From the Sector

Reset
168 results
Photo Autoneum Management AG
19.12.2022

Autoneum: Optimized thermal management for electric vehicles thanks to cold chamber

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

A new cold chamber at its headquarters in Winterthur, Switzerland, enables Autoneum to optimize existing technologies as well as simulation and engineering services in vehicle thermal management and to adapt them to the changing thermal requirements of electric vehicles

The absence of heat from the internal combustion engine in electric vehicles as well as the impact of ambient temperature on the performance and lifetime of lithium-ion batteries are changing the requirements for vehicle thermal management. In addition, the energy from the battery is used not only to power the e-motor but also to thermally manage the battery itself and to warm and cool the car cabin by means of the heating, ventilation and air conditioning system. To increase the thermal comfort of the occupants and at the same time ensure optimum battery performance, save energy and thus increase the car’s range, manufacturers are placing increasing emphasis on efficient overall thermal management of the vehicle.

The chamber enables to test both occupants’ subjective perception of thermal comfort and the performance of components and entire vehicles under controlled temperature conditions of up to minus 20 degrees Celsius. It is thus a valuable addition to the existing testing and bench-marking facilities at the Company’s global research and development centers. The tests conducted in the chamber show how existing insulating components such as under battery shields, carpets and interior trim need to be optimized to further enhance the thermal management of the vehicle battery and cabin. The tests also provide valuable insights regarding the development and optimization of heated surfaces such as floor mats and door trim panels to improve thermal performance and driver comfort of electric vehicles.

Source:

Autoneum Management AG

© ITM/TU Dresden
Woven hemisphere for usage in radome antennaes
15.12.2022

AVK Innovation Award 2022 to young engineers from ITM at TU Dresden

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

Continuous simulation aided engineering from CAD design to integrally woven 2D and 3D preforms by means of highly complex weave development for spatial constructions is a unique at the ITM, which was indispensable for the development of these promising woven high-tech structures. This technology is completely new and has never been carried out in this way before. The fabric structures are characterised by a high innovation level due to their geometric diversity and purposes. It can be used in numerous applications and further more contributes to the development of completely new fields of application. The technology can be implemented on all Jacquard weaving machines with only an additional device and the preform geometry is only determined by the control of the Jacquard machine. The preform geometry can be used in the full working width of the weaving machine.

Professor Chokri Cherif, Institute Director of the ITM, and his team are very pleased about these continuous research success in the constantly growing research field of 3D weaving technology, which are achieved at the ITM in close cooperation with industry and users. "This award is a special honour for our institute and confirms that the many years of our excellent research in the field of near-net-shape 3D weaving for the fibre-reinforced plastics sector plays a significant role and that we are making a significant contribution to the sustainable and resource-efficient production of lightweight structures with our development".

Source:

ITM/TU Dresden

Photo: OCSiAl
24.11.2022

OCSiAl: Graphene nanotubes expand textiles’ functionality

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 

  • ESD protection in harsh environments:
  • Polymer-coated chemical-resistant fabrics and fireproof special textiles with expanded electrostatic discharge (ESD) safety function have been developed.
  • Graphene nanotubes used as an electrostatic dissipative material make it possible to add ESD protection without compromising resistance to aggressive environments.
  • Efficient working loadings starting from 0.06% are sufficient for stable anti-static properties fully compliant with safety standards and position graphene nanotubes far ahead of other conductive materials.

Protective clothing, upholstery, and industrial fabrics that experience harsh conditions require advanced performance. Depending on the final application, specialty textiles can be augmented with flame retardancy, durability, chemical protection, and other properties. Additionally, ESD protection is obligatory in the chemical, rescue, mining, oil & gas, automotive manufacturing, and many other industries that are subject to safety regulations.
 
In applications where multifunctionality of textile is required, graphene nanotubes overcome the limitations of other conductive materials such as unstable anti-static properties; degradation of strength, or chemical or fire resistance; complicated manufacturing processes; dusty production; carbon contamination on the material’s surface; or limited color options. Recent developments show that graphene nanotubes provide ESD protection to textiles in full compliance with safety standards and without degrading the textile’s resistance to harsh environments, greatly enhancing the value of textiles.
 
One such example is textiles coated with fluoroelastomer (a polymer that is highly resistant to chemicals) augmented with graphene nanotubes from OCSiAl. Nanotubes provide the material with surface resistivity of 10^6–10^8 Ω/sq compliant with EN, ISO, and ATEX standards for personal protective equipment. This new technology opens the door for the fabric to be used in high-level protective suits, combining exceptional protection from chemicals with electrostatic discharge protection.
 
Another example is how graphene nanotube technology is being acknowledged as a replacement for metal yarns in fireproof and anti-static textiles, protecting against sparks, splashes of molten metal, high temperatures, and the risk of sudden electrostatic discharge. While metal yarns require a specific knitting process and storage conditions, incorporating nanotubes in a fabric does not require any changes in the manufacturing process as the water-based dispersion is introduced into the fabric at the fluoro-organic treatment stage. The fabric with OCSiAl’s graphene nanotubes has been proven to maintain the pre-set level of ESD protection (surface resistance of 10^7 Ω) after numerous washes.
 
Permanent and stable electrical conductivity, facilitated by graphene nanotubes, is not only a matter of safety but brings additional value in augmenting dust-repellent properties and touchscreen compatibility for comfort and time savings. At the same time, the ultralow nanotube concentrations result in maintained manufacturing processes and mechanical properties, and improve product aesthetics by making it possible to use a wide range of colors. Altogether, these benefits allow textile manufacturers to create next-generation special textiles with expanded functionality.

 

16.11.2022

AkzoNobel launches sustainable biocide-free range for boaters

Recreational boaters now have an easy way to be more sustainable following the introduction of a new biocide-free (B-Free) fouling control range from AkzoNobel’s Yacht Coatings business.

The first product to be launched from the new B-Free range is B-Free Explore. It features a specially-developed, unique silicone polymer technology which produces an exceptionally smooth and slick hull – helping to reduce drag.

Fouling is controlled by preventing microorganisms such as barnacles, slime and algae from forming strong bonds with the hull of the boat. Any that do adhere can be simply wiped away by hand or water jet.

“We’ve developed high-performance technology which allows boaters to maintain a clean, smooth hull,” explains Simon Parker, Director of AkzoNobel’s Marine and Protective Coatings business. “It’s based on proven technology and exemplifies the restless spirit of innovation which has been the cornerstone of our International brand for more than 140 years.”

Recreational boaters now have an easy way to be more sustainable following the introduction of a new biocide-free (B-Free) fouling control range from AkzoNobel’s Yacht Coatings business.

The first product to be launched from the new B-Free range is B-Free Explore. It features a specially-developed, unique silicone polymer technology which produces an exceptionally smooth and slick hull – helping to reduce drag.

Fouling is controlled by preventing microorganisms such as barnacles, slime and algae from forming strong bonds with the hull of the boat. Any that do adhere can be simply wiped away by hand or water jet.

“We’ve developed high-performance technology which allows boaters to maintain a clean, smooth hull,” explains Simon Parker, Director of AkzoNobel’s Marine and Protective Coatings business. “It’s based on proven technology and exemplifies the restless spirit of innovation which has been the cornerstone of our International brand for more than 140 years.”

Adds Jemma Lampkin, Global Commercial Director for AkzoNobel’s Yacht Coatings business: “Boaters are becoming more aware of the impact they can have on the environment, but they still require technologies that deliver high-performance fouling control. B-Free Explore provides a stand-out solution for both of these challenges.”

Specially crafted for the leisure boat market, B-Free Explore is the culmination of a five-year development program. It can be applied to new hulls or directly to existing antifouling, without the need for the removal of the previous antifouling coating. This makes it simple for boaters to upgrade from their traditional coatings to the new technology.

The new product is also better for the marine ecosystem. Being biocide-free, it provides a smooth surface for improved hull efficiencies, which can lead to a reduced carbon footprint.

Currently being introduced in Northern Europe, B-Free Explore will be rolled out across Germany, the Netherlands, Norway and Sweden in January 2023.

More information:
AkzoNobel Coatings Polymere
Source:

AkzoNobel

02.11.2022

Swiss textile manufacturer Schoeller Textil AG with new branding

  • Focus on the guiding principle of "textile intelligence" and sustainability

Long before sustainability became a trend in the textile industry, Schoeller Textil AG, which has been innovating technical fabrics and smart textile finishing technologies for more than 150 years, made it its mission to develop textile innovations in harmony with nature. Now the company is undergoing an extensive rebranding, whilst unveiling its strong brand foundation in the process. The result embodies the newly defined guiding principle of “Textile Intelligence” - the development and successful implementation of innovative textiles and intelligent textile technologies.

Innovations in the textile industry must meet requirements on several levels – offering both new and optimized solutions to sociological, ecological, and economic challenges of our time. Creating this holistic added value is firmly rooted in the Schoeller brand origin and is still the top priority in textile product development today. The brand essence has thus remained the same, but it has been embodied anew.

  • Focus on the guiding principle of "textile intelligence" and sustainability

Long before sustainability became a trend in the textile industry, Schoeller Textil AG, which has been innovating technical fabrics and smart textile finishing technologies for more than 150 years, made it its mission to develop textile innovations in harmony with nature. Now the company is undergoing an extensive rebranding, whilst unveiling its strong brand foundation in the process. The result embodies the newly defined guiding principle of “Textile Intelligence” - the development and successful implementation of innovative textiles and intelligent textile technologies.

Innovations in the textile industry must meet requirements on several levels – offering both new and optimized solutions to sociological, ecological, and economic challenges of our time. Creating this holistic added value is firmly rooted in the Schoeller brand origin and is still the top priority in textile product development today. The brand essence has thus remained the same, but it has been embodied anew.

“At the beginning of the rebranding process, it was clear to us we had to root ourselves in (Swiss) tradition in order to fully realize Schoeller’s entire brand potential and successfully explore new, digital paths,” said Antonio Gatti Balsarri, Schoeller chief commercial officer.

“The goal of the rebranding is to communicate our traditional brand values in a completely new brand presence. The result was a sharpened brand profile, a clear brand strategy and tonality, as well as a clean, modern corporate design. We will specifically address our sustainability commitment through the expansion of digital touchpoints, their cross-media use, and an increased online presence. Simplified, straightforward, sustainable - in accordance with our greatest source of inspiration: nature.”

Transparency and Sustainability
Paramount to Schoeller’s corporate identity is the full disclosure of brand principles and transparency around all business divisions. A simplified logo design was established by reducing logo elements and colors for a modern look and feel that can be produced in a much more resource-efficient manner. Schoeller’s new brand mantra of “Textile Intelligence” speaks to its company mission of more than 150 years.

Schoeller has been a bluesign system partner from the very beginning and uses the Higg Facility Environmental Module (FEM) to assess sustainable performance. In addition to environmentally-friendly manufacturing processes and careful material selection, the highest quality and sustainability standards in production also mean guaranteeing fair working conditions. Schoeller follows a Code of Conduct that guarantees transparent production chains, environmental protection, and fair working conditions.

“Zero Textile Waste” becomes a targeted brand strategy. While the production of textiles and textile technologies is continuously being optimized to preserve resources, the manufacturing processes are often costly and complex. To this end, Schoeller offers new approaches to efforts around Zero Waste in the industry. Its new online shop, “Schoeller re-Fabric” sells textile remnants from production directly to designers and smaller productions to increase its overall production volume efficiency and avoid textile waste.

Source:

Schoeller Textil AG

Photo: Monforts
The new seven chamber Montex TwinAir stenter range with Montex®Coat coating at the plant.
26.10.2022

Dolinschek: Compression stockings in a variety of colours

The identification of profitable new niche markets has been central to the success and continuous expansion of Germany’s Dolinschek, a leading knitting, dyeing and finishing specialist, located in Burladingen in Baden-Württemberg.

“There is so much more to textiles than just clothing,” says Theo Dolinschek, who runs the company with his brother Erwin. “We handle many different technical materials such as automotive components, geotextiles and wallcoverings, but also those for more unusual applications such as inlays for extractor hoods, cut protection fabrics and even wool felts which are employed as insulation on wind turbines.

“We have also recently started to produce compression stockings in a variety of colours, because not everyone wants them black, beige or skin coloured. The most important product areas for us now are in sportswear, corsetry and lingerie, as well as orthopedic and medical products, workwear and protective clothing, but in addition, many other technical applications.”

The identification of profitable new niche markets has been central to the success and continuous expansion of Germany’s Dolinschek, a leading knitting, dyeing and finishing specialist, located in Burladingen in Baden-Württemberg.

“There is so much more to textiles than just clothing,” says Theo Dolinschek, who runs the company with his brother Erwin. “We handle many different technical materials such as automotive components, geotextiles and wallcoverings, but also those for more unusual applications such as inlays for extractor hoods, cut protection fabrics and even wool felts which are employed as insulation on wind turbines.

“We have also recently started to produce compression stockings in a variety of colours, because not everyone wants them black, beige or skin coloured. The most important product areas for us now are in sportswear, corsetry and lingerie, as well as orthopedic and medical products, workwear and protective clothing, but in addition, many other technical applications.”

The Dolinschek brothers moved their business to the historic site of the former Ambrosius Heim textile company in Burladingen in 2001 in order to expand. At the time, the company – founded by their father in 1980 as a textile wholesaler before moving into dyeing – employed just 13 people. Within a year, the company had bought additional space at the site.

Now, with Theo in charge of technology and sales, and Erwin responsible for production, the company employs almost 100 people and operates on an integrated site of 35,000 square metres.

In 2005, a laminating department was established by the company and since 2012 investment in knitting machines has been ongoing.

“The further we went into vertical integration, the more of our own products we were able to position on the market and so we were also able to make ourselves more independent,” says Theo. “We have continued to develop and today we can produce high-quality fabrics for many fields, with 42 knitting machines, 36 dyeing machines, three stenter frames and many other production and processing machines.”

Dolinschek has also developed its own proprietary TMG dyeing machines which have subsequently been successfully sold to many other companies all over the world. There are currently 11 of these machines  in operation at the Burladingen site and around 45 installed at other companies.

For finishing technology, however, the company relies on Monforts, and has installed a new seven chamber Montex TwinAir stenter range with a Montex®Coat coating unit in knife execution, enabling the coating of dimensionally stable knitted fabrics with polyurethane or acrylate. Another unique feature is the Teflon-coated (non-stick) transportation belt through the system.

The Montex line is also equipped with integrated heat recovery and exhaust gas purification to ensure the most resource-efficient processing available on the market. The exhaust air goes from the Monforts heat recovery system into an existing air/water heat recovery system and then into an electrostatic precipitator.

Highly-intuitive Monforts Qualitex visualisation software allows all machine functions and process parameters to be assessed and controlled easily.

 

More information:
Dolinschek Monforts
Source:

AWOL Media

Foto: Freudenberg Performance Materials
11.08.2022

Freudenberg Friction Inserts at WindEnergy Hamburg 2022

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

Freudenberg Performance Materials is introducing Freudenberg Friction Inserts to trade visitors at WindEnergy, the leading trade fair for the international wind energy industry. Freudenberg Friction Inserts is a unique technology aimed at increasing the power density of wind turbines.

The Freudenberg Friction Inserts (FFI) technology is based on a special very thin nonwoven carrier material coated on one side with hard particles. The FFI are customized to fit each application, in terms of both the geometry and the construction parameters of the connection. As they do not create a gap they can be applied exactly where they are needed.

When placed in the joint, these hard particles penetrate into the surfaces of the two joining parts creating a micro interlock, thus reliably increasing the friction coefficient and achieving higher torque transmission in connections. This results in higher performance and a significant improvement in the efficiency of wind turbines. In addition, it enables the downsizing of components without compromising performance, reducing weight and material.

FFI help to improve the reliability of connections and thus of the entire wind turbine. Furthermore, they eliminate slipping and prevent fretting of connections.

Other examples of applications for FFI are highly loaded flange connections between the rotor shaft and gearbox, connections between the main bearing and the machine carrier housing, the gearbox to generator, or at the pitch gear or ring gear. They increase the friction co-efficient between two components.

Source:

Freudenberg Performance Materials

(c) Messe Frankfurt (HK) Ltd.
08.08.2022

Deferral of Cinte Techtextil China 2022

In light of the evolving pandemic circumstances in Shanghai, Cinte Techtextil China will no longer be taking place from 6 – 8 September at the Shanghai New International Expo Centre. A new date for the technical textile fair will be announced in due course.
 
Ms Wendy Wen, Managing Director of Messe Frankfurt (HK) Ltd, explained: “After discussions with stakeholders, and in support of the government’s pandemic control measures, we have decided to postpone Cinte Techtextil China 2022 to a later date. The safety of fairgoers is of paramount importance to the fair’s ongoing success, and we are working tirelessly to provide an efficient sourcing platform for the technical textile industry. I would like to thank all participants for their sustained support and understanding.”

In light of the evolving pandemic circumstances in Shanghai, Cinte Techtextil China will no longer be taking place from 6 – 8 September at the Shanghai New International Expo Centre. A new date for the technical textile fair will be announced in due course.
 
Ms Wendy Wen, Managing Director of Messe Frankfurt (HK) Ltd, explained: “After discussions with stakeholders, and in support of the government’s pandemic control measures, we have decided to postpone Cinte Techtextil China 2022 to a later date. The safety of fairgoers is of paramount importance to the fair’s ongoing success, and we are working tirelessly to provide an efficient sourcing platform for the technical textile industry. I would like to thank all participants for their sustained support and understanding.”

Cinte Techtextil China’s product categories cover 12 application areas, which comprehensively span a full range of potential uses in modern technical textiles and nonwovens. These categories also cover the entire industry, from upstream technology and raw materials providers to finished fabrics, chemicals and other solutions. This scope of product groups and application areas ensures that the fair is an effective business platform for the entire industry. The 2021 edition attracted 366 exhibitors and recorded 14,868 visits. The fair is organised by Messe Frankfurt (HK) Ltd; the Sub-Council of Textile Industry, CCPIT; and the China Nonwovens & Industrial Textiles Association (CNITA).

Source:

Messe Frankfurt (HK) Ltd

(c) SHIMA SEIKI MFG., LTD.
14.06.2022

SHIMA SEIKI to exhibit at Techtextil 2022 in Frankfurt

SHIMA SEIKI MFG., LTD. of Wakayama, Japan, along with its Italian subsidiary SHIMA SEIKI ITALIA S.p.A., will be participating in the Techtextil exhibition in Frankfurt, Germany from the 21st till the 24th of June 2022.

SHIMA SEIKI MFG., LTD. of Wakayama, Japan, along with its Italian subsidiary SHIMA SEIKI ITALIA S.p.A., will be participating in the Techtextil exhibition in Frankfurt, Germany from the 21st till the 24th of June 2022.

On display will be SHIMA SEIKI’s latest innovation in flat knitting technology as applied to the field of technical textiles—a prototype weft knitting machine capable of multi-axial yarn insertion. Fabrics produced on this machine use inlay technique for the production of hybrid textiles that combine the stretch characteristics of knitted fabrics with the stability of woven textiles, suited to various technical applications. To this, warp yarn is inserted to further expand its capability to produce 3D-shaped carbon fiber and composite preforms directly on the machine. This is made possible by taking advantage of the fact that flat knitting as a textile production method is capable of producing end products that are shaped-to-form and with added thickness. Compared to current methods of preform production, savings in post-processing time, material, labor and associated costs are immense, realizing efficient and sustainable production. SHIMA SEIKI’s own yarn unwinding technology is also used for optimum yarn feed and tension for use with technical yarns that are otherwise difficult to knit. Industrial textile samples knit on the multi-axial machine will also be available for examination on-site.

SHIMA SEIKI's SDS®-ONE APEX4 3D design system will be available for demonstrations as well. Of particular interest should be its ultra-realistic simulation capability that realizes Virtual Sampling. When countless variations must be evaluated before arriving at a final design, virtual product samples can be used to streamline the decision-making process by minimizing the enormous amount of time, cost and material normally associated with producing actual samples for each variation. When approved, the same data can be converted to machine data for immediate knitting, significantly reducing lead times.

Photo Andritz
02.06.2022

Zhoukou Xuwang, China, starts up two ANDRITZ crosslapped spunlace lines

Zhoukou Xuwang Co., Ltd. has successfully started up two new ANDRITZ neXline spunlace lines at its facilities based in Henan province, China. Combining equipment from the aXcess and eXcelle ranges, both lines are dedicated to the production of spunlace fabrics of 30 to 120 gsm made out of viscose and polyester fibers. The ANDRITZ design will allow Zhoukou Xuwang to serve the premium product market, especially for premium hygiene and technical wipes, in China.

The ANDRITZ scope of supply for the two lines included:

  • aXcess opening and blending systems
  • high-performance eXcelle card and crosslapper
  • robust aXcess CA25 carding machine
  • efficient Jetlace Avantage hydroentanglement unit

This configuration will enable Zhoukou Xuwang to manufacture high-quality products while reducing raw materials consumption. These goals are further enabled by the installation of an ANDRITZ Asselin-Thibeau crosslapper PRO35-140, generating a uniform profile over the entire web width.

Zhoukou Xuwang Co., Ltd. has successfully started up two new ANDRITZ neXline spunlace lines at its facilities based in Henan province, China. Combining equipment from the aXcess and eXcelle ranges, both lines are dedicated to the production of spunlace fabrics of 30 to 120 gsm made out of viscose and polyester fibers. The ANDRITZ design will allow Zhoukou Xuwang to serve the premium product market, especially for premium hygiene and technical wipes, in China.

The ANDRITZ scope of supply for the two lines included:

  • aXcess opening and blending systems
  • high-performance eXcelle card and crosslapper
  • robust aXcess CA25 carding machine
  • efficient Jetlace Avantage hydroentanglement unit

This configuration will enable Zhoukou Xuwang to manufacture high-quality products while reducing raw materials consumption. These goals are further enabled by the installation of an ANDRITZ Asselin-Thibeau crosslapper PRO35-140, generating a uniform profile over the entire web width.

In spite of the difficult circumstances and supply chain disruptions related to the Covid crisis, both spunlace lines were installed smoothly and on time. They quickly went into commercial production, with a line speed of up to 100 m/min and high-performance MD/CD ratio.

More information:
Andritz Andritz Nonwoven
Source:

Andritz

ECO-COAT minimum application unit (c) Brückner
Minimalauftragsaggregat ECO-COAT
02.06.2022

BRÜCKNER: Answering current challenges of the textile industry

The German machinery producer BRÜCKNER used exactly these chances and repositioned itself during the pandemic period. For more than 70 years, the family-run company has been specialized in individual finishing concepts for textiles, technical textiles, nonwovens and floor coverings. The current challenges in the textile industry are serious. The clear increase of the energy costs and the general uncertainty of the energy supply as well as political requirements make a profitable textile production more and more demanding for many companies.

The German machinery producer BRÜCKNER used exactly these chances and repositioned itself during the pandemic period. For more than 70 years, the family-run company has been specialized in individual finishing concepts for textiles, technical textiles, nonwovens and floor coverings. The current challenges in the textile industry are serious. The clear increase of the energy costs and the general uncertainty of the energy supply as well as political requirements make a profitable textile production more and more demanding for many companies.

The company responds to this with a newly developed stenter concept with double heating system. Depending on availability, the lines can be operated with gas or oil, but also other combinations with steam or renewable energies are possible. This means that production delays and machine downtimes can be avoided as far as possible. In addition, developed intelligent assistance systems for its machines have been developed that support the machine operator in using the best possible process to operate the line as energy-efficiently as possible. Further energy savings are possible with new energy-efficient motors or heat-recovery and exhaust air cleaning systems. This also helps to avoid harmful emissions.

But many textile producers are also focusing on reducing chemicals. For this purpose, BRÜCKNER's further developed ECO-COAT minimum application unit can make a decisive contribution. Knitted and woven fabrics, but also nonwovens can be finished on one or both sides via different fabric paths. With the minimum application via an engraved roller, a single-sided application of up to 100 g/m² can be achieved. A double-sided and higher application quantity is achieved, for example, by impregnation in the nip. Irrespective of the selected fabric path, a very small liquor reservoir means that only minimal quantities of waste water are produced when changing batches or liquors, and the use of chemicals can also be significantly reduced. In addition, less water has to be evaporated in the subsequent drying process than, for example, in the case of impregnation in a water bath, so the energy requirement is significantly reduced.

On the two upcoming trade fairs ITM in Istanbul and TECHTEXTIL in Frankfurt in June, interested customers can personally get an idea of BRÜCKNER's new developments.

Source:

Brückner Trockentechnik GmbH & Co. KG

(c) Baldwin Technology Company Inc. / Barry-Wehmiller
26.05.2022

Baldwin’s TexCoat G4 finishing system minimizes chemical and water waste

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

Baldwin Technology Company Inc. has announced the installation of its TexCoat G4 finishing system at Graniteville Specialty Fabrics, a recognized leader in the production of specialty coatings and coated fabrics. With Baldwin’s cost-efficient and highly sustainable spray finishing technology, Graniteville Specialty Fabrics has been able to increase production efficiency, and minimize chemical and water waste.

Based in Graniteville, South Carolina, Graniteville Specialty Fabrics produces coatings and coated fabrics that are resistant to water, fire, UV and weather for the military, marine and tent markets, and others. The company excels in developing and sourcing custom coatings, and creating specialized technical solutions to meet specific, and often unique, end-user requirements. The installation of Baldwin’s TexCoat G4 is part of a major facility upgrade to maximize production efficiency and capacity in the durable water-repellent finishing and coating line to meet growing customer demand for advanced engineered products.

With extensive sustainability benefits, unprecedented tracking and process control, and Industry 4.0 integration, the TexCoat G4 provides consistently high-quality fabric finishing, with no chemistry waste, as well as minimal water and energy consumption. This system utilizes non-contact precision-spray technology, ensuring precise finishing coverage with the exact amount of chemistry for reaching the optimal performance of the fabric. Changeovers (pad bath emptying, cleaning and refilling) are significantly reduced, resulting in substantial chemical conservation and increased productivity.

Source:

Baldwin Technology Company Inc. / Barry-Wehmiller

Mixed reality glasses: A pilot project at Adient supports the induction of new employees". Mixed reality glasses: A pilot project at Adient supports the induction of new employees". Bild: Adient
25.05.2022

Adient wins "German Innovation Award 2022"

Adient, a leading global supplier of automotive seating systems, has won the "German Innovation Award 2022" in the category "Information Technologies and Functional Software". Adient's concept of "Mixed Reality as a key to efficient induction training", developed as a pilot project by employees at Adient’s Saarlouis production site, was able to convince the interdisciplinary jury of experts from science and technology.

Adient's concept aims to efficiently train new employees in production areas with the aid of mixed reality glasses. These glasses can be used to scan QR codes that are attached to each workstation. The QR codes call up corresponding videos in the field of view of the glasses which visually help the user to learn about the processes at the respective workstation, thus replacing the previous paper-based work instructions.

Adient, a leading global supplier of automotive seating systems, has won the "German Innovation Award 2022" in the category "Information Technologies and Functional Software". Adient's concept of "Mixed Reality as a key to efficient induction training", developed as a pilot project by employees at Adient’s Saarlouis production site, was able to convince the interdisciplinary jury of experts from science and technology.

Adient's concept aims to efficiently train new employees in production areas with the aid of mixed reality glasses. These glasses can be used to scan QR codes that are attached to each workstation. The QR codes call up corresponding videos in the field of view of the glasses which visually help the user to learn about the processes at the respective workstation, thus replacing the previous paper-based work instructions.

With this concept, Adient is using the technology to design and develop world-class seating solution for its global customers. New employees can thus be given a comprehensive understanding of the complex structures of a car seat much better, faster, and in a more realistic way. In addition to optimized communication, changes in the process such as product modifications can be implemented more easily than with printed work instructions.

Source:

Adient

Battery Show 2022: Freudenberg presents liquid absorbers for lithium-ion battery packs (c) Freudenberg
Freudenberg battery pack liquid absorbers
18.05.2022

Freudenberg auf Battery Show 2022

  • Freudenberg presents liquid absorbers for lithium-ion battery packs

The experts from Freudenberg Performance Materials (Freudenberg) will be presenting battery pack liquid absorbers, an innovative solution that makes battery systems safer, at this year's Battery Show in Stuttgart. The absorbent pads capture and store unwanted liquids inside the packs quickly and reliably. With adjustable absorption capacity and geometries, battery pack liquid absorbers ensure long-lasting battery packs. Visitors will find Freudenberg at Stand C 36 in Hall 10 from June 28 to 30.

Battery packs are the core elements of mobile and stationary lithium-ion energy storage systems. They are used in automotive and industrial applications. The performance and lifespan of these components are largely responsible for the efficiency of the energy storage system. Moisture inside the packs, such as condensation water or leaking coolant, can considerably diminish both function and lifespan. Battery pack liquid absorbers act as a safety system: the special fleece quickly takes up condensate or coolant and stores it effectively.

  • Freudenberg presents liquid absorbers for lithium-ion battery packs

The experts from Freudenberg Performance Materials (Freudenberg) will be presenting battery pack liquid absorbers, an innovative solution that makes battery systems safer, at this year's Battery Show in Stuttgart. The absorbent pads capture and store unwanted liquids inside the packs quickly and reliably. With adjustable absorption capacity and geometries, battery pack liquid absorbers ensure long-lasting battery packs. Visitors will find Freudenberg at Stand C 36 in Hall 10 from June 28 to 30.

Battery packs are the core elements of mobile and stationary lithium-ion energy storage systems. They are used in automotive and industrial applications. The performance and lifespan of these components are largely responsible for the efficiency of the energy storage system. Moisture inside the packs, such as condensation water or leaking coolant, can considerably diminish both function and lifespan. Battery pack liquid absorbers act as a safety system: the special fleece quickly takes up condensate or coolant and stores it effectively.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

(c) DiloGroup
13.05.2022

DiloGroup at Techtextil with nonwovens technology

The DiloGroup informs at Techtextil in Frankfurt (June 21 – 24, 2022) about new developments aimed at improving production technologies with a focus on needlefelts.

It becomes more evident that the textile industry comes into the focus of regulatory authorities who push respecting sustainability principles and who initiate a new body of laws. Hence all industrial sectors are requested to achieve savings in material and energy. The textile machine building, of course, plays an important role by seizing this initiative and offering solutions for fibre pulp recycling and reduction of energy, water and ancillaries. DiloGroup has made big efforts to meet these challenges together with a circle of partner companies. In this regard focal points of the development work are:

The DiloGroup informs at Techtextil in Frankfurt (June 21 – 24, 2022) about new developments aimed at improving production technologies with a focus on needlefelts.

It becomes more evident that the textile industry comes into the focus of regulatory authorities who push respecting sustainability principles and who initiate a new body of laws. Hence all industrial sectors are requested to achieve savings in material and energy. The textile machine building, of course, plays an important role by seizing this initiative and offering solutions for fibre pulp recycling and reduction of energy, water and ancillaries. DiloGroup has made big efforts to meet these challenges together with a circle of partner companies. In this regard focal points of the development work are:

  1. Intense Needling
    Needling per se is a mechanical production method with a high energy efficiency. For this reason, the development efforts of DiloGroup aim at producing nonwovens by “intense needling” instead of water entangling, even for light nonwovens made of fine fibres for the medical and hygiene sector with an area weight of 30 – 100 g/m². This would result in a reduction of the environmentally relevant production costs; per annum to about 1/3 to 1/5 of current.
    Despite the prospective advantages of the mechanical intense needling method over the hydrodynamical, water entanglement is at the moment the most important production method for low area weights and highest production capacity and is also offered by the DiloGroup as general contractor in cooperation with partner companies.
  2. “Fibre Pulp Recycling”
    Fibrous material in nonwovens and particularly used clothes can be successfully recycled, if staple length can be conserved in the tearing process. In the classical tearing process, staple lengths are dramatically reduced and therefore these fibres can only be used as base material for inferior uses in thermal or acoustic insulation or in protective textiles, transportation or protective covers etc.
    When recycling textile waste in the context of the collection of used clothes, the so called “filament-saving” tearing using special tearing machines and methods must be used to produce fibres with longer staple lengths which can be fed to a nonwoven installation. Hence product characteristics can be better specified and controlled.
  3. Additive nonwoven production
    The additive production method of the “3D-Lofter” is especially suited for automotive parts with differently distributed masses; but there may also be potential for increasing uses in the sector of apparel and shoe production.
  4. “IsoFeed”-card feeding
    In the field of card feeding, the “IsoFeed” method offers great potential for a more homogeneous card feeding at the same time reducing the variation in cross-machine fibre mass distribution and thus the fibre consumption while conserving the end product quality.
Source:

DiloGroup

Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets (c) Hexcel
Hexcel HexPly® Nature Range
11.05.2022

Hexcel Launches HexPly® Nature Range

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

  • Natural fibers combined with bio-derived epoxy resins provide sustainable options for Industrial markets

Hexcel has developed a new product range that combines Hexcel resin systems made with bio-derived resin content with natural fiber reinforcements to create material solutions for Automotive, Winter Sports, Marine and Wind Energy applications.

HexPly Nature Range includes proven resins such as HexPly M49, M78.1-LT and M79 but with bio-derived epoxy resin content. The excellent resin characteristics remain unchanged in the new Nature Range products, maintaining high mechanical performance and consistent processing properties.
In addition, the HexPly Nature Range provides prepreg options with natural fiber reinforcements that can be seamlessly integrated into existing production processes.

Hexcel worked with TÜV Austria to provide independent, high-quality measurement and assessment of the bio-content of HexPly Nature Range products. TÜV Austria’s OK biobased certification uses a standardized measurement of the biobased carbon content enabling transparency and easy like-for-like comparison between products.

At JEC World in Paris on May 3-5, Hexcel presented an alpine ski produced by the Tecnica Group Ski Excellence Center which produces skis for Blizzard and for Nordica using HexPly Nature Range M78.1-LT UD flax fiber prepreg. In addition to providing a bio-based material solution, the natural fiber-reinforced prepreg also offers the potential to improve impact performance and vibration damping in the ski.

Claude Despierres, VP of Sales and Marketing – Industrial at Hexcel, said, “Our new HexPly Nature Range forms an important part of providing customers with biobased, TÜV-certified material options based on our established prepreg resin systems. Marine, winter sports, wind energy and automotive manufacturers can now have the choice to switch from petroleum-based material solutions to Hexcel HexPly Nature Range with no compromise in performance or process efficiency.”

More information:
Hexcel’s HexPly® JEC World
Source:

Hexcel

05.05.2022

Monforts at Techtextil showcasing its finishing and coating technologies

The Techtextil and Heimtextil Summer Special exhibitions, taking place together in Frankfurt from June 21-24, represent an opportunity for Monforts to showcase its finishing and coating technologies for two of its major markets – especially at a time when energy prices continue to soar for textile manufacturers in Europe.

Existing customers of Monforts include many manufacturers in the field of home textiles, as well as those making geotextiles, automotive fabrics and other functional materials – all of whom will be well represented in Frankfurt this June. Dedicated Montex lines have also been supplied to producers of airbags, flame retardant barrier fabrics and spacer fabrics, as well as high-temperature filter materials.

The Techtextil and Heimtextil Summer Special exhibitions, taking place together in Frankfurt from June 21-24, represent an opportunity for Monforts to showcase its finishing and coating technologies for two of its major markets – especially at a time when energy prices continue to soar for textile manufacturers in Europe.

Existing customers of Monforts include many manufacturers in the field of home textiles, as well as those making geotextiles, automotive fabrics and other functional materials – all of whom will be well represented in Frankfurt this June. Dedicated Montex lines have also been supplied to producers of airbags, flame retardant barrier fabrics and spacer fabrics, as well as high-temperature filter materials.

Energy prices are rising steeply everywhere and a particular emphasis for Monforts in Frankfurt will be on the energy and heat recovery that can be achieved with Montex stenters, through features such as better insulation of the treatment chambers or the MonforClean system, in which waste heat from the drying process is used to pre-heat the drying air resulting in a radical reduction in the conventional heat supply required compared to gas and thermal oil heating. The modular system for heat recovery can also be extended for exhaust air cleaning and odour elimination. Monforts can provide a range of further resource-saving and energy recovery options tailored to each individual line installation including modification of the heating source.

With the Qualitex 800 visualization software, all article-specific settings can be stored and the formulations for thousands of treatment processes called up again at any time. Individual operators can also personalise their dashboards with the most important machine functions and process parameters.

The Qualitex 800 system is available for the automatic and continuous operation of the company’s Montex stenters, as well as its Thermex continuous dyeing ranges, Monfortex shrinking systems and Montex®Coat coating units.

Monforts Montex®Coat coating units serve an equally diverse number of markets, including tents, tarpaulins and awnings, black-out roller blinds and sail cloth, automotive interior fabrics and medical disposables. Full PVC coatings, pigment dyeing or minimal application surface and low penetration treatments and solvent coatings (in explosion-proof conditions) with knife coating, roller coating or screen printing can all be accommodated with this system.

All of these very different materials require coating and finishing for maximum efficiency, using Monforts technologies which provide the ultimate in flexibility and the ability to switch quickly from one fabric run to the next, without compromising on the economical use of energy or raw materials.

The Monforts EcoApplicator offers further potential for sustainably achieving perfect finishes via a precise direct application system, as an alternative to conventional padding – where fabrics are immersed in a bath of the required finishing chemicals. It can significantly further reduce the energy and water required and finishes can be applied on just one side of the fabric, or both, and even separately on each side, to be sealed in place via different heating zones in the stenter.

Source:

A. Monforts Textilmaschinen GmbH & Co. KG / AWOL Media

Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel (c) Kornit
Kornit Atlas MAX Poly
06.04.2022

Kornit Digital Printing for Unique Fashion

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

  • Kornit Digital Introduces High-Volume Digital Production Solution for Vibrant Decorative Designs on Polyester and Polyester-Blended Apparel
  • Kornit Atlas MAX Poly to Transform Professional and Recreational Sportswear, Teamwear, and Sports Brands; Injecting Life into Apparel with Power of Design Across Full Color Gamut

Kornit Digital Ltd. (NASDAQ: KRNT) (“Kornit”), a worldwide market leader in sustainable, on-demand digital fashionx and textile production, introduced today its distinctive Kornit Atlas MAX Poly system – an industry-first direct-to-garment (DTG) solution delivering superior-quality digital decoration for vibrant, colorful design on polyester and poly-blended apparel.

Kornit’s Atlas MAX Poly capitalizes on the demand for fashionable, unique sportswear and apparel. As the industry emerges from a post-pandemic environment in which athletic and leisurewear became mainstream, there is increasing demand for apparel combining polyester and poly-blends with vivid designs across a range of colors. Atlas MAX Poly can transform the multi-billion-dollar professional and recreational sports apparel and teamwear markets, limited today by limitations in mass customization of polyester.

“Kornit Atlas MAX Poly is a game-changer,” said Omer Kulka, Chief Marketing Officer at Kornit Digital. “As fashion and sports apparel merge, there’s new opportunity for innovative fashion on polyester, currently the fastest-growing textile vertical. For the first time, recreational sportswear, promotional, and sports brands can embrace vibrant and colorful design with Kornit’s proven MAX technology – setting superior quality standards for on-demand production previously not possible.”

Unveiled during Kornit Fashion Week Tel Aviv 2022, Atlas MAX Poly incorporates Kornit’s field-proven MAX technology for high-quality premium decoration, process automation, and smart autonomous quality control. With Kornit’s XDi decorative applications, Atlas MAX Poly enables endless designs and creativity on polyester, and empowers new styles for multiple effects and unlimited combinations such as emulating threadless embroidery, high-density vinyl, screen transfer emulations, and 3D effects.

The solution is compatible with mesh and plain fabrics, including brushed polyester, while maintaining durability and breathability. It brings the highest throughput for on-demand polyester decoration, reducing total cost of ownership to drive profitability. Customers gain competitive advantage via Pantone color-matching and a wide color gamut including neon colors for bright and vibrant impressions, using single-step mechanisms minimizing production footprints while maximizing versatility.

Beyond superior quality, graphics, color, and application variety, Kornit Atlas MAX Poly offers efficient, reliable, profitable end-to-end polyester production via:

  • Kornit’s ActiveLoad automated garment-loading and pallet adjustment for repeatable, high-quality output with minimal errors reducing time and waste, eliminating operator ramp-up and boosting throughput up to 20%.
  • Seamless integration with KornitX Global Fulfillment Network, enabling a pixel-to-parcel-to-doorstep experience. This unleashes untapped demand for polyester short-run production, personalization, and disruptive direct-to-fan and direct-to-recreational business models.
  • Integration with KornitX’s workflow ecosystem and Kornit Konnect™ dashboard, optimizing process visibility and control, adding data-driven insights for production floor efficiencies.
29.03.2022

SMCCreate 2022 design conference – programme available

SMCCreate 2022, the design conference jointly organized by the AVK and the European Alliance for SMC BMC takes place from 28-29 June 2022 in Antwerp, Belgium. Registrations are now possible.

This unique conference about design in SMC and BMC composite materials will provide valuable insights in the entire product design process from idea to part manufacturing, targeted both at experienced designers and at designers that are new in applying these versatile materials.

Within the time of only 1.5 day, the SMCCreate 2022 conference will cover a wide range of subjects, all relevant for designers in their selection of materials solutions that provide performance, cost efficiency, manufacturing ability and sustainability.

Program
15 lectures by international speakers from France, Germany, Italy, Spain, The Netherlands and the USA will present practical presentations about sustainability, part design, mobility and automotive applications. Equally current trends and developments in the European SMC/BMC market are on the agenda.

SMCCreate 2022, the design conference jointly organized by the AVK and the European Alliance for SMC BMC takes place from 28-29 June 2022 in Antwerp, Belgium. Registrations are now possible.

This unique conference about design in SMC and BMC composite materials will provide valuable insights in the entire product design process from idea to part manufacturing, targeted both at experienced designers and at designers that are new in applying these versatile materials.

Within the time of only 1.5 day, the SMCCreate 2022 conference will cover a wide range of subjects, all relevant for designers in their selection of materials solutions that provide performance, cost efficiency, manufacturing ability and sustainability.

Program
15 lectures by international speakers from France, Germany, Italy, Spain, The Netherlands and the USA will present practical presentations about sustainability, part design, mobility and automotive applications. Equally current trends and developments in the European SMC/BMC market are on the agenda.

Date and Location
The SMCCreate 2022 Conference will be organized on June 28-29, 2022 in the Hilton Hotel in Antwerp (Belgium). The presentation language will be English. The programme, further details and registration information is available at www.avk-tv.de.

Source:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

Snuggle Implements Kornit Atlas MAX Systems to Support Sustained Growth in Sustainable, Efficient Production on Demand (c) Kornit Digital
Kornit XDi at Snuggle
14.03.2022

Snuggle Implements Kornit Atlas MAX Systems to Support Sustained Growth in Sustainable, Efficient Production on Demand

  • “The Atlas MAX technology provides a marked improvement in quality; it gives you that edge and something different."

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in sustainable, on-demand, digital textile production technologies, announced today that Peterborough, United Kingdom-based print provider Snuggle has installed two Kornit Atlas MAX systems for superior versatility in their on-demand fulfilment production operations. A Kornit customer since 2017, the addition of Kornit’s most advanced direct-to-garment production systems reflects Snuggle’s sustained profitability and growth since that time.

  • “The Atlas MAX technology provides a marked improvement in quality; it gives you that edge and something different."

Kornit Digital Ltd. (NASDAQ: KRNT), a worldwide market leader in sustainable, on-demand, digital textile production technologies, announced today that Peterborough, United Kingdom-based print provider Snuggle has installed two Kornit Atlas MAX systems for superior versatility in their on-demand fulfilment production operations. A Kornit customer since 2017, the addition of Kornit’s most advanced direct-to-garment production systems reflects Snuggle’s sustained profitability and growth since that time.

Kornit Atlas MAX is the first digital direct-to-garment production system to feature XDi technology, which empowers users to simulate embroidery, dye sublimation, vinyl heat transfer, and 3D graphic effects with one single-step platform, using Kornit’s eco-friendly NeoPigment™ inks. Delivering superior graphic detail, consistent retail quality, and low and consistent cost per print to ensure profitability in any quantity, the system is engineered for adaptability to long-term automation needs, which helps businesses like Snuggle address the ongoing labour shortage.

With seven Kornit Digital systems in total, Snuggle is now able to produce up to 12,000 units daily, and has expanded its production space more than threefold since first investing in the technology. While the business does include an embroidery unit, Snuggle rejected screen printing due to its slow setup process, inefficient sampling for bulk orders, and the inability to generate profit from smaller custom orders. Furthermore, digitally-enabled production on demand was critical to their adapting when the pandemic economy caused many customers to cancel bulk orders suddenly.

More information:
Kornit Digital Atlas MAX
Source:

Kornit Digital