From the Sector

Reset
710 results
(c) Indorama Ventures Public Company Limited
17.05.2023

Indorama Ventures upgraded MSCI ESG Ratings

Indorama Ventures Public Company Limited, a global sustainable chemical producer, was upgraded to "A" from "BBB" in MSCI’s ESG rating, reaffirming the company’s effective management of sustainability related risks and opportunities.

MSCI (Morgan Stanley Capital International), an independent provider of research-based indices and analytics, ranked Indorama Ventures among the top 14% of 65 companies worldwide in the commodity chemicals industry. The rating has placed it in the top quartile for opportunities in clean tech, water stress, corporate governance, and corporate behavior.

Indorama Ventures Public Company Limited, a global sustainable chemical producer, was upgraded to "A" from "BBB" in MSCI’s ESG rating, reaffirming the company’s effective management of sustainability related risks and opportunities.

MSCI (Morgan Stanley Capital International), an independent provider of research-based indices and analytics, ranked Indorama Ventures among the top 14% of 65 companies worldwide in the commodity chemicals industry. The rating has placed it in the top quartile for opportunities in clean tech, water stress, corporate governance, and corporate behavior.

Indorama Ventures is committed to reducing water intensity by 10% by 2025 and 20% by 2030. It developed a Water Risk Assessment Report on its contributions to achieving sustainable management of water targets and the United Nations Sustainable Development Goals (UN SDGs). For improved corporate governance, the company provides whistleblowers with protection from retaliation, and has policies on business ethics and anti-corruption. Relating to opportunities in clean tech, Indorama Ventures’ is investing in recycling technology and biomass feedstock under its Vision 2030, and is also investing in operational efficiencies, carbon capture technology, renewable energy, and phasing out coal to reduce Scope 1 and Scope 2 greenhouse gas emissions.

MSCI ESG Ratings aim to measure a company’s resilience to long-term ESG risks. Companies are scored on an industry-relative AAA-CCC scale across the most relevant key issues based on a company’s business model. Investors, including pension funds, sovereign wealth funds, endowments, and asset managers, commonly consider the ratings to assess financial risks in the investment process.

Source:

Indorama Ventures Public Company Limited

16.05.2023

DiloGroup cooperates with Dell’Orco & Villani and TechnoPlants

With regard to current and imminent requirements to strengthen and promote the recycling of garment waste in order to safe valuable textile fibre in the European but also worldwide textile economy DiloGroup announces the start of a close cooperation between Dilo, Germany and the Italian companies Dell’Orco & Villani and TechnoPlants. This cooperation forms a group of expertise to supply complete projects in the area of textile recycling.

Dell’Orco & Villani is a long term highly experienced and innovative specialist in the field of tearing equipment to recycle textile garment clippings. This technology maintains as much as possible the staple length of reopened fibre from yarn in knitted and woven textiles. This special tearing process avoids the downgrading and shortening of the staple.

TechnoPlants is a highly experienced specialist in the field of aerodynamic web forming and through air technology with particular emphasis on reclaimed fibre for various applications as for example in acoustic and thermal insulation, car parts, upholstery and bedding.

With regard to current and imminent requirements to strengthen and promote the recycling of garment waste in order to safe valuable textile fibre in the European but also worldwide textile economy DiloGroup announces the start of a close cooperation between Dilo, Germany and the Italian companies Dell’Orco & Villani and TechnoPlants. This cooperation forms a group of expertise to supply complete projects in the area of textile recycling.

Dell’Orco & Villani is a long term highly experienced and innovative specialist in the field of tearing equipment to recycle textile garment clippings. This technology maintains as much as possible the staple length of reopened fibre from yarn in knitted and woven textiles. This special tearing process avoids the downgrading and shortening of the staple.

TechnoPlants is a highly experienced specialist in the field of aerodynamic web forming and through air technology with particular emphasis on reclaimed fibre for various applications as for example in acoustic and thermal insulation, car parts, upholstery and bedding.

DiloGroup with DiloSystems GmbH is a general contractor who is specialized in the area of fibre preparation, carding, cross-lapping and needling who will act as a turnkey general provider of complete projects including Dell’Orco & Villani components to reclaim wasted fibre as well as TechnoPlants components when aerodynamic web forming is included or when carding, cross-lapping is selected together with through-air ovens and end-of-line equipment including packaging from TechnoPlants.

The expertise of the three companies together is a source for the complete know-how in this large area of applications to reuse fibre from textile waste in new nonwoven material.

With the beginning of upcoming ITMA 23, more details of the organizational structure of this cooperation among the three companies will be released and project engineering will be started.

More information:
Dilo DiloGroup textile recycling
Source:

Oskar Dilo Maschinenfabrik KG

(c) Sadia Rafique
10.05.2023

Renewcell partners with TextileGenesis™ for Circulose® Pulp-to-Retail Transparency

After participating in industry trials, Renewcell and TextileGenesis™ have the intention to establish an agreement for full pulp-to-retail traceability for Renewcell’s CIRCULOSE® recycled raw material across the entire textile supply chain, announcing it at Challenge the Fabric (Milan, Italy).

Renewcell uses a patented process to breakdown and recycle cotton and other cellulosic textile waste, such as worn-out jeans and production scraps, to create CIRCULOSE®, a biodegradable raw material that can be used to create viscose, lyocell, modal, acetate and other man-made cellulosic fibers. These regenerated fibers are then spun into yarns, woven or knitted into fabrics before being cut and sewn into new high-quality textile products.
 
With TextileGenesis™, Renewcell will be able to share real-time digital traceability with its customers and supply chain partners.

After participating in industry trials, Renewcell and TextileGenesis™ have the intention to establish an agreement for full pulp-to-retail traceability for Renewcell’s CIRCULOSE® recycled raw material across the entire textile supply chain, announcing it at Challenge the Fabric (Milan, Italy).

Renewcell uses a patented process to breakdown and recycle cotton and other cellulosic textile waste, such as worn-out jeans and production scraps, to create CIRCULOSE®, a biodegradable raw material that can be used to create viscose, lyocell, modal, acetate and other man-made cellulosic fibers. These regenerated fibers are then spun into yarns, woven or knitted into fabrics before being cut and sewn into new high-quality textile products.
 
With TextileGenesis™, Renewcell will be able to share real-time digital traceability with its customers and supply chain partners.

  • The platform uses digital tokens to ensure a secure chain of custody for all supply chain processes from raw materials to retail.
  • The company’s “fiber-forwards” traceability captures real-time shipments; its Fibercoins™ digital tokens verify point of origin and eliminate “double counting” of sustainable materials.
  • Its AI (augmented intelligence) engine verifies transactions between supply chain partners.  

 
Furthermore, TextileGenesis™ is already partnering with fiber producers including Lenzing AG, Eastman, and Birla Cellulose.

Source:

Re:NewCell AB

Recycled yarn (c) ITA Aachen
05.05.2023

ITA at the ITMA: Smart Circular Economy

"ITA Aachen and ITA Augsburg are part of the ITA Group International Centre for Sustainable Textiles. Experience our textile innovations at two exhibition booths," explains ITA Institute Director Professor Dr. Thomas Gries. "See our ring spinning tester at booth H3-B304, which spins recycled fibres sustainably and individually in a previously impossible fineness. In addition, there is digital yarn monitoring, which enables new market potentials. Get an idea of the Recycling Atelier of ITA Augsburg at booth H3-A207 and see the textile cycle from used textile to solution steps for industrial implementation together with industry partners. Join us on the Walk4Recycling and follow the path from used textile to a new knitted pullover on a tour of the trade fair. This is how we live up to our claim as the ITA Group: sustainable - digital - individual."

"ITA Aachen and ITA Augsburg are part of the ITA Group International Centre for Sustainable Textiles. Experience our textile innovations at two exhibition booths," explains ITA Institute Director Professor Dr. Thomas Gries. "See our ring spinning tester at booth H3-B304, which spins recycled fibres sustainably and individually in a previously impossible fineness. In addition, there is digital yarn monitoring, which enables new market potentials. Get an idea of the Recycling Atelier of ITA Augsburg at booth H3-A207 and see the textile cycle from used textile to solution steps for industrial implementation together with industry partners. Join us on the Walk4Recycling and follow the path from used textile to a new knitted pullover on a tour of the trade fair. This is how we live up to our claim as the ITA Group: sustainable - digital - individual."

ITA Aachen - Digital ring spinning tester for recycled fibres enables spinning of fine yarns with high recycled fibres content
The Institut für Textiltechnik of RWTH Aachen University (ITA) will be exhibiting a digital ring spinning tester, which spins recycled fibres directly and conventionally with a particularly high content of 60-70 percent. Up to now, recycled yarns have mainly been rotor-spun in this blend ratio. This results in rather coarse yarns and is not suitable for finer textiles such as outerwear. Ring spinning of recycled yarns now enables the spinning of finer yarns and thus a higher application level for recycled materials.

A unique selling point of the ITA ring spinning tester is the simultaneous spinning in the direct spinning process from the sliver and in the classic ring spinning process. For this purpose, the strength and elongation of the spun yarn are determined online and digitally for the first time. The real-time measurement allows process parameters and yarn properties to be adjusted iteratively and quickly. The ring spinning tester was upgraded from an existing tester to Industry 4.0 standard and is operated via a tablet. Operation via tablet enables the adjustment of process parameters including online quality monitoring remotely from anywhere in the world.
 
For this purpose, the ring spinning tester is also able to produce fine ring spun yarns. These yarns made from recycled material opens up a multitude of further fields of application for woven and knitted goods. Now, for example, clothing and technical textiles can be made from recycled material, the production of which was not possible before - such as outerwear made from recycled material. The development of new industries and fields of application opens up new market potential for recycled yarns - also and especially for processing in Europe. This creates the opportunity to preserve key technologies and jobs in cost-intensive locations.

ITA Augsburg - Recycling Atelier: Walk4Recycling
The Recycling Atelier of the Institut für Textiltechnik Augsburg gGmbH on stand H3-A207 presents the textile recycling from used textiles into new products via the various process steps and, together with the industrial partners, opens up solution paths for industrial implementation.

Under the headline "Walk4Recycling", a tour of the fair shows the cycle of used textiles from used knitwear into a new knitted pullover via a ring yarn made from a blend of 65 percent recycled cotton and 35 percent virgin polyester. The key innovation here is the high proportion of recycled fibres from post-consumer textiles for a ring yarn of this fineness. Today, mainly coarse rotor yarns for low-quality textiles are spun from these materials. The industrial partners participating in the Walk4Recycling are partners of the Recycling Atelier and contribute with their technologies to the fact that fibre material from old clothes can be processed in various process stages into a yarn of new value and high-quality ready-made garments.

The Walk4Recycling offers visitors the opportunity to experience a complete recycling cycle with the numerous process stages from tearing the old textiles, preparing and spinning the fibres and knitting a new jumper live during the fair. Get detailed information on the mechanical recycling of clothing via QR code, website and flyer about the participating exhibitors and their machines and technologies. A short movie will give you additional insights into the various processes involved in the production of the jumper.

05.05.2023

Perstorp: Actionable plans in place for reaching 2030 sustainability targets

Sustainable solutions provider Perstorp has turned its ambitious sustainability targets for 2030 into actionable roadmaps on the corporate level as well as for each of its production plants, outlining hands-on activities to lower greenhouse gas emissions, reduce waste, save fresh water and enable sustainable transformation throughout the value chain.

Over the last year, Perstorp has presented ambitious sustainability targets for greenhouse gas emissions (Scope 1, 2 and 3), as well as for water and waste, to be reached by 2030. The company has now supplemented those targets with roadmaps outlining the steps and actions needed to fulfil them and support customers in reducing their carbon footprint as well as lead Perstorp toward its long-term ambition of becoming Finite Material Neutral.

Sustainable solutions provider Perstorp has turned its ambitious sustainability targets for 2030 into actionable roadmaps on the corporate level as well as for each of its production plants, outlining hands-on activities to lower greenhouse gas emissions, reduce waste, save fresh water and enable sustainable transformation throughout the value chain.

Over the last year, Perstorp has presented ambitious sustainability targets for greenhouse gas emissions (Scope 1, 2 and 3), as well as for water and waste, to be reached by 2030. The company has now supplemented those targets with roadmaps outlining the steps and actions needed to fulfil them and support customers in reducing their carbon footprint as well as lead Perstorp toward its long-term ambition of becoming Finite Material Neutral.

The largest greenhouse gas emissions are found in Scope 3, which includes raw materials and end-of-life treatment of Perstorp’s products. The Scope 3 roadmap includes the steps necessary to drive the transition of the product portfolio from fossil-based to more sustainable, lower carbon footprint alternatives. This, in turn, will help enable Perstorp’s customers to achieve their own sustainable transition. One key project in this roadmap is Project Air, an initiative aiming to replace all the fossil methanol that Perstorp uses in Europe with methanol produced from residue streams such as carbon capture and utilization (CCU) and renewable sources like biogas. This alone is expected to reduce carbon dioxide emissions by 500,000 tons per year.

The corporate Scope 1 & 2 targets (direct greenhouse gas emissions from Perstorp´s production plants and purchased energy), as well as the targets for water and waste, have been broken down into local targets and roadmaps, firmly anchored in the specific prerequisites for each production plant.

Initiatives on reducing energy consumption and shifting to energy from non-fossil or recovered sources can, for example, be found in the local roadmaps, while the steps to reach those targets are tailored specifically to each location. Among the planned local activities are also initiatives to replace fresh water used in the production with purified wastewater and to find different ways to reuse and recycle waste from production.

Source:

Perstorp

05.05.2023

Stahl's emissions reduction targets approved by Science Based Targets initiative (SBTi)

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Stahl announces that its near-term greenhouse gas (GHG) emissions reduction targets have been validated by the Science Based Targets initiative (SBTi). Stahl is one of the few coatings companies to receive this validation. To date, 145 companies in the chemicals sector have submitted an emissions reduction target to the SBTi, of which 61 have had their targets validated.

Stahl’s science-based targets, which reflect the company’s commitment to the 2015 Paris Agreement goals, are:  

  • Stahl Holdings B.V. commits to reduce absolute scope 1 & 2 GHG emissions 42.0% by CY2030 from a CY2021 base year.*
  • Stahl Holdings B.V. commits to reduce absolute scope 3 GHG emissions 25.0% by CY2030 from a CY2021 base year.

The SBTi classifies emissions reduction targets according to two potential temperature pathways: 1) limiting global temperature rises to 1.5°C above pre-industrial levels, and 2) limiting temperature rises to well below 2°C. The SBTi has determined that Stahl’s Scope 1 and 2 target is in line with a 1.5°C trajectory, while Stahl’s Scope 3 target has been validated in line with the well-below 2°C pathway.

Maarten Heijbroek, CEO of Stahl: “The validation of our Scope 1, 2, and 3 emissions reduction targets by the SBTi is an important milestone on our ESG journey as we strive to limit our contribution to global warming, in line with the Paris Agreement. Our targets are ambitious, and rightly so. Realizing our goal to help create a more responsible coatings value chain starts with being accountable for our own environmental impact, and taking concrete steps to reduce our emissions wherever possible.”

A clear strategy to reduce GHG emissions
Stahl’s approach to realizing its near-term emissions reduction targets is outlined in the company’s Environmental, Social, and Governance (ESG) Roadmap to 2030. This strategy defines the specific metrics against which progress on the company’s ESG commitments will be measured.

Stahl’s Scope 1 and 2 GHG emissions reduction targets, as submitted to the SBTi, cover emissions from all manufacturing sites where Stahl products are produced, as well as the company’s largest non-manufacturing locations. Stahl aims to lower these emissions by reducing its overall energy consumption and increasing the use of renewable energy at its sites. To achieve this, the company plans to increase its self-generated electricity capacity (using solar power, for example) and continue investing in more energy-efficient equipment.

Stahl plans to reduce its Scope 3 upstream emissions primarily by replacing fossil-based raw materials in its products with renewable alternatives, such as bio-based and recycled-based feedstocks. In addition, the company plans to introduce more low-impact raw materials into its product design.

* The target boundary includes biogenic land-related emissions and removals from bioenergy feedstocks.

Source:

Stahl Holdings B.V.

03.05.2023

Renewcell receives Fast Company 2023 World Changing Ideas Award

Renewcell is the recepient of the Fast Company 2023 World Changing Ideas Awards for the Sustainability/Energy category with the development of recycling unused textiles into pulp, branded as CIRCULOSE®, used for man-made cellulosic fiber production of viscose, modal, lyocell, acetate and other fibers. Additionally Renewcell is recognized as a finalist in the Europe, the Middle East, and Africa category, as well as a finalist in the climate category for the 2023 World Changing Ideas Awards.

World Changing Ideas Awards honor sustainable designs, innovative products, bold social initiatives, and other creative projects that are changing the way we work, live, and interact with the world.

Renewcell is the recepient of the Fast Company 2023 World Changing Ideas Awards for the Sustainability/Energy category with the development of recycling unused textiles into pulp, branded as CIRCULOSE®, used for man-made cellulosic fiber production of viscose, modal, lyocell, acetate and other fibers. Additionally Renewcell is recognized as a finalist in the Europe, the Middle East, and Africa category, as well as a finalist in the climate category for the 2023 World Changing Ideas Awards.

World Changing Ideas Awards honor sustainable designs, innovative products, bold social initiatives, and other creative projects that are changing the way we work, live, and interact with the world.

This year’s World Changing Ideas Awards showcase 45 winners, 216 finalists, and more than 300 honorable mentions—with health, climate, energy, and AI among the most popular categories. A panel of Fast Company editors and reporters selected winners and finalists from a pool of more than 2,200 entries across urban design, education, nature, politics, technology, corporate social responsibility, and more. Several new categories were added this year including rapid response, crypto and blockchain, agriculture, and workplace. The 2023 awards feature entries from across the globe, from Italy to Singapore to New Zealand. Fast Company’s Spring 2023 issue (on newsstands May 9, 2023) will showcase some of the world’s most inventive entrepreneurs and forward-thinking companies that are actively tackling global challenges.

(c) A. Monforts Textilmaschinen GmbH & Co. KG
Members and associates of the WasserSTOFF consortium from Monforts, Pleva, NTB Nova Textil, TU Freiberg, Hochschule Niederrhein and Honeywell Thermal Solutions, at the launch meeting of the new project at the Monforts ATC in Mönchengladbach.
28.04.2023

Monforts presents green hydrogen project WasserSTOFF at ITMA 2023

At ITMA 2023 in Milan from June 8-14 this year, Monforts is organising two free-to-attend seminars and discussions on the potential of green hydrogen as a new energy source for textile finishing, drying and related processes.

Monforts is currently leading a consortium of industrial partners and universities in the three-year WasserSTOFF project, launched in November 2022, that is exploring all aspects of this exciting and fast-rising new industrial energy option.
The target of the government-funded project is to establish to what extent hydrogen can be used in the future as an alternative heating source for textile finishing processes. This will first involve tests on laboratory equipment together with associated partners and the results will then be transferred to a stenter frame at the Monforts Advanced Technology Center (ATC).

At ITMA 2023 in Milan from June 8-14 this year, Monforts is organising two free-to-attend seminars and discussions on the potential of green hydrogen as a new energy source for textile finishing, drying and related processes.

Monforts is currently leading a consortium of industrial partners and universities in the three-year WasserSTOFF project, launched in November 2022, that is exploring all aspects of this exciting and fast-rising new industrial energy option.
The target of the government-funded project is to establish to what extent hydrogen can be used in the future as an alternative heating source for textile finishing processes. This will first involve tests on laboratory equipment together with associated partners and the results will then be transferred to a stenter frame at the Monforts Advanced Technology Center (ATC).

To be considered “green”, hydrogen must be produced using a zero-carbon process that is powered by renewable energy sources such as wind or solar. Currently, the cleanest method of hydrogen production is electrolysis, using an electrically-powered electrolyzer to separate water molecules into hydrogen and oxygen. The purity of the hydrogen is also important, and impurities must be removed via a separation process.

“Despite all its advantages, there are obstacles to overcome on the way to widespread, economically-feasible green hydrogen use,” explains Monforts Textile Technologies Engineer Jonas Beisel. “Until there are widely available, reliable and economical sources of this clean power, the cost of producing it will remain prohibitive. The infrastructure is not yet there, and hydrogen also has a tendency to make steel brittle and subject to fracture, which is something that requires further investigation in both its transportation and use in industrial processing.
“Green energy’s potential as a clean fuel source is tremendous, but there is much we need to explore when considering its use in the textile finishing processes carried out globally on our industry-leading Montex stenter dryers and other machines.”

At its Advanced Technology Center (ATC) in Mönchengladbach, Monforts will be carrying out intensive tests and trials to assess the reliability of both processes and final products when different natural gas and hydrogen mixtures – up to 100% green hydrogen – are employed. The results will be closely analysed by the consortium partners because there are many parameters that at this stage remain unknown.

The aim, Beisel adds, is to both reduce CO2 emissions and – following the rising prices and industry turbulence experienced by manufacturers over the past year or so – to further reduce a dependency on natural gas.

The three-year WasserSTOFF project is sponsored by Germany’s Federal Ministry for Economic Affairs and Climate Action, and with Monforts at the helm brings together industrial partners Pleva and NTB Nova Textil, with academic input from the Hochschule Niederrhein and the Technical University of Freiberg.

(c) adidas AG
26.04.2023

adidas: 96% of all Polyester used in Products is Recycled Polyester

adidas has announced a new milestone in its journey towards replacing virgin polyester with recycled polyester . 96% of all polyester used in adidas products is now recycled polyester. The achievement of the ambition that adidas first set in 2017 – to replace all virgin polyester with recycled wherever possible by the end of 2024 – is on track to be achieved earlier than expected.

Since the first adidas high-performance shoe was made with recycled materials in 2015, the brand has been working towards reducing its dependency on virgin polyester. Last year it announced that in 2021, more than 90% of the polyester used in adidas products was recycled, which – if it had been virgin polyester - would have accounted for 390 thousand metric tons of CO2e – the equivalent to the greenhouse gas emissions generated to provide power to 50 thousand homes in the US[1].

According to Textile Exchange[2], global recycled polyester fiber production volume increased in 2021, but still accounts for just 14.8% of all global polyester production.

adidas has announced a new milestone in its journey towards replacing virgin polyester with recycled polyester . 96% of all polyester used in adidas products is now recycled polyester. The achievement of the ambition that adidas first set in 2017 – to replace all virgin polyester with recycled wherever possible by the end of 2024 – is on track to be achieved earlier than expected.

Since the first adidas high-performance shoe was made with recycled materials in 2015, the brand has been working towards reducing its dependency on virgin polyester. Last year it announced that in 2021, more than 90% of the polyester used in adidas products was recycled, which – if it had been virgin polyester - would have accounted for 390 thousand metric tons of CO2e – the equivalent to the greenhouse gas emissions generated to provide power to 50 thousand homes in the US[1].

According to Textile Exchange[2], global recycled polyester fiber production volume increased in 2021, but still accounts for just 14.8% of all global polyester production.

Sport is about meeting challenges head-on and finding ways to overcome those – material innovation is no different. For the team at adidas, the road to 96% has been long and full of challenges. The confirmation of its polyester commitment in 2017 was a crucial step in helping to initiate a transformation across adidas and its entire supply chain. This transformation has been made possible through creating technical solutions and imagining new possibilities that previously didn’t exist.

To accompany the announcement, adidas has created a short film about its new ‘PB’, featuring star athlete Jazmin Sawyers. The film highlights the sports brand’s pride in making progress, and its determination to push further.

As the brand looks ahead to 2024 and beyond, it will continue to expand its focus beyond recycled polyester. It will be doing this through three main areas of focus: changing materials by testing and scaling new raw materials, rethinking entire processes to design products that have a circular end-of-life solution, and reducing its carbon footprint.

[1] adidas Footprint Analytics team
[2] Textile Exchange Preferred Fiber & Materials Market Report, October 2021, https://textileexchange.org/app/uploads/2022/10/Textile-Exchange_PFMR_2022.pdf

Source:

adidas AG

21.04.2023

REVECOL® by ERCA: Textile chemical auxiliaries obtained from vegetable oils

REVECOL® (Recycled Vegetable Cooking Oil) represents a new generation of textile chemical auxiliaries, which are high-performing and obtained from vegetable exhausted cooking oil.

Chemical auxiliaries play a crucial role in several stages of the textile production cycle, from material preparation to dyeing and finishing, but represent a complex challenge from the point of view of reducing environmental impact. Herein lies the revolutionary aspect of REVECOL® by ERCA: for the first time, not just one product, but a complete range of auxiliary chemicals is available that meets the criteria of circularity.

The result of ERCA's continuous research, REVECOL® are in fact born from critical waste materials (exhausted vegetable oils), which, thanks to an environmentally and safety-friendly manufacturing process, are transformed into a line of innovative chemical auxiliaries destined for the entire textile industry and its various applications: from underwear to home textiles.

REVECOL® (Recycled Vegetable Cooking Oil) represents a new generation of textile chemical auxiliaries, which are high-performing and obtained from vegetable exhausted cooking oil.

Chemical auxiliaries play a crucial role in several stages of the textile production cycle, from material preparation to dyeing and finishing, but represent a complex challenge from the point of view of reducing environmental impact. Herein lies the revolutionary aspect of REVECOL® by ERCA: for the first time, not just one product, but a complete range of auxiliary chemicals is available that meets the criteria of circularity.

The result of ERCA's continuous research, REVECOL® are in fact born from critical waste materials (exhausted vegetable oils), which, thanks to an environmentally and safety-friendly manufacturing process, are transformed into a line of innovative chemical auxiliaries destined for the entire textile industry and its various applications: from underwear to home textiles.

EVECOL® by ERCA has obtained several certifications – GRS, RCS, listed into ZDHC Chemical Gateway, bluesign® and GOTS, and are also finalizing the third-party certified PCF (Product Carbon Footprint), - as well as various international recognitions – first prize RESPONSIBLE CARE®, in Italy, from Federchimica, inclusion in the BAT (Best Available Techniques) document from the European Community.

(c) Freudenberg Performance Materials Holding GmbH
21.04.2023

Freudenberg launches biodegradable fusible cotton shirt interlining range

Freudenberg Performance Materials Apparel (Freudenberg) launches its biodegradable fusible cotton shirt interlinings range 46xx. With this innovation, the world’s leading specialist in woven, knitted, weft and nonwoven interlinings reduces its impact on the environment and supports customers in achieving their own sustainability objectives. In Asia, the series is marketed under the name 42xx series.

Approved biodegradability and non-toxicity by Hohenstein Laboratories
The new Freudenberg fusible interlinings for shirts and blouses have been developed in such a way that they are harmless to people and the environment at the end of their life cycle. Germany’s independent Hohenstein Laboratories performed biodegradation tests on the 46xx series, based on the Hohenstein method which draws on DIN EN ISO 11721-2:2003 and EN ISO 846, and approved it as biodegradable and ecotoxicologically harmless. The tests by Hohenstein showed no negative effects on either the germination of garden cress nor on earthworms in the acute toxicity test.

Freudenberg Performance Materials Apparel (Freudenberg) launches its biodegradable fusible cotton shirt interlinings range 46xx. With this innovation, the world’s leading specialist in woven, knitted, weft and nonwoven interlinings reduces its impact on the environment and supports customers in achieving their own sustainability objectives. In Asia, the series is marketed under the name 42xx series.

Approved biodegradability and non-toxicity by Hohenstein Laboratories
The new Freudenberg fusible interlinings for shirts and blouses have been developed in such a way that they are harmless to people and the environment at the end of their life cycle. Germany’s independent Hohenstein Laboratories performed biodegradation tests on the 46xx series, based on the Hohenstein method which draws on DIN EN ISO 11721-2:2003 and EN ISO 846, and approved it as biodegradable and ecotoxicologically harmless. The tests by Hohenstein showed no negative effects on either the germination of garden cress nor on earthworms in the acute toxicity test.

Energy-saving interlining
The new biodegradable shirt interlinings also show great potential for energy saving, as the fusing can be performed at a low temperature. Concretely, this means that the resulting temperature between the upper fabric and the shirt interlining during fusing is only 127°C which is significantly lower than the commonly used temperature of 143°C. Certified to OEKO-TEX® STANDARD 100 Class II for successfully testing for no harmful substances, the shirt interlinings are washable at up to 40°C and resistant to dry cleaning. In addition, it has also passed all ecological-toxicological tests and is a perfect end-of-life cycle solution.

Product details and availability
The products in range 46xx are available in Europe in the color white and the following weight classes: 4605 (90g/m2), 4616 (150g/m2) and 4618 (55g/m2). The adhesive of the interlinings consists of a 100% degradable bio-polymer. The shirt interlinings are ideal for reinforcing shirt and blouse collars, cuffs and plackets used in fashion, leisure and business clothing. The biodegradable, non-toxic interlinings are particularly important for labels with an ecologically sustainable claim.

Source:

Freudenberg Performance Materials Holding GmbH

(c) Yanfeng International
The official handover of the solar panels took place at the East London plant together with the SolarAfrica management
19.04.2023

Yanfeng: Change to renewable energy for production in South Africa

Yanfeng has reached another milestone in its sustainability journey by bringing the power of solar energy to its plants in South Africa. The global automotive supplier already uses renewable energy at all its locations in Europe – some of which are already operating with 100% green energy – and now will supplement its operations in South Africa with sustainable and emission-free solar energy generation.

Many sectors are facing major challenges with the transition to a low-carbon economy. The automotive sector in particular faces many operational and economic challenges when transforming production plants into net-zero emission operations. Thanks to its commitment to sustainability, 100% of the solar energy generated by the PV systems is used to power Yanfeng’s production plants in South Africa, helping them save around 2,559 tons of CO2 annually while reducing their monthly costs and increasing efficiencies.

Yanfeng has reached another milestone in its sustainability journey by bringing the power of solar energy to its plants in South Africa. The global automotive supplier already uses renewable energy at all its locations in Europe – some of which are already operating with 100% green energy – and now will supplement its operations in South Africa with sustainable and emission-free solar energy generation.

Many sectors are facing major challenges with the transition to a low-carbon economy. The automotive sector in particular faces many operational and economic challenges when transforming production plants into net-zero emission operations. Thanks to its commitment to sustainability, 100% of the solar energy generated by the PV systems is used to power Yanfeng’s production plants in South Africa, helping them save around 2,559 tons of CO2 annually while reducing their monthly costs and increasing efficiencies.

The solar energy systems were funded by SolarAfrica, which will also operate, maintain and monitor the systems going forward. “From the outset of these projects, Yanfeng’s focus was on reducing their CO2 emissions and SolarAfrica is proud to partner with them to make their journey towards sustainability a success,” said David McDonald, CEO of SolarAfrica. “It’s inspiring to see a global company like Yanfeng invest in world-class facilities in South Africa, contributing to our country’s green economy and supporting job creation in the automotive industry.”
 
All Yanfeng European plants were converted to renewable energy by the beginning of 2022. With this new PV system, Yanfeng has implemented a milestone in the conversion to net-zero emission production at its two plants in South Africa.

Source:

Yanfeng International

Frau am Meer Photo Pixabay
17.04.2023

Kelheim Fibres, Sandler and pelzGROUP develop plastic-free panty liner

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

Viscose speciality fibre manufacturer Kelheim Fibres, nonwoven producer Sandler, and hygiene product manufacturer pelzGROUP have jointly developed a new panty liner that is plastic-free according to the European Single-Use Plastics Directive (SUPD). This innovative solution is a step towards reducing the amount of plastic in hygiene products – and thus also a contribution to tackling the problem of plastic pollution.

According to a UNEP study on marine litter and microplastics, eight million tons of plastic end up in the oceans every year. A significant portion of this pollution comes from single-use plastic products, including conventional period products such as pads or panty liners.

The partnership between the three companies was formed under the Open Innovation principle, which allowed for creative idea exchange and facilitated the development of an innovative product. According to Jessica Zeitler, R&D Specialist at Sandler, “Our collaboration with Kelheim Fibres and pelzGROUP is a great example of how companies can work together to create solutions that benefit both the environment and consumers. We are proud to be part of this project and the opportunities it offers.”

For hygiene product manufacturer pelzGROUP, it is important to combine sustainability and performance to achieve broad acceptance in the market. “Our panty liner meets the strict requirements of the European Single-Use Plastics Directive (SUPD) while also matching the performance of conventional synthetic products. At the same time, our new panty liner has a completely European supply chain. This means short distances and therefore low CO2 emissions, and – especially in times of global disruption – reliability for our customers,” emphasizes Dr. Henning Röttger, Head of Business Development at pelzGROUP.

"Our viscose speciality fibres are an environmentally friendly and high-performance alternative to synthetic materials," says Dominik Mayer, Project Manager Fibre & Application Development at Kelheim Fibres. "They are at the very beginning of the product value chain and yet have an enormous impact on the functionality of the end product. Open innovation allows us to bring all partners in the value chain to the table, to find the best solution together in a very short time and bring it to commercialisation - the collaboration with Sandler and pelzGROUP is an important milestone in our AHP journey."

Source:

Kelheim Fibres GmbH

Photo: ANDRITZ
12.04.2023

Lotus Teknik Tekstil A.Ş.: Production line for biodegradable wet wipes by ANDRITZ

Lotus Teknik Tekstil A.Ş., Türkiye, has successfully started up a complete line to produce nonwoven roll goods for biodegradable, plastic-free wet wipes. This line has been delivered, installed, and commissioned by international technology group ANDRITZ.

The neXline wetlace CP line combines the benefits of two technologies: wetlaid and spunlace. Natural fibers are processed gently to create a high-performance and sustainable wipe. This next-generation wipe, called Newipe®, combines the benefits of spunlace fabric, in particular remarkable strength in all directions, with the biodegradability and softness of a WetlaceTM fabric. It is produced with a lower carbon footprint, has a low lint rate, and does not generate dust during production.

Lotus Teknik Tekstil A.Ş., Türkiye, has successfully started up a complete line to produce nonwoven roll goods for biodegradable, plastic-free wet wipes. This line has been delivered, installed, and commissioned by international technology group ANDRITZ.

The neXline wetlace CP line combines the benefits of two technologies: wetlaid and spunlace. Natural fibers are processed gently to create a high-performance and sustainable wipe. This next-generation wipe, called Newipe®, combines the benefits of spunlace fabric, in particular remarkable strength in all directions, with the biodegradability and softness of a WetlaceTM fabric. It is produced with a lower carbon footprint, has a low lint rate, and does not generate dust during production.

Lotus Teknik Tekstil A.Ş. is a leading nonwoven roll good producer and a member of a group company. The group company consists of 4 companies that operate end-to-end manufacturing including nonwovens, cardboard packings, plastics, and finished wet wipe products. Headquartered in Istanbul, Sapro is the leader in Türkiye and one of the four leaders in the manufacturing of wet wipes in Europe. The company produces, converts, and supplies 161 million sheets of wipes per day for personal, household, and industrial use, exporting 70% of its production to 65 countries all over the world. Sustainability plays a prominent role in Sapro’s business strategy.

Source:

ANDRITZ AG

31.03.2023

EURATEX at 1 year EU Textile Strategy – Yes, but …

On 30 March 2022, the European Commission presented its vision for the future of the textile industry. The strategy mainly focuses on reducing the environmental footprint and promote sustainability and transparency in the value chain.

EURATEX has welcomed the publication of the strategy, as it recognises the strategic importance of the European textile industry, and its core competitive values of quality and creativity. At the same time, the association has warned that translating that vision into reality is a delicate process, as the industry needs to reconcile sustainability with competitiveness. Making the green (and digital) transition should make companies stronger; the benefits should outweigh the costs.

On 30 March 2022, the European Commission presented its vision for the future of the textile industry. The strategy mainly focuses on reducing the environmental footprint and promote sustainability and transparency in the value chain.

EURATEX has welcomed the publication of the strategy, as it recognises the strategic importance of the European textile industry, and its core competitive values of quality and creativity. At the same time, the association has warned that translating that vision into reality is a delicate process, as the industry needs to reconcile sustainability with competitiveness. Making the green (and digital) transition should make companies stronger; the benefits should outweigh the costs.

This premise had a serious blow by the Russian war in Ukraine, which erupted at almost the same time when the strategy was launched, and has dramatically changed the economic context. Energy prices increased by a factor of 10 (!), putting the European industry at a significant disadvantage with its global competitors, leading to company shutdowns or relocations. Extended lock downs in China and defensive trade policies in the US and elsewhere have further generated uncertainty on the market and disrupted supply chains.

Today, one year after its publication, EURATEX remains carefully optimistic about the implementation of the strategy, but needs to warn against some important pitfalls on the road ahead.

  1. Despite these turbulent times, the Commission is moving ahead “swiftly” in translating their EU Textile Strategy into (draft) legislation. At present, at least 16 pieces of legislation are on the table, which will turn the textile industry into a strictly regulated sector. The quality of this new regulatory framework is critical to the success of the strategy: upcoming rules need to be coherent, technically feasible and enforceable, and have a minimal cost for SMEs. EURATEX calls for a realistic timetable and “competitiveness test” for each piece of legislation before it is adopted.
  2. Textile companies need to be informed and supported to comply with this new framework. This requires substantial funding which should be earmarked exclusively to the sector, covering areas of innovation and digitalisation, skills development, support to start ups and internationalisation, as well as access to affordable energy. In this regard, EURATEX calls on the Commission to translate the current “good intentions” into concrete decisions.
  3. The EU strategy will not work if there is no demand for sustainable textiles, both from individual consumers and public authorities (procurement). Concrete measures need to be taken to offer a competitive advantage to sustainable and high quality textile products, e.g. through a different VAT rate, strict procurement rules, closer cooperation between the brands/retailers, producers and consumers.
  4. The EU strategy could also fail, if the global dimension of the textile industry is ignored. Up to 80% of clothing products are produced outside the EU; these products need to comply with the new framework, but it remains unclear how to ensure that level playing field. Market surveillance needs to be stepped up massively – also targeting on line sales – but this would require significant efforts from member states, which are not available as of today.

Despite these important challenges, EURATEX remains committed to the successful implementation of the EU Textile Strategy. Director General Dirk Vantyghem commented: “We want to be a global leader in sustainable textiles, building on the entrepreneurship, quality and creativity of nearly 150,000 European textile companies. Creating this new framework is an incredible challenge, requiring a close dialogue between the industry and the regulator. But if well designed and carefully implemented, it can set a new era for the European textile industry”.

Source:

Euratex

Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles (c) ITA. Winding unit for the continuous production of fibre-reinforced thermoplastic pipe profiles
30.03.2023

Composites made by ITA at JEC World 2023

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

  • Less C02 emissions + sustainable + recyclable

Sustainability first - this is the principle of the Institut für Textiltechnik (ITA) of RWTH Aachen University at JEC World 2023. ITA combines various lightweight construction technologies to reduce C02 and to use renewable and/or recyclable raw materials.

ITA presents innovations in the production of reinforcing fibres and in the textile processing of high-modulus fibres. It also shows the impregnation of high-modulus fibres with thermosetting and thermoplastic matrix systems.  

ITA will be exhibiting in hall 6 together with Textechno, Mönchengladbach, Germany, textile testing equipment and Maruhachi Fukui, Japan, Thermoplastic Composite Material Systems. The Interreg AACOMA project will also be presented at the stand. 

Source:

ITA Institut für Textiltechnik of RWTH Aachen

30.03.2023

Avantium and Kvadrat: Offtake agreement for the development of PEF for interior textiles

Avantium N.V., a leading technology provider in renewable chemistry, announces that it has signed an offtake agreement with Kvadrat A/S, a leader in design innovation, producing quality contemporary textiles and textile related products for architects, designers, and private consumers across the world.

Kvadrat will purchase the 100% plant-based and fully recyclable polymer PEF (polyethylene furanoate) from Avantium’s FDCA (furandicarboxylic acid) Flagship Plant, currently under construction in Delfzijl (the Netherlands) and with commercial production set to start in 2024.

The offtake agreement shall offer Kvadrat the advantage of being first mover in creating PEF-based textiles for both commercial and residential interiors.

Avantium N.V., a leading technology provider in renewable chemistry, announces that it has signed an offtake agreement with Kvadrat A/S, a leader in design innovation, producing quality contemporary textiles and textile related products for architects, designers, and private consumers across the world.

Kvadrat will purchase the 100% plant-based and fully recyclable polymer PEF (polyethylene furanoate) from Avantium’s FDCA (furandicarboxylic acid) Flagship Plant, currently under construction in Delfzijl (the Netherlands) and with commercial production set to start in 2024.

The offtake agreement shall offer Kvadrat the advantage of being first mover in creating PEF-based textiles for both commercial and residential interiors.

More information:
Kvadrat Avantium polymer PEF
Source:

Avantium N.V.

30.03.2023

Sanyou and Renewcell: Viscose fibers made from 100% recycled textiles

On the sidelines of the Intertextile Shanghai fair, the Swedish textile-to-textile recycling innovator Renewcell and the leading Chinese viscose manufacturer Tangshan Sanyou announced the next step in their partnership to make fashion circular that stretches back to 2018.

The two companies’ new shared ambition is to offer manufacturers and brands Circulose® viscose fibers made from 100% recycled textiles in commercial quantities starting in 2024. The collaboration has been facilitated by Ekman Group, Renewcell’s exclusive global trading partner.

“I am very happy to announce this acceleration of our long-standing partnership with Tangshan Sanyou. They were the first commercial producer of Circulose®-based fibers in the world, and the first to commit to sourcing significant volumes from us. Now, they aim to also be the first to commercialize 100% Circulose® content fibers” said Patrik Lundström, CEO of Renewcell, adding "I applaud Tangshan Sanyou’s vision and support to scaling next gen raw materials like Circulose®.”

On the sidelines of the Intertextile Shanghai fair, the Swedish textile-to-textile recycling innovator Renewcell and the leading Chinese viscose manufacturer Tangshan Sanyou announced the next step in their partnership to make fashion circular that stretches back to 2018.

The two companies’ new shared ambition is to offer manufacturers and brands Circulose® viscose fibers made from 100% recycled textiles in commercial quantities starting in 2024. The collaboration has been facilitated by Ekman Group, Renewcell’s exclusive global trading partner.

“I am very happy to announce this acceleration of our long-standing partnership with Tangshan Sanyou. They were the first commercial producer of Circulose®-based fibers in the world, and the first to commit to sourcing significant volumes from us. Now, they aim to also be the first to commercialize 100% Circulose® content fibers” said Patrik Lundström, CEO of Renewcell, adding "I applaud Tangshan Sanyou’s vision and support to scaling next gen raw materials like Circulose®.”

The announcement, which follows the recent start of deliveries of 100% recycled textile Circulose® pulp from Renewcell’s newly opened Renewcell 1 recycling plant, is the result of successful validation of Circulose®’s quality in production at Tangshan Sanyou’s commercial-scale manufacturing lines. Tangshan Sanyou would strive to finish the mission of producing commercial volumes of 50% Circulose® content fibers during 2023 and work towards achieving the delivery of 100% Circulose® content branded viscose fibers to selected fashion brands and manufacturers starting in 2024. The two companies will cooperate to market the fibers globally using Renewcell’s Circulose® ingredient brand name.

Mr. Zhang Dongbin, Executive Vice General Manager of Tangshan Sanyou Chemical Fiber, says, "Through the collaboration with Renewcell, we have achieved to use Circulose® made from recycled cotton in the production of our viscose fibers, which is great beneficial to improving resource utilization efficiency and lowering carbon footprint of the industry. It has brought a huge impact in the sustainable fashion industry. We will continue putting efforts in forming good interaction between consumers, brands and enterprises, convey the concept of circular sustainable fashion, promote the greening of textile industry, and ensure a more sustainable way to ensure the sustainable development of the textile industry. Protecting the global ecological environment by applying sustainable solutions is our common goal."

Source:

Renewcell

Freudenberg´s 100% rTPE Base Content Interlining Medium Weight Foto: Freudenberg
29.03.2023

Freudenberg: First 100% rTPE base content interlining series for apparel

Freudenberg Performance Materials Apparel is expanding its Super Elastic Interlinings Range with the introduction of the apparel industry’s first 100% recycled thermoplastic elastomers (rTPE) base content interlining series. In recognition of the growing use of elastic interlinings in apparel and building on the principles of Freudenberg Performance Materials´ Apparel’s House of Sustainability, these new products speak for high-quality and sustainable solutions.

The new, 100% rTPE base content interlinings are offered in 40-90 g/m2 weights, with wide applicability – from lightweight knit fabrics with applications in leggings and sports bras to elastic woven fabrics that require medium-to-heavy weights, such as denim, maternity clothes, or casual wear. Sustainable without compromising on quality, the new interlinings offer exceptional elasticity and retain excellent recovery capabilities.

Freudenberg Performance Materials Apparel is expanding its Super Elastic Interlinings Range with the introduction of the apparel industry’s first 100% recycled thermoplastic elastomers (rTPE) base content interlining series. In recognition of the growing use of elastic interlinings in apparel and building on the principles of Freudenberg Performance Materials´ Apparel’s House of Sustainability, these new products speak for high-quality and sustainable solutions.

The new, 100% rTPE base content interlinings are offered in 40-90 g/m2 weights, with wide applicability – from lightweight knit fabrics with applications in leggings and sports bras to elastic woven fabrics that require medium-to-heavy weights, such as denim, maternity clothes, or casual wear. Sustainable without compromising on quality, the new interlinings offer exceptional elasticity and retain excellent recovery capabilities.

The 100% rTPE base content interlinings reduce the need for virgin materials in apparel while also reducing the demand for the extractive practices necessary to produce such materials. Furthermore, the use of recycled components reduces materials in landfills and oceans, in consideration of full-garment lifecycle management.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

24.03.2023

Carbios: Scientific publication on enzymatic degradation of plastics

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

Carbios announces the publication of an article entitled “Enzymes’ power for plastics degradation” in Chemical Reviews. The article is a comprehensive and critical review of research published to date on the enzymatic degradation of all types of plastics (PET, PLA, polyolefins, polyurethanes, polyamides) and includes almost 700 references. Co-authored by biotechnology researchers from Carbios and its academic partner Toulouse Biotechnology Institute (TBI), as well as two eminent professors in polymer science from the University of Bordeaux, the work brings together expertise in the fields of enzymology, polymer science and industry in order to accelerate the transition to a circular economy for plastic.

Beyond the comprehensive bibliographical study, the authors analyzed the data to discuss the scope, limitations, challenges and opportunities of enzymatic plastic recycling with a view to developing innovations and industrial processes. The article’s standpoint and added value with regard to issues surrounding plastic pollution is its critical view on technology transfer and industrial scalability.

To read the article in Chemical Reviews, click here.

Source:

Carbios