Research publications

2 results
30.09.2022

CF/AR/thermoplastic hybrid yarns for requirement-based thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations

Fibres Yarns Composites Textile machinery

Abstract

Within the framework of the IGF research project (21004 BR/1), material concepts based on two yarn formation technologies were realized at the ITM and CF/AR/PA6 and rCF/rAR/PA6 hybrid yarns for thermoplastic composites meeting requirements with outstanding, scalable stiffness, strength, crash and impact property combinations were produced. The influence of carding, draw frame and roving frame (MK1) and air texturing unit (MK2) parameters and fiber volume fractions on the mechanical properties were analyzed to develop requirements-based and defined engineered yarns and composites based on them. The investigated yarn formation technologies complement or partly compete with each other, but thereby also represent a broad technology spectrum. This generates a broad effect for the application of the results for product development in numerous German and often on few technologies specialized SMEs of textile technology.

Report

Introduction, problem definition and aim

Fiber-reinforced plastic composites are designed according to required stiffness and strength or impact and crash properties. Complex, overlapping load scenarios are only taken into account to a very limited extent. There are first practical approaches for realizing composite components, e.g. the B-pillar of an automobile [1]. In which composites (e.g., carbon fiber prepregs) are combined with metallic components (e.g. steel sheets) in order to achieve the necessary damage tolerance along with high weight-specific stiffness and strength. In such concepts, hybridization takes place at the macro (structural level) or meso (yarn level) level and requires extremely complex and cost-intensive manufacturing processes [2-4]. Furthermore, these components also have highly pronounced interlaminar interfaces, where complex stresses generate high shear stresses. As a result, premature structural failures occurs due to delamination [5-8]. In order to overcome these disadvantages and for use in future developments, a concept is developed and implemented in the project presented here. The approach provides the design of the combination of various fiber components by hybridization at the micro-level (within a yarn/fiber level), thus maximizing their property potentials. The use of recycled high-performance fibers also results in significant advantages over conventional composites in terms of sustainability, resource efficiency and cost-effectiveness.

The project aims to create a new three-component class of materials hybridized at the micro level for thermoplastic lightweight applications. By combining the reinforcing fibers such as carbon and aramid, it is possible to combine high stiffness and strength with high crash and impact properties by varying the reinforcing fiber proportions and fiber makeup in a way appropriate to the load case. Fig. 1a schematically shows the properties of state-of-the-art CF/AR hybrid composites (Fig. 1a bottom, highlighted by an ellipse) according to state of the art, from engineered yarns to be developed (top, area within the dashed lines) and the theoretical material potentials (top, colored lines), each depending on the fiber volume fractions. The systematic investigation of the influence of the material-specific fiber volume fractions for a scalable composites design was carried out in five stages (CF/AR or rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

The development work focused on three main areas. The first focus was the further development of the process technology so that the composites based on engineered yarns exhibit high strength and stiffness due to low fiber damage, high uniformity and high fiber orientation. The second focus was the first-time implementation of the homogeneous blending of three fiber materials at the micro-level. The third focus was designing the engineered yarns so that outstanding, scalable stiffness, strength, crash and impact property combinations can be set explicitly for a wide range of requirements (Fig. 1a).

For the concrete realization of the desired goal, CF/AR/PA6 or rCF/rAR/PA6 hybrid yarns were developed using two material concepts (Fig. 1b) based on two yarn formation technologies (Fig. 1a) for the production of thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations. The interrelationships between process parameters and material-yarn composite properties were analysed. A sound knowledge for the material-dependent design of the engineered yarns could be achieved. Furthermore, the best possible material and process parameters for specific applications was derived and a process guide was prepared for the control of the manufacturing processes for the SMEs. A detailed description of the development work can be taken from the final report.

Acknowledgement

The IGF project 21004 BR/1 of the Forschungsvereinigung Forschungskuratorium Textil e. V. is funded through the AiF within the program for supporting the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag.

Authors: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

27.09.2022

Melt spinning of guitar strings made of Nylon 6 and measurement of their material properties

Fibres Textile machinery

Abstract

Monofilaments made of the polymer polyamide 6 (PA6) are produced using a laboratory sized melt tester and a drawing machine in a subsequent process. The influence of the production parameters spinneret hole diameter, draw down ratio and drawing temperature are investigated using a factorial design plan. To evaluate the melt spinning process, the spun filaments are compared to commercial nylon guitar strings. Mechanical and thermal properties such as filament titer, tensile strength, relaxation behavior, degree of crystallinity, melt temperature and melt enthalpy are measured to evaluate the quality of the production process. Four of the eight spun filament types are able to withhold the tension needed to tune the string to the correct pitch. Thus, these monofilaments could be used as guitar strings. The production parameter with the highest impact on monofilament quality is the draw down ratio, followed by drawing temperature. No effect was found for spinneret hole diameter.

Report

Introduction
Synthetic fibers have become increasingly important in recent years. One reason for this is that they are versatile and can fulfill different requirements and functionalities. Among other things, their functionality spectrum is influenced by the manufacturing process, for example melt spinning. One everyday application example for synthetic fibers is guitar strings.

Classical guitar strings are monofilaments made of nylon, which is the trade name of polyamide. They are usually designed to be used with guitars which have a scale length of 0.65 m. Of the six typical guitar string, the first and highest string is the high E string. It is usually tuned to a pitch of 330 Hz and has a diameter around 0.7 mm. Many acoustical properties of guitar strings can be linked to mechanical properties of the string, which are measured in this work.

The aim of this paper is to evaluate the melt spinning process of monofilaments of polyamide 6 and to compare them to commercial monofilaments. Therefore, the influence of different production parameters on the quality of monofilaments will be investigated. The considered production parameters are spinneret hole diameter, drawing temperature and draw down ratio (Ddr). Different kinds of mechanical and thermal properties, for example tensile strength, relaxation behavior, degree of crystallinity and melt temperature, are measured and compared for different filament types.

Authors: Ortega, Jeanette Karen; Zhao, Jasmin; Storm, Annegret; Schüll, Elena; Gries, Thomas

ITA Institut für Textiltechnik of RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany

More entries from ITA Institut für Textiltechnik der RWTH Aachen University