Techtextil, Super Systems+ are powerful end-to-end systems that combine fiber-specific processing solutions and intelligent effects. The Super Systems+ suite encompasses wet processing solutions that deliver measurable environmental impact from sizing to finishing; durable colors and functional effects that add value and longevity to the end product; and cleaner chemistries that eliminate harmful or regulated substances.

For textile partners to the automotive industry, Archroma is introducing DOROSPERS® KHF, a new range of high-lightfast disperse dyes that provide optimum build up on polyester microfiber, including artificial suede for car interiors.

For nonwoven applications in fields such as healthcare, hygiene and filtration, Archroma recommends APPRETAN® FFX6750, a new addition to its range of high-performance zero-formaldehyde acrylic copolymers, and APPRETAN® FFX1540.

APPRETAN® FFX1540 is a new APEO free and formaldehyde free self-crosslinking polymer, medium soft with very low tackiness, and strongly hydrophobic, developed for the chemical bonding of nonwovens and for the coating of technical textiles, where low water absorption and high-water tightness are required, combined with high durability in severe environment.

For workwear and uniforms that protect people under adverse conditions, Archroma solutions include HELIZARIN® ULTRA-FAST, for printing with pigment dispersions and metallic pigments, and the new ALBAFIX® ECO Plus wet fastness improver. Archroma’s PFC-free PHOBOTEX® R-ACE durable water repellent delivers excellent water repellence while preserving fabric quality and ensuring sustainability. Archroma has also expanded the revolutionary AVITERA® SE GENERATION NEXT range of resource-saving dyes with new colors.

Further solutions for active wear and workwear include the newly launched bio-based PHOBOTEX® NTR-50 durable water repellent product, which is PFAS free, formaldehyde free and crosslinker free, as well NYLOFIXAN® HFS, a new fixing agent for polyamide and blends that is fully compliant with the latest restrictions on bisphenol compounds.

Archroma is also launching ARKOPHOB® NTR-40 at Techtextil 2024. The company’s first crosslinker with an improved sustainability profile, its monomers are partially derived from renewably sourced, plant-based raw materials. Another new innovation is biocide-free OX20, an odor-neutralizing technology launched by Archroma in partnership with SANITIZED AG.

For home textiles, mills and brands can select ARKOFIX® NZW formaldehyde-free* resin for high whiteness and extraordinary product stability, with no yellowing during storage at elevated temperatures, even over a prolonged period of time. For a super-soft handle, the SILIGEN® EH1 is a vegan silicone macro-emulsion softener with 35% plant-based active content.

More information:
Archroma Techtextil
Source:

Archroma

Winner of Cellulose Fibre Innovation Award 2024 (c) nova-Institute
Winner of Cellulose Fibre Innovation Award 2024
27.03.2024

Winner of Cellulose Fibre Innovation Award 2024

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

The “Cellulose Fibres Conference 2024” held in Cologne on 13-14 March demonstrated the innovative power of the cellulose fibre industry. Several projects and scale-ups for textiles, hygiene products, construction and packaging showed the growth and bright future of this industry, supported by the policy framework to reduce single-use plastic products, such as the Single Use Plastics Directive (SUPD) in Europe.

40 international speakers presented the latest market trends in their industry and illustrated the innovation potential of cellulose fibres. Leading experts introduced new technologies for the recycling of cellulose-rich raw materials and gave insights into circular economy practices in the fields of textiles, hygiene, construction and packaging. All presentations were followed by exciting panel discussions with active audience participation including numerous questions and comments from the audience in Cologne and online. Once again, the Cellulose Fibres Conference proved to be an excellent networking opportunity to the 214 participants and 23 exhibitors from 27 countries. The annual conference is a unique meeting point for the global cellulose fibre industry.  

For the fourth time, nova-Institute has awarded the “Cellulose Fibre Innovation of the Year” Award at the Cellulose Fibres Conference. The Innovation Award recognises applications and innovations that will lead the way in the industry’s transition to sustainable fibres. Close race between the nominees – “The Straw Flexi-Dress” by DITF & VRETENA (Germany), cellulose textile fibre from unbleached straw pulp, is the winning cellulose fibre innovation 2024, followed by HONEXT (Spain) with the “HONEXT® Board FR-B (B-s1, d0)” from fibre waste from the paper industry, while TreeToTextile (Sweden) with their “New Generation of Bio-based and Resource-efficient Fibre” won third place.

Prior to the event, the conference advisory board had nominated six remarkable innovations for the award. The nominees were neck and neck, when the winners were elected in a live vote by the audience on the first day of the conference.

First place
DITF & VRETENA (Germany): The Straw Flexi-Dress – Design Meets Sustainability

The Flexi-Dress design was inspired by the natural golden colour and silky touch of HighPerCell® (HPC) filaments based on unbleached straw pulp. These cellulose filaments are produced using environmentally friendly spinning technology in a closed-loop production process. The design decisions focused on the emotional connection and attachment to the HPC material to create a local and circular fashion product. The Flexi-Dress is designed as a versatile knitted garment – from work to street – that can be worn as a dress, but can also be split into two pieces – used separately as a top and a straight skirt. The top can also be worn with the V-neck front or back. The HPC textile knit structure was considered important for comfort and emotional properties.

Second place
Honext Material (Spain): HONEXT® Board FR-B (B-s1, d0) – Flame-retardant Board made From Upcycled Fibre Waste From the Paper Industry

HONEXT® FR-B board (B-s1, d0) is a flame-retardant board made from 100 % upcycled industrial waste fibres from the paper industry. Thanks to innovations in biotechnology, paper sludge is upcycled – the previously “worthless” residue from paper making – to create a fully recyclable material, all without the use of resins. This lightweight and easy-to-handle board boasts high mechanical performance and stability, along with low thermal conductivity, making it perfect for various applications in all interior environments where fire safety is a priority. The material is non-toxic, with no added VOCs, ensuring safety for both people and the planet. A sustainable and healthy material for the built environment, it achieves Cradle-to-Cradle Certified GOLD, and Material Health CertificateTM Gold Level version 4.0 with a carbon-negative footprint. Additionally, the product is verified in the Product Environmental Footprint.

Third Place
TreeToTextile (Sweden): A New Generation of Bio-based and Resource-efficient Fibre

TreeToTextile has developed a unique, sustainable and resource efficient fibre that doesn’t exist on the market today. It has a natural dry feel similar to cotton and a semi-dull sheen and high drape like viscose. It is based on cellulose and has the potential to complement or replace cotton, viscose and polyester as a single fibre or in blends, depending on the application.
TreeToTextile Technology™ has a low demand for chemicals, energy and water. According to a third party verified LCA, the TreeToTextile fibre has a climate impact of 0.6 kg CO2 eq/kilo fibre. The fibre is made from bio-based and traceable resources and is biodegradable.

The next conference will be held on 12-13 March 2025.

Source:

nova-Institut für politische und ökologische Innovation GmbH

22.03.2024

Fashion for Good: Ten new innovators for 2024 programme

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

Building on a renewed five-year strategy, Fashion for Good selects ten new innovators for its 2024 programme to receive tailored support validating their technologies. This cohort represents an increased focus on novel footwear material and recycling technologies, man-made cellulosics, and nylon recycling.

The 2024 Innovation Programme provides support based on the development stage and ambitions of each innovator, matching them with relevant industry partners to drive technology and impact technology and impact validation as well as investing activities.

The selected innovators joining the 2024 Innovation Programme are:

  • Algreen Ltd: Algreen co-develops alternative materials from algae and biobased sources that can replace fossil-based products such as PU.
  • Balena: Balena creates biodegradable partly biobased polymers for footwear outsoles.
  • Epoch Biodesign: Epoch Biodesign is an enzymatic recycler of PA66 and PA6 textile waste.
  • Fibre52: Fibre52 is a bio-based solution replacing traditional bleach prepared-for-dyeing and dye processes.
  • Gencrest BioProducts Pvt Ltd: Gencrest works with various agri-residues to convert them into textile-grade fibres using their enzymatic technology.
  • HeiQ AeoniQ: HeiQ AeoniQ™ is a continuous cellulose filament yarn with enhanced tensile properties.
  • Nanollose - Nullabor: Nullarbor™Lyocell is developed from microbial cellulose which is converted into pulp pulp to produce a lyocell fibre with their partner Birla Cellulose.  
  • REGENELEY:  REGENELEY pioneers advanced shoe sole recycling technologies by separating and recycling EVA, TPU, and rubber components found in footwear.
  • Samsara Eco: Samsara Eco is an enzymatic recycler of PA66 and PET textile waste.
  • SEFF: SEFF Fibre produces cottonised fibres and blends of hemp fabrics utilising a patented HVPED process.
Source:

Fashion for Good

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

22.03.2024

GOTS applauds European Parliament’s vote on Green Claims Directive

The Global Organic Textile Standard (GOTS) applauds the European Parliament's vote to ban unverified 'green' product labels by enforcing stricter rules to back green claims and labels. By obligating companies to submit evidence about environmental marketing claims – including advertising and labelling products as ‘biodegradable’, ‘less polluting’, ‘water saving’, or having ‘bio-based content’ – consumers will be able to make better informed decisions about the sustainability of their purchases.

Consumers need protection from greenwashing and false claims about a product’s environmental impact. GOTS provides rules and tools for fostering responsible business practices and to support businesses to comply with domestic and international laws and beyond. The current GOTS Version 7.0 includes rigorous criteria for the protection of human, employment and social rights, as well as the environment and climate. By being certified to GOTS 7.0 and selling GOTS-labelled goods, companies are demonstrating their commitment to sustainability and human rights.

The Global Organic Textile Standard (GOTS) applauds the European Parliament's vote to ban unverified 'green' product labels by enforcing stricter rules to back green claims and labels. By obligating companies to submit evidence about environmental marketing claims – including advertising and labelling products as ‘biodegradable’, ‘less polluting’, ‘water saving’, or having ‘bio-based content’ – consumers will be able to make better informed decisions about the sustainability of their purchases.

Consumers need protection from greenwashing and false claims about a product’s environmental impact. GOTS provides rules and tools for fostering responsible business practices and to support businesses to comply with domestic and international laws and beyond. The current GOTS Version 7.0 includes rigorous criteria for the protection of human, employment and social rights, as well as the environment and climate. By being certified to GOTS 7.0 and selling GOTS-labelled goods, companies are demonstrating their commitment to sustainability and human rights.

Source:

GOTS (Global Organic Textile Standard)

DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

Robot system (c) STFI
20.03.2024

STFI: Highlights of textile research at Techtextil 2024

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

STFI will be presenting high-end textile products and solutions at Techtextil 2024. The highlights from current research results and innovations provide an insight into the digitalisation of textile production, show applications for 3D printing and smart technical textiles and provide examples of particularly sustainably designed products as well as innovative approaches for protective and medical textiles.

The central highlight of STFI's presence at Techtextil is a robot system that demonstrates the automated processing of a bobbin frame on a small scale. The pick-and-place application demonstrates camera-supported gripping of the bobbins. The robot is part of the STFI's “Textile Factory of the Future” which demonstrates automation solutions for the textile industry in a laboratory environment.

From the field of sustainable products and solutions, a sleeping bag with bio-based and therefore vegan filling material and a natural fibre-based composite element for furniture construction, in which LEDs and capacitive proximity sensors for contactless function control have been applied using embroidery technology, will be on show. Printed heating conductor structures demonstrate current research work for the e-mobility of the future, as the individually controllable seat and interior heating should ultimately reduce weight and save energy compared to conventional heating systems.

While a protective suit for special task forces protects against the dangers of a Molotov cocktail attack, a shin guard and a knee brace with patellar ring illustrate the process combination of 3D printing and UV LED cross-linking. Other highlights from lightweight textile construction include the rib of a vertical rudder of an Airbus A320 and a green snowboard made from recycled carbon fibres.

More information:
STFI Techtextil Smart textiles
Source:

Sächsisches Textilforschungsinstitut e.V. (STFI)

Freudenberg showcases sustainable solutions at Techtextil 2024 (c) Freudenberg Performance Materials
Freudenberg´s sustainable carrier material for green roofs on urban buildings is made from renewable resources
15.03.2024

Freudenberg showcases sustainable solutions at Techtextil 2024

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Freudenberg Performance Materials (Freudenberg) is showcasing solutions for the automotive, building, apparel, filtration and packaging industries at this year’s Techtextil in Frankfurt am Main from April 23 – 26.

Sustainable nonwoven for car seats
One innovation highlight at Techtextil is a novel Polyester nonwoven material for car seat padding. Also available as a nonwoven composite with PU foam, it is not only easier for car seat manufacturers to handle during the mounting process, but also ensures better dimensional stability as well as providing soft and flexible padding. It has a minimum 25 percent recycled content, for example, by reusing nonwoven clippings and waste, and is fully recyclable. Full supply chain transparency enables customers to trace and verify the content of the nonwoven and thus ensures a responsible production process. The Freudenberg experts will also be presenting several other nonwoven solutions made of up to 80 percent recycled materials that can be used in car seat manufacturing.

Biocarrier for green roofs
Freudenberg is showcasing a sustainable carrier material for green roofs on urban buildings at the trade fair. The carrier is made from polylactide, i.e. from renewable resources. When filled with soil, it provides a strong foothold to root systems, enabling the growth of lightweight sedum blankets that can be rolled out to provide instant green roofs. These roofs not only help counter urban heat, they also improve stormwater management and regulate indoor temperatures.

From textile waste to padding
The company extended its circular thermal wadding product range with the release of comfortemp® HO 80xR circular, a wadding made from 70 percent recycled polyamide from discarded fishing nets, carpet flooring and industrial plastic. Because polyamide 6, also known as nylon, retains its performance characteristics after multiple recycling processes, the fibers can be used again and again to manufacture performance sporting apparel, leisurewear and luxury garments.

Packaging solutions with various sustainability benefits
Freudenberg is also showcasing products for sustainable packaging and filtration solutions. The long-lasting Evolon® technical packaging series is a substitute for disposable packaging used in the transport of sensitive industrial items such as automotive parts. The material is made from up to 85 percent recycled PET. A further highlight at Techtextil are Freudenberg’s fully bio-based solutions for manufacturing dessicant bags. The binder-free material based on bio-fibers is also industrially compostable.
In addition, the experts will be giving trade fair visitors an insight into Freudenberg’s filtration portfolio.

Source:

Freudenberg Performance Materials

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

Graphic CHT Germany GmbH
28.02.2024

PERFORMANCE DAYS: CHT presents sustainable textile innovations

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

At the PERFORMANCE DAYS Functional Fabric Fair in Munich on 20 and 21 March 2024, CHT will present its latest sustainable textile technologies with a focus on dyeing and effect chemicals.

These products are used to finish textiles with special functions such as water repellency, breathability and efficient moisture transport. Significant amounts of water and energy can be saved during the dyeing and finishing process, resulting in a lower CO2 footprint.

In addition to effect chemicals, CHT will be presenting its dyeing products with a focus on the use of bio-based, biodegradable and recycled materials to support the circular economy.

Source:

CHT Germany GmbH