From the Sector

Reset
157 results
25.03.2024

Texhibition Istanbul: Fifth edition successfully concluded

The fifth edition of the Texhibition Istanbul Fabric and Textile Accessories Fair from 6 to 8 March 2024, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), presented 557 exhibitors showcasing the entire range of the textile supplying section: from woven and knitted fabrics to accessories and artificial leather. A new addition was a separate hall for yarns and denim, the BlueBlackDenim hall. With this trade fair, Texhibition has more than doubled its floor space compared to the last event to 35,000 square metres.

Exhibitors
Texhibition Istanbul acts as a central point of contact for the entire international industry, with a clear focus on quality, innovation and the latest trends like the denim companies Bossa, Çalık, İsko, İskur and Kipaş at the BlueBlackDenim Hall.

Yarn companies such as Aksa, Diktaş, Ensar, Karafiber, Kaplanlar, Korteks, Migiteks, Sasa, Tepar showed the production power of the yarn sector, where the product quality, design and workmanship came together.

The fifth edition of the Texhibition Istanbul Fabric and Textile Accessories Fair from 6 to 8 March 2024, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), presented 557 exhibitors showcasing the entire range of the textile supplying section: from woven and knitted fabrics to accessories and artificial leather. A new addition was a separate hall for yarns and denim, the BlueBlackDenim hall. With this trade fair, Texhibition has more than doubled its floor space compared to the last event to 35,000 square metres.

Exhibitors
Texhibition Istanbul acts as a central point of contact for the entire international industry, with a clear focus on quality, innovation and the latest trends like the denim companies Bossa, Çalık, İsko, İskur and Kipaş at the BlueBlackDenim Hall.

Yarn companies such as Aksa, Diktaş, Ensar, Karafiber, Kaplanlar, Korteks, Migiteks, Sasa, Tepar showed the production power of the yarn sector, where the product quality, design and workmanship came together.

In addition to well-known companies such as Almodo, Bahariye, BTD, Can Textile, Iskur, Kipaş, Menderes, Söktaş, Yünsa, Zorlu, İpeker a large number of other export-oriented companies from the segments of textiles (woven fabrics, knitting) presented their latest designs and products.

Visitors
25,752 visitors came from over 112 countries, 41.8% from the European Union (including Germany, Italy, the Netherlands, Spain, Romania etc.) and Great Britain, Ukraine,26.5% from Asia (including Russia etc.), 14.8% from the Middle East (including Jordan, United Arab Emirates, Saudi Arabia) 10.7% from North Africa (including Algeria, Tunisia etc.), 3.1% from North America (United States, Canada), 3.1% from South America and other countries.

American buyers from the USA and Canada in particular, but also a large number of Mexican and Colombian buyers took advantage of the numerous match-making opportunities at Texhibition. Many B2B meetings took place and led to numerous orders being placed, including from key accounts such as Alexander Wang, Asos, Forever 21, Sainsbury's, Veronica Beard etc.

More information:
Texhibition Istanbul Yarns Denim
Source:

JANDALI

Lenzing: Sustainable geotextiles as glacier protection and jacket (c) UN Nations
22.03.2024

Lenzing: Sustainable geotextiles as glacier protection and jacket

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The Lenzing Group has created an innovative concept that contributes to the sustainable protection of our glaciers while inspiring collective action for sustainable practices and a circular economy in the nonwovens and textile value chain. The concept, which was artistically staged by the Italian artist Michelangelo Pistoletto, was presented on March 21, 2024, as part of the International Day of Forests celebrations at the Palais des Nations, the headquarters of the United Nations Office at Geneva (UNOG).

The melting of glaciers is being severely impacted by global warming. Geotextiles are used to protect ice and snow. However, the nonwovens used for this are made of fossil-based fibers, which allow microplastics1 to enter the valley via streams and may enter the food chain through small organisms and animals. Nonwovens made from cellulosic LENZING™ fibers, which are biodegradable at the end of their life cycle and can be completely recycled, are the sustainable solution to this problem.

The covering of a small area with the new material made from LENZING™ fibers was tested for the first time during a field test on the Stubai Glacier. Four meters of ice were saved from melting. This was confirmed in a study conducted by the University of Innsbruck and the Austrian glacier lift operators on the Stubai Glacier in Tyrol (Austria). In 2023, the pilot project was successfully extended to all Austrian glaciers used by tourists.

Last year, the project was also awarded first place in the prestigious Swiss BIO TOP Awards for wood and material innovations.

Lenzing takes this innovation project as an opportunity to inspire collaborative action towards sustainable practices and circularity in the textile value chain. Together with a network of innovative partners, Lenzing is working on processing geotextiles into new textile fibers giving them a second life as a garment. The use of geotextiles is usually limited to two years, after which the nonwovens would be disposed of. In the first phase of the pilot project, the recycling of nonwovens made for geotextiles use has been successfully tested and a fashionable “Glacier Jacket” has been produced, showcasing that the recycling of geotextiles is viable. Next to Lenzing, the network includes Marchi & Fildi Spa, a specialist in the field of mechanical recycling, the denim fabric manufacturer Candiani Denim and the fashion studio Blue of a Kind.

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year Photo: DITF
The Flexidress in its various forms
22.03.2024

HEREWEAR is winner of the Cellulose Fibre Innovation of the Year

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

At the "International Conference on Cellulose Fibers 2024" in Cologne, Germany, the Nova Institute for Ecology and Innovation awarded first place in the Innovation Prize to the project partners of the EU-funded HEREWEAR project. They presented a dress made of cellulose fibers, which is entirely made of straw pulp.

HEREWEAR is an EU-wide research project that brings together partners from research and industry. They are working to establish a European circular economy for locally produced textiles and clothing made from bio-based raw materials.
The HEREWEAR consortium consists of small and medium-sized enterprises and research institutions. HEREWEAR covers all the necessary expertise and infrastructure from academic and applied research and industry from nine EU countries.

The HEREWEAR approach includes technical and ecological innovations in the production of fibers, yarns, fabrics, knitwear and garments, as well as the use of regional value chains and the circular development of fashion items.

New technologies for wet and melt spinning of cellulose and bio-based polyesters, e.g. PLA, from which yarns and fabrics are produced, form the technical basis. Coating and dyeing processes have been developed and tested as part of the project. In addition to reducing the carbon footprint of the product, another environmental goal is to reduce the release of microfibers throughout the textile manufacturing process and life cycle.

Improving the sustainability and recyclability of the developed garments is ensured by design for circularity and digitally networked production means. On-demand production is realized in so-called "microfactories", which are individualized and produce only for actual demand. This production method can be achieved through regional, networked value chains and enables the traceability of materials and manufacturing processes.

The dress presented at the award ceremony is an example of the cooperation and the different qualifications of the project partners: TNO (Netherlands Organization for Applied Scientific Research) provided sustainably produced pulp. The HighPerCell fibers were produced in DITF's spinning facilities. At the same time, designers from the fashion label Vretena created the design for the flexible, two-piece dress, which can be knitted without cutting waste. DITF textile experts worked with the designers to develop the knitting pattern. DITF textile engineers and technicians produced the knitted fabric and assembled the dress at the institutes’ technical center. DITF computer scientists and engineers created the "value chain" and "digital twins" for digital traceability of the production processes.

The innovation prize was awarded to the HEREWEAR consortiu for their joint achievement. Representatives of DITF Denkendorf and Vretena accepted the award on behalf of the EU project partners.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

DITF: CO2-negative construction with new composite material Photo: DITF
Structure of the wall element
20.03.2024

DITF: CO2-negative construction with new composite material

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

The DITF is leading the joint project "DACCUS-Pre*". The basic idea of the project is to develop a new building material that stores carbon in the long term and removes more CO2 from the atmosphere than is emitted during its production.       

In collaboration with the company TechnoCarbon Technologies, the project is now well advanced - a first demonstrator in the form of a house wall element has been realized. It consists of three materials: Natural stone, carbon fibers and biochar. Each component contributes in a different way to the negative CO2 balance of the material:

Two slabs of natural stone form the exposed walls of the wall element. The mechanical processing of the material, i.e. sawing in stone cutting machines, produces significant quantities of stone dust. This is very reactive due to its large specific surface area. Silicate weathering of the rock dust permanently binds a large amount of CO2 from the atmosphere.

Carbon fibers in the form of technical fabrics reinforce the side walls of the wall elements. They absorb tensile forces and are intended to stabilize the building material in the same way as reinforcing steel in concrete. The carbon fibers used are bio-based, produced from biomass. Lignin-based carbon fibers, which have long been technically optimized at DITF Denkendorf, are particularly suitable for this application: They are inexpensive due to low raw material costs and have a high carbon yield. In addition, unlike reinforcing steel, they are not susceptible to oxidation and therefore last much longer. Although carbon fibers are more energy-intensive to produce than steel, as used in reinforced concrete, only a small amount is needed for use in building materials. As a result, the energy and CO2 balance is much better than for reinforced concrete. By using solar heat and biomass to produce the carbon fibers and the weathering of the stone dust, the CO2 balance of the new building material is actually negative, making it possible to construct CO2-negative buildings.

The third component of the new building material is biochar. This is used as a filler between the two rock slabs. The char acts as an effective insulating material. It is also a permanent source of CO2 storage, which plays a significant role in the CO2 balance of the entire wall element.

From a technical point of view, the already realized demonstrator, a wall element for structural engineering, is well developed. The natural stone used is a gabbro from India, which has a high-quality appearance and is suitable for high loads. This has been proven in load tests.  Bio-based carbon fibers serve as the top layer of the stone slabs. The biochar from Convoris GmbH is characterized by particularly good thermal insulation values.

The CO2 balance of a house wall made of the new material has been calculated and compared with that of conventional reinforced concrete. This results in a difference in the CO2 balance of 157 CO2 equivalents per square meter of house wall. A significant saving!

* (Methods for removing atmospheric carbon dioxide (Carbon Dioxide Removal) by Direct Air Carbon Capture, Utilization and Sustainable Storage after Use (DACCUS).

Source:

Deutsche Institute für Textil- und Faserforschung

Winder manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy Photo: ITA – Institut für Textiltechnik of RWTH Aachen University
Winder manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy
06.03.2024

ITA: Unique Winder for Elastic Filament Yarn Development

Since March 1st 2024, the technical centre of Institut für Textiltechnik of RWTH Aachen University (ITA) has been equipped with an additional winder.

This globally unique winder has been manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy, and enables the development of elastic yarns for numerous and innovative areas of application. Monofilament and multifilament yarns can be spun within a speed range of 100 to 3,200 m/min on bobbins with an industrial standard size of 73.6 mm x 83.8 mm x 115.5 mm.

The use of these bobbins enables immediate further processing along the textile process chain, for example in production of elastic combination yarns or knitting. Due to the high flexibility of this winder in combination with the available spinning plants at ITA, testing is possible with material amounts starting from a few hundred grams up to hundreds of kilograms.

Since March 1st 2024, the technical centre of Institut für Textiltechnik of RWTH Aachen University (ITA) has been equipped with an additional winder.

This globally unique winder has been manufactured by Comoli Fermo S.r.l, Paruzzaro, Italy, and enables the development of elastic yarns for numerous and innovative areas of application. Monofilament and multifilament yarns can be spun within a speed range of 100 to 3,200 m/min on bobbins with an industrial standard size of 73.6 mm x 83.8 mm x 115.5 mm.

The use of these bobbins enables immediate further processing along the textile process chain, for example in production of elastic combination yarns or knitting. Due to the high flexibility of this winder in combination with the available spinning plants at ITA, testing is possible with material amounts starting from a few hundred grams up to hundreds of kilograms.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

DITF: Modernized spinning plant for sustainable and functional fibres Photo: DITF
Bi-component BCF spinning plant from Oerlikon Neumag
06.03.2024

DITF: Modernized spinning plant for sustainable and functional fibres

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have modernized and expanded their melt spinning pilot plant with support from the State of Baden-Württemberg. The new facility enables research into new spinning processes, fiber functionalization and sustainable fibers made from biodegradable and bio-based polymers.

In the field of melt spinning, the DITF are working on several pioneering research areas, for example the development of various fibers for medical implants or fibers made from polylactide, a sustainable bio-based polyester. Other focal points include the development of flame-retardant polyamides and their processing into fibers for carpet and automotive applications as well as the development of carbon fibers from melt-spun precursors. The development of a bio-based alternative to petroleum-based polyethylene terephthalate (PET) fibers into polyethylene furanoate (PEF) fibers is also new. Bicomponent spinning technology, in which the fibers can be produced from two different components, plays a particularly important role, too.

Since polyamide (PA) and many other polymers were developed more than 85 years ago, various melt-spun fibers have revolutionized the textile world. In the field of technical textiles, they can have on a variety of functions: depending on their exact composition, they can for example be electrically conductive or luminescent. They can also show antimicrobial properties and be flame-retardant. They are suitable for lightweight construction, for medical applications or for insulating buildings.

In order to protect the environment and resources, the use of bio-based fibers will be increased in the future with a special focus on easy-to-recycle fibers. To this end, the DITF are conducting research into sustainable polyamides, polyesters and polyolefins as well as many other polymers. Many 'classic', that is, petroleum-based polymers cannot or only insufficiently be broken down into their components or recycled directly after use. An important goal of new research work is therefore to further establish systematic recycling methods to produce fibers of the highest possible quality.

For these forward-looking tasks, a bicomponent spinning plant from Oerlikon Neumag was set up and commissioned on an industrial scale at the DITF in January. The BCF process (bulk continuous filaments) allows special bundling, bulking and processing of the (multifilament) fibers. This process enables the large-scale synthesis of carpet yarns as well as staple fiber production, a unique feature in a public research institute. The system is supplemented by a so-called spinline rheometer. This allows a range of measurement-specific chemical and physical data to be recorded online and inline, which will contribute to a better understanding of fiber formation. In addition, a new compounder will be used for the development of functionalized polymers and for the energy-saving thermomechanical recycling of textile waste.

5th Edititon of Texhibition Istanbul Fabric and Textile Accessories Fair (c) Texhibition Istanbul
05.03.2024

5th Edititon of Texhibition Istanbul Fabric and Textile Accessories Fair

Texhibition Istanbul Fabric and Textile Accessories Fair, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), is ready for its fifth edition. From 6 to 8 March 2024, 558 exhibitors will present themselves to the 30,000 expected visitors from over 100 countries, including the European Union, Great Britain, the USA, North Africa and the Middle East. With this edition, Texhibition has more than doubled the space compared to the last event to 35,000 square metres.

The fifth edition of Texhibition Istanbul offers a comprehensive overview of all product groups in the textile prepress sector: from woven fabrics to knitwear, from denim to artificial leather and textile accessories

Texhibition Istanbul Fabric and Textile Accessories Fair, organised by İTKİB Fuarcılık A.Ş. in cooperation with the Istanbul Textile Exporters Association (İTHİB), is ready for its fifth edition. From 6 to 8 March 2024, 558 exhibitors will present themselves to the 30,000 expected visitors from over 100 countries, including the European Union, Great Britain, the USA, North Africa and the Middle East. With this edition, Texhibition has more than doubled the space compared to the last event to 35,000 square metres.

The fifth edition of Texhibition Istanbul offers a comprehensive overview of all product groups in the textile prepress sector: from woven fabrics to knitwear, from denim to artificial leather and textile accessories

Due to popular demand, the fair has been expanded to five halls, including the new Yarn Hall (Hall 8) with exhibitors such as Sasa, Aksa, Karafiber, Kortex, Tepar, Ensar, Kaplanlar and Iskur and the BlueBlack Denim Hall (Hall 7), which showcases the latest denim trends and presents a wide range from blue shades to black denims with exhibitors such as İsko, Çalık Bossa, Kipas and İskur. BlueBlack Denim is designed by the  designer Idil Tarzi in cooperation with the creative directors Gönül Altunisik and Selvi Yigci.

Curated by Idil Tarzi and her creative team, the Texhibition Trend Area in Halls 4 and 5 presents the latest colour trends, materials and accessories.

Under the direction of designers Arzu Kaprol and Filiz Tunca, the Innovation Hub showcases technological innovations that add value to textile production: from fibre to yarn, from fabrics to clothing.

Digital art installations in the entrance area, which run through the entire trade fair, as well as piano performances in the foyer await visitors at the upcoming Texhibition.

Seminars and workshops with industry experts shed light on current topics in the industry, including innovations, production processes and design developments. These opportunities offer participants a platform to exchange knowledge and discuss the latest developments in the textile industry.

01.03.2024

Re:NewCell’s bankruptcy application approved

Re:NewCell AB announced that the Stockholm District Court has decided to approve the previously communicated bankruptcy application and has declared the company bankrupt.

The appointed bankruptcy trustee is lawyer Lars-Henrik Andersson at Cirio Advokatbyrå.

February,25 the Board of Directors had decided to file for bankruptcy of Re:NewCell AB at the Stockholm District Court. The reason for the decision to file for bankruptcy was that Re:NewCell has not been able to secure sufficient financing to complete the strategic review, announced on 20 November 2023, with satisfactory result.

As part of the strategic review, Re:NewCell has had well advanced negotiations with its two largest shareholders, H&M and Girindus, its existing lenders BNP Paribas, European Investment Bank, Finnvera (as partial guarantor), Nordea, AB Svensk Exportkredit and potential new investors as well as other stakeholders regarding long-term financing solutions. These discussions have not resulted in a solution which would provide Re:NewCell with the necessary liquidity and capital to ensure its operations going forward.

Re:NewCell AB announced that the Stockholm District Court has decided to approve the previously communicated bankruptcy application and has declared the company bankrupt.

The appointed bankruptcy trustee is lawyer Lars-Henrik Andersson at Cirio Advokatbyrå.

February,25 the Board of Directors had decided to file for bankruptcy of Re:NewCell AB at the Stockholm District Court. The reason for the decision to file for bankruptcy was that Re:NewCell has not been able to secure sufficient financing to complete the strategic review, announced on 20 November 2023, with satisfactory result.

As part of the strategic review, Re:NewCell has had well advanced negotiations with its two largest shareholders, H&M and Girindus, its existing lenders BNP Paribas, European Investment Bank, Finnvera (as partial guarantor), Nordea, AB Svensk Exportkredit and potential new investors as well as other stakeholders regarding long-term financing solutions. These discussions have not resulted in a solution which would provide Re:NewCell with the necessary liquidity and capital to ensure its operations going forward.

"I regret to inform that we have been forced to take this decision to file for bankruptcy. As we have a strong belief in the company’s long-term potential, we have together with our advisors spent very substantial time and efforts into trying to secure the necessary liquidity, capital and ownership structure for the company to secure its future. As part of the negotiations, we have had intense dialogues with both current main owners, new investors and our banks, as well as other stakeholders. However, these discussions have not been successful. This is a sad day for the environment, our employees, our shareholders, and our other stakeholders, and it is a testament to the lack of leadership and necessary pace of change in the fashion industry” says Chairman of the Board of Directors, Michael Berg.

More information:
Renewcell bankruptcy
Source:

Renewcell

DITF: Biopolymers from bacteria protect technical textiles Photo: DITF
Charging a doctor blade with molten PHA using a hot-melt gun
23.02.2024

DITF: Biopolymers from bacteria protect technical textiles

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

Textiles for technical applications often derive their special function via the application of coatings. This way, textiles become, for example wind and water proof or more resistant to abrasion. Usually, petroleum-based substances such as polyacrylates or polyurethanes are used. However, these consume exhaustible resources and the materials can end up in the environment if handled improperly. Therefore, the German Institutes of Textile and Fiber Research Denkendorf (DITF) are researching materials from renewable sources that are recyclable and do not pollute the environment after use. Polymers that can be produced from bacteria are here of particular interest.

These biopolymers have the advantage that they can be produced in anything from small laboratory reactors to large production plants. The most promising biopolymers include polysaccharides, polyamides from amino acids and polyesters such as polylactic acid or polyhydroxyalkanoates (PHAs), all of which are derived from renewable raw materials. PHAs is an umbrella term for a group of biotechnologically produced polyesters. The main difference between these polyesters is the number of carbon atoms in the repeat unit. To date, they have mainly been investigated for medical applications. As PHAs products are increasingly available on the market, coatings made from PHAs may also be increasingly used in technical applications in the future.

The bacteria from which the PHAs are obtained grow with the help of carbohydrates, fats and an increased CO2 concentration and light with suitable wavelength.

The properties of PHA can be adapted by varying the structure of the repeat unit. This makes polyhydroxyalkanoates a particularly interesting class of compounds for technical textile coatings, which has hardly been investigated to date. Due to their water-repellent properties, which stem from their molecular structure, and their stable structure, polyhydroxyalkanoates have great potential for the production of water-repellent, mechanically resilient textiles, such as those in demand in the automotive sector and for outdoor clothing.

The DITF have already carried out successful research work in this area. Coatings on cotton yarns and fabrics made of cotton, polyamide and polyester showed smooth and quite good adhesion. The PHA types for the coating were both procured on the open market and produced by the research partner Fraunhofer IGB. It was shown that the molten polymer can be applied to cotton yarns by extrusion through a coating nozzle. The molten polymer was successfully coated onto fabric using a doctor blade. The length of the molecular side chain of the PHA plays an important role in the properties of the coated textile. Although PHAs with medium-length side chains are better suited to achieving low stiffness and a good textile handle, their wash resistance is low. PHAs with short side chains are suitable for achieving high wash and abrasion resistance, but the textile handle is somewhat stiffer.

The team is currently investigating how the properties of PHAs can be changed in order to achieve the desired resistance and textile properties in equal measure. There are also plans to formulate aqueous formulations for yarn and textile finishing. This will allow much thinner coatings to be applied to textiles than is possible with molten PHAs.

Other DITF research teams are investigating whether PHAs are also suitable for the production of fibers and nonwovens.

Source:

Deutsche Institute für Textil- und Faserforschung (DITF)

(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Source:

Swiss Textile Machinery Swissmem

silk Bild: LoggaWiggler, Pixabay
15.02.2024

Haelixa and Trudel Silk: New Partnership

Haelixa, the trailblazer of physical traceability solutions, has partnered with Trudel Silk, a market leader for sustainable organic and recycled silk products. This collaboration brings traceability and transparency to silk production.

Silk is one of the finest and smoothest fabrics; the better the quality of the silk, the more luxurious it feels to the touch. To create the best quality silk, the conditions for mulberry cultivation must be up to the highest standards. A healthy micro-ecosystem in the fields translates to top-grade silk cocoon quality. At Trudel, this is the environment they have created for the vertical integration of their business. Trudel aims to succeed at every stage of the process, which can only be accomplished through the active involvement and visible cooperation of all market players. These players include farmers, reeling mills, twisting/spinning mills, weaving mills, dyeing and printing mills, and brands. They are involved in every step, from the cultivation of mulberry trees to the production of silk fabrics.

Haelixa, the trailblazer of physical traceability solutions, has partnered with Trudel Silk, a market leader for sustainable organic and recycled silk products. This collaboration brings traceability and transparency to silk production.

Silk is one of the finest and smoothest fabrics; the better the quality of the silk, the more luxurious it feels to the touch. To create the best quality silk, the conditions for mulberry cultivation must be up to the highest standards. A healthy micro-ecosystem in the fields translates to top-grade silk cocoon quality. At Trudel, this is the environment they have created for the vertical integration of their business. Trudel aims to succeed at every stage of the process, which can only be accomplished through the active involvement and visible cooperation of all market players. These players include farmers, reeling mills, twisting/spinning mills, weaving mills, dyeing and printing mills, and brands. They are involved in every step, from the cultivation of mulberry trees to the production of silk fabrics.

Haelixa and Trudel have collaborated to improve silk’s robust and consistent traceability. As the demand for validation of the silk value chain increases, they have partnered with groups from Italy and Asia to develop a unique solution that uses DNA markers to trace the entire supply chain of silk production. This innovative approach ensures each silk product’s ethical sourcing.

The silk fibers used in their spun silk yarns are marked with a specific DNA per farm set selected by Trudel. Throughout the supply chain, samples of yarn, fabrics, and finished products undergo testing to verify the presence of original silk fibers. Based on the reporting, the brand can trace the finished accessories or garments to Trudel.

 

More information:
Haelixa Silk Road DNA marker
Source:

Haelixa

07.02.2024

RadiciGroup’s roadmap to a sustainable future

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

“From Earth to Earth”: The new plan defines goals and concrete actions in Environmental, Social and Governance (ESG) areas to foster value creation for all stakeholders and put new sustainability regulatory requirements at the centre of attention.

A project, designed to enhance RadiciGroup's transparency and commitment to develop a responsible business along its entire value chain from an economic, social and environmental perspective and focus on the ever more widespread and stringent sustainability regulatory requirements. These are the features and goals of the Sustainability Plan presented by the Group and called "From Earth to Earth", precisely to emphasize the intent to focus on the Earth and future generations.

In the context of a complex and constantly changing scenario, the Group has therefore decided to capitalize on the goals achieved and look beyond them with a plan defining the medium-term targets and the actions to be taken to fulfil them and covering all areas considered to be "material”, i.e., relevant from the point of view of ESG and financial risks, opportunities and impacts. Indeed, the ultimate goal of "From Earth to Earth" is to support business continuity and the growth of the company and all its stakeholders.

The project was the result of a multi-year collaboration with Deloitte, which contributed an external and objective viewpoint on the definition of the material targets and themes. However, it was not an armchair exercise, but the result of an extensive listening process involving internal and external stakeholders, all of whom were sustainability experts who helped define a shortlist of strategic themes for both the Group and its main stakeholders. These issues were then analysed in detail using working tables on the different themes to identify the objectives in Environmental, Social and Governance areas and the related concrete actions needed to achieve them, in line with the European decarbonization and energy transition policies and the
United Nations Sustainable Development Goals, a global blueprint for sustainable growth.

In particular, RadiciGroup’s environmental goals include: a 20% increase and differentiation in renewable source electricity consumption, an 80% reduction in total direct greenhouse gas emissions by 2030 compared to 2011, attention to water consumption to limit the impact on local communities and biodiversity, the extension of Life Cycle Assessment (LCA) methodology to measure the environmental impact of 70% of the products (in terms of weight) manufactured by the entire Group, collaboration among the various actors in the supply chain from an ecodesign perspective and the search for increasingly more sustainable and circular packaging solutions.

Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics) © Business Angels Deutschland e. V. (BAND)
Presentation of the certificate for 1st place in the business plan competition KEUR.NRW 2023 to the RWTH start-up SA-Dynamics; from left to right: Oliver Krischer (Minister for the Environment, Nature Conservation and Transport of the State of NRW), Sascha Schriever (SA-Dynamics); Maximilian Mohr (SA-Dynamics); Jens Hofer (SA-Dynamics); Christian Schwotzer (SA-Dynamics)
26.01.2024

Start-up: Bio-based aerogel fibres replace synthetic insulation materials

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

The Aachen-based start-up SA-Dynamics is developing sustainable, bio-based and biodegradable insulation materials made from aerogel fibres, thereby setting new standards in resource-saving construction. Dr Sascha Schriever (Institut für Textiltechnik ITA), Maximilian Mohr (ITA), Dr Jens Hofer (ITA Postdoc) and Dr Christian Schwotzer (Department for Industrial Furnaces and Heat Engineering IOB), who trained at RWTH Aachen University, were awarded first place in the KUER.NRW Business Plan Competition 2023 and prize money of €6,000.

SA-Dynamics relies on the impressive properties of aerogel fibres: they have excellent insulating properties, are lightweight, durable, robust, versatile and can be processed very well on conventional textile machines thanks to their flexibility. This makes them comparable to polystyrene, but still sustainable, as SA Dynamics uses bio-based and biodegradable raw materials.

"We can revolutionise the construction world with bio-based aerogel fibres," explains ITA founder Dr Sascha Schriever proudly. "If all insulation materials in construction are converted to bio-based aerogel fibres, all builders can realise their dream of a sustainable house."

SA Dynamics has come a good deal closer to its founding goal by winning the KUER.NRW 2023 business plan competition. The spin-off from Institut für Textiltechnik (ITA) and Department for Industrial Furnaces and Heat Engineering (IOB) at RWTH Aachen University is scheduled for spring 2025.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

04.01.2024

Panda Biotech Marks Final Stage Commissioning

Panda Biotech announced that building construction is complete and the official commissioning process to bring its Panda High Plains Hemp Gin™ (the “Panda Hemp Gin”) project online began in early Q4. The commissioning process marks the final stage before beginning commercial operations in Q1 2024 at the 500,000 square foot Wichita Falls, Texas facility. The Panda Hemp Gin will process 10 metric tons of industrial hemp per hour to produce textile-grade fiber, hurd, short-fiber hurd mix, and a nutrient-rich co-product that will be pelletized. The facility is expected to be the largest hemp decortication center in the Western Hemisphere and among the largest in the world.

Using only renewable energy sources, the engineering and production process at the Panda Hemp Gin has been certified green by Mid-South Engineering Company, in accordance with the International Capital Market Association’s Green Bond Principles. Panda Biotech has also partnered with Oritain, a scientific traceability company, to bring the most traceable hemp grown 100 percent in the United States to market.

Panda Biotech announced that building construction is complete and the official commissioning process to bring its Panda High Plains Hemp Gin™ (the “Panda Hemp Gin”) project online began in early Q4. The commissioning process marks the final stage before beginning commercial operations in Q1 2024 at the 500,000 square foot Wichita Falls, Texas facility. The Panda Hemp Gin will process 10 metric tons of industrial hemp per hour to produce textile-grade fiber, hurd, short-fiber hurd mix, and a nutrient-rich co-product that will be pelletized. The facility is expected to be the largest hemp decortication center in the Western Hemisphere and among the largest in the world.

Using only renewable energy sources, the engineering and production process at the Panda Hemp Gin has been certified green by Mid-South Engineering Company, in accordance with the International Capital Market Association’s Green Bond Principles. Panda Biotech has also partnered with Oritain, a scientific traceability company, to bring the most traceable hemp grown 100 percent in the United States to market.

Additionally, Panda Biotech is actively signing contracts with producers to grow the hemp feedstock for the 2024 growing season, as well as purchasing hemp fiber that has already been harvested or processed. The company recently unveiled an unmatched pay-to-grow program for producers to begin growing Panda hemp. With up-front, guaranteed money and agronomy support, Panda producers also receive tested and proven seed at no cost, successfully mitigating the risk producers may assume and underscoring Panda’s commitment and promise to the farming community. The benefits of growing hemp are substantial, as it is an excellent rotational crop that remediates the soil and provides a competitive margin.

“Each piece of the Panda Hemp Gin production line, including the three miles of overhead pneumatic duct lines, refining, blending, mechanical cottonization, hurd bagging and storage, baling, and more, must be individually started, checked, balanced, and commissioned,” says Panda Biotech Executive Vice President Scott Evans. “Currently, all equipment is individually being brought online to be officially placed in service.”

More information:
Panda Biotech hemp
Source:

Panda Biotech, LLC.

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project (c) AZL Aachen GmbH
21.12.2023

AZL Aachen GmbH: Kick-off meeting for "Trends and Design Factors for Hydrogen Pressure Vessels" project

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting for the "Trends and Design Factors for Hydrogen Pressure Vessels" project, recently held at AZL Aachen GmbH, was a successful event, bringing together more than 37 experts in the field of composite technologies. This event laid a solid foundation for the Joint Partner Project, which currently comprises a consortium of 20 renowned companies from across the composite pressure vessel value chain: Ascend Performance Materials, C evotec GmbH, Chongqing Polycomp International Corp. (CPIC), Conbility GmbH, Elkamet Kunststofftechnik GmbH, F.A. Kümpers GmbH & Co. KG, f loteks plastik sanayi ticaret a.s., Formosa Plastics Corporation, Heraeus Noblelight GmbH, Huntsman Advanced Materials, Kaneka Belgium NV, Laserline GmbH, Mitsui Chemicals Europe GmbH, Plastik Omnium, Rassini Europe GmbH, Robert Bosch GmbH, Swancor Holding Co. Ltd. Ltd., TECNALIA, Toyota Motor Europe NV/SA, Tünkers do Brasil Ltda.

The project follows AZL´s well proven approach of a Joint Partner Project, aiming to provide technology and market insights as well as benchmarking of different material and production setups in combination with connecting experts along the value chain.

The kick-off meeting not only served as a platform to foster new contacts and get informed about the expertise and interests of the consortium members in the field of hydrogen pressure vessels, but also laid the groundwork for steering the focus of the upc oming project's ambitious phases. As a basis for the interactive discussion session, AZL outlined the background, motivation and detailed work plan. The central issues of the dialogue were the primary objectives, the most pressing challenges, the contribut ion to competitiveness, and
the priorities that would best meet the expectations of the project partners.

Discussions covered regulatory issues, the evolving value chain and the supply and properties of key materials such as carbon and glass fibres and resins. The consortium defined investigations into different manufacturing technologies, assessing their matu rity and potential benefits. Design layouts, including liners, boss designs and winding patterns, were thoroughly considered, taking into account their implications for mobile and stationary storage. The group is also interested in cost effective testing m ethods and certification processes, as well as the prospects for recycling into continuous fibres and the use of sustainable materials. Insight was requested into future demand for hydrogen tanks, OEM needs and strategies, and technological developments to produce more economical tanks.

The meeting highlighted the importance of CAE designs for fibre patterns, software suitability and the application dependent use of thermoset and thermoplastic designs.

The first report meeting will also set the stage of the next project phase, which will be the creation of reference designs by AZL's engineering team. These designs will cover a range of pressure vessel configurations using a variety of materials and production concepts. The aim is to develop models that not only re flect current technological capabilities, but also provide deep insight into the cost analysis of different production technologies, their CO2 footprint, recycling aspects and scalability.

AZL's project remains open to additional participants. Companies interested in joining this initiative are invited to contact Philipp Fröhlig.

20.12.2023

CARBIOS: €1.2M to further optimize its PET depolymerization process

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

CARBIOS, a pioneer in the development and industrialization of biological technologies to reinvent the life cycle of plastic and textiles, has received an initial payment of €1.2 million from the French Agency for Ecological Transition (ADEME) for the OPTI-ZYME research project, carried out in partnership with INRAE2, INSA3 and CNRS4 via the TWB5 joint service and TBI6 research units, a project co-funded by the French State as part of France 2030 operated by ADEME. With CARBIOS' aim to optimize and continuously improve its unique enzymatic PET depolymerization technology, the 4-year7 OPTI-ZYME project aims to investigate the scientific and technical levers for improving the competitiveness of the process, optimizing the necessary investments and reducing its environmental footprint.

This collaborative R&D program focuses on the technical and economic optimization of process stages, while preserving the quality of the monomers obtained. These optimizations, new developments and the exploration of innovative solutions should enhance the technology's flexibility with regards to incoming waste. Raw materials could come from different sources that are currently rarely or not recycled, notably food trays and textiles, or a mix of incoming materials. It also aims to limit input and water consumption, as well as regenerate or reduce co-products and ultimate residual waste. Finally, it seeks to support enzyme optimization to maximize the process’ economic profitability and competitiveness.

The project therefore aims to achieve an overall improvement in performance, combining efficiency, quality and environmental sustainability, to benefit the Longlaville plant which is currently under construction, and future licensed plants.

In May 2023, CARBIOS, the project leader and coordinator, announced that it had been awarded a total of €11.4M in funding by the French State as part of France 2030, operated by ADEME, including €8.2M directly for CARBIOS (€3.2M in grants and €5M in repayable advances) and €3.2M for its academic partners INRAE, INSA and CNRS (via the TWB mixed service and TBI research units). This funding, which is made up of grants and repayable advances, will be paid out in several instalments over the course of the project, including an initial instalment of 15%, equivalent to €1.2 million, received by CARBIOS on 5 December 2023. The first Monitoring Committee with ADEME for the first key stage of the project will be held in February 2024 to validate the granting of the second instalment of funding.

This project 2282D0513-A is funded by the French State as part of France 2030 operated by ADEME.

Source:

Carbios

15.12.2023

VIATT 2024 as the response to Vietnam's developing textile sector

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

Vietnam is the subject of increasing investment across an array of industries, with its textile sector going from strength to strength in a short space of time. To give key players from across the textile spectrum an opportunity to make their presence felt in this market, the Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) will make its debut from 28 February – 1 March 2024. Taking place at the Saigon Exhibition and Convention Center (SECC), the new fair will cover three main product sectors, namely apparel fabrics, yarns and fibres, and garments; home textiles; as well as technical textiles and nonwovens, textile processing, and printing technology.

In line with the industry’s anticipation, the country was identified as the ideal location for ASEAN’s new comprehensive textile platform for several key reasons. Vietnam’s pro-business policies, strategic geographical location, abundant labour force, and favourable trade agreements have contributed to its rise as a global textile manufacturing hub. Agreements such as the Regional Comprehensive Economic Partnership (RCEP); the Indo-Pacific Economic Framework for Prosperity (IPEF); and 15 free trade agreements (FTAs) covering over 60 countries and regions, will further enable participants from across the value chain to conduct cross-border business after connecting at next year’s show. In addition, several key travel initiatives that serve international players have been implemented, including the country’s APEC Business Travel Card programme[1], availability of e-visas to all nationalities, and visa-free travel for select countries[2].  

Exhibitors from multiple textile sub-sectors converge in February
In Vietnam’s home textile segment, rising urbanisation, emerging young consumers, and higher disposable incomes are interrelated factors driving growth[3]. Globally, three of the top trends include recycling; utilising green fibres; and the increasing use of technical fabrics for enhanced comfort and health. At the fair, confirmed home textiles exhibitors include Hanyang Eco Tex, Hohmann GmbH, Phuong Nam Feather, and SIGMA, set to showcase their most up-to-date products, covering bedding, upholstery fabrics, curtain, and sun protection.
 
Utilised for automobiles, civil aviation, construction, health care, and more, Vietnam's exports of technical textiles reached USD 676.6 million for the first nine months of 2022, up 17.1% compared to the same period in 2021[4]. This in turn bodes well for the country’s import prospects of quality machinery and equipment. Hoping to cater to domestic demand at VIATT 2024, international suppliers in this category include Julai, SIGMA, and Skwentex.

Meanwhile, apparel-related products make up the lion’s share of the country’s textile exports – according to Vietnam Textile & Apparel Association (VITAS), in 2022 these numbered USD 29.1 billion. From Ho Chi Minh to Hanoi, numerous international fashion brands have a manufacturing presence, including Adidas, H&M, Lacoste, Lululemon, Nike, The North Face, Uniqlo, and many more. At next year’s fair, exhibitors such as Avery Dennison, Lenzing, Stylem Takisada-Osaka, and Texwinca, will aim to draw the attention of apparel brands and a wide range of other domestic and international buyers.

The Vietnam International Trade Fair for Apparel, Textiles and Textile Technologies (VIATT) is organised by Messe Frankfurt (HK) Ltd and the Vietnam Trade Promotion Agency (VIETRADE), covering the entire textile industry value chain.

[1] ‘Everything You Need to Know About Traveling to Vietnam with an APEC Business Travel Card’, April 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/apec-business-travel-card-vietnam.html/ (Retrieved: November 2023)
[2] ‘Vietnam Introduces E-Visa for All Nationalities from August 15, 2023’, August 2023, Vietnam Briefing, https://www.vietnam-briefing.com/news/vietnam-introduces-e-visa-for-all-nationalities-from-august-15-2023.html/ (Retrieved: November 2023)
[3] ‘Vietnam Home Textile Market Size & Share Analysis’, 2023, Mordor Intelligence, https://shorturl.at/wQVWZ (Retrieved: November 2023)
[4] ‘Vietnam's technical fabric exports continue to be positive’, October 2022, Web Portal of Supporting Industry of Vietnam, https://shorturl.at/lmnvX (Retrieved: November 2023)

Source:

Messe Frankfurt (HK) Ltd

Award winners with foundation chairman, foundation MD and professors (c) VDMA e.V. Textile Machinery
Award winners with foundation chairman, foundation MD and professors
08.12.2023

Walter Reiners Foundation honours young engineers

As part of the Aachen-Dresden-Denkendorf International Textile Conference in Dresden, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to four successful young engineers. Two promotion prizes and two sustainability prizes were awarded in the Bachelor and Diploma/Master categories. Academic works in which solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

A sustainability prize worth 3,000 euros in the Bachelor's category was awarded to Franziska Jauch, Niederrhein University of Applied Sciences, for her Bachelor's thesis on pigment digital printing in denim production.

The promotion prize in the Bachelor's category, also worth 3,000 euros, went to Annika Datko, RWTH Aachen, for her work on determining the polyester content in used textiles.

Dave Kersevan, TU Dresden, was honoured with a sustainability prize in the Diploma/Master's category, endowed with 3,500 euros. The subject of his thesis was the development of a laboratory system for the production of needled carbon preforms.

As part of the Aachen-Dresden-Denkendorf International Textile Conference in Dresden, the Chairman of the Walter Reiners Foundation of the VDMA, Peter D. Dornier, presented awards to four successful young engineers. Two promotion prizes and two sustainability prizes were awarded in the Bachelor and Diploma/Master categories. Academic works in which solutions for resource-saving products and technologies are developed are eligible for the sustainability prizes.

A sustainability prize worth 3,000 euros in the Bachelor's category was awarded to Franziska Jauch, Niederrhein University of Applied Sciences, for her Bachelor's thesis on pigment digital printing in denim production.

The promotion prize in the Bachelor's category, also worth 3,000 euros, went to Annika Datko, RWTH Aachen, for her work on determining the polyester content in used textiles.

Dave Kersevan, TU Dresden, was honoured with a sustainability prize in the Diploma/Master's category, endowed with 3,500 euros. The subject of his thesis was the development of a laboratory system for the production of needled carbon preforms.

This year's promotion award in the Diploma/Master's category, endowed with prize money of 3,500 euros, went to Flávio Diniz from RWTH Aachen. The subject of his Master's thesis was the feasibility of manufacturing ultra-thin carbon fibres.

The award ceremony 2024 will take place in April at the VDMA stand at the Techtextil fair in Frankfurt.

ACTIVEYARN book (c) Suedwolle Group
05.12.2023

Suedwolle Group: New ACTIVEYARN® collection

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

Suedwolle Group introduces ACTIVEYARN®, the company’s first seasonless corporate collection: ACTIVEYARN® is composed of a selection of weaving, flat and circular knitting, hosiery and technical yarns, with advanced spinning technologies, wool blends and other natural and traceable fibres. It is a seasonless collection of yarns suitable for different occasions, to support everyone’s attitude and style.

This idea is expressed by the concept of “Get active”, which is not just about using Suedwolle Group’s products in sports applications, but about a new mindset, a changing perspective. By taking a fresh look at the company’s wide offer, ACTIVEYARN® provides new opportunities and inspiration to explore Suedwolle Group’s full potential in terms of technology, sustainability and innovations. It considers with a new point of view on the collections for knitting, weaving and technical uses, creating new connections among them and offering a mosaic of new possibilities and versatile combinations.

This theme of the collection and the new mindset may be represented in the concept of a “kaleidoscope”, symbol of the active change inspiring Suedwolle Group’s creativity.

The yarns in the ACTIVEYARN® collection embody the company’s six strategic pillars of innovation – sustainability, circularity, traceability, design, performance and technology – drivers of the entire process of design and production.

Jasmin GOTS Nm 2/48 (100% wool 19,5 μ X-CARE) is a natural, renewable and biodegradable yarn with GOTS certification that meets the company’s demand for sustainability. X-CARE, the innovative treatment by Suedwolle Group, uses eco-friendly and chlorine-free substances that make wool environmentally friendly and suitable for easy-care quality.

Tirano Betaspun® RWS FSC (41,5% wool 17,2 μ TEC RWS certified, 41,5% LENZING™Lyocell 1,4 dtex 17% polyamide filament 22 dtex GRS certified) is a fully traceable high performance yarn, suitable for sportswear and activewear.

OTW® Midway GRS Nm 2/60 (60% wool 23,5 μ X-CARE, 40% polyamide 3,3 dtex GRS certified) comes from the recycling of pre-consumer polyamide and thus is a perfect example of circular production. Suitable for weaving, it combines the added performance that comes from our OTW® patented technology applied to a high durability blend, ideal for active garments.

Wallaby Betaspun® Nm 1/60 (87,5% wool 18,4 μ TEC, 12,5% polyamide filament 22 dtex) is the result of application of latest-generation Betaspun® technology to a natural fibre like wool, allowing production of fine yarns with extra strength and abrasion resistance, ideal for seamless and wrap knitting.

Banda TEC X-Compact Nm 2/47 (100% wool 17,2 μ TEC) is a 100% natural, renewable and biodegradable yarn benefitting from the innovative X-Compact, permitting production of particularly linear yarns ideal for clean design and fabrics appropriate for today’s fashions.

Caprera GRS Nm 1/60 (45% wool 19,3 μ Non mulesed X-CARE 55% COOLMAX® EcoMade polyester 2,2 dtex GRS certified) increases the performance of the wool-based non mulesed fibre through combination with COOLMAX® EcoMade polyester. This is a material coming from recycling of post-consumer PET bottles, dyeable at low temperatures, that aids evaporation of moisture from the skin to maintain stable body temperature, enhancing the comfort of activewear and urban garments.

Source:

Suedwolle Group

Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right. Source: ITMF
Prof. Dr Tae Jin Kang (Seoul National University), Dr Musa Akdere (CarboScreen), Dr Christian P. Schindler (ITMF), from left to right.
01.12.2023

Faster and cheaper carbon fibre production with CarboScreen

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Faster and more cost-effective carbon fibre production - the technology of the start-up CarboScreen comes a good deal closer to this dream. The founders Dr. Musa Akdere, Felix Pohlkemper and Tim Röding from the Institut für Textiltechnik (ITA) of RWTH Aachen University are using sensor technology to monitor carbon fibre production, thereby doubling the production speed from the current 15 to 30 m/min in the medium term and increasing turnover by up to €37.5 million per year and system. This ground-breaking development also impressed the jury at the ITMF at their Annual Conference in Keqiao, China, and was honoured with the ITMF StartUp Award 2023 on 6 November 2023.

Dr. Musa Akdere accepted the award on behalf of the CarboScreen founding team.

Carbon fibres can only develop their full potential if they are not damaged during production and further processing. Two types of fibre damage occur more frequently during fibre production: Superficial or mechanical damage to the fibres or damage to the chemical structure.

Both types of damage cannot be optimally detected by current means or only become apparent after production, to name just two examples. This leads to higher production costs. In an emergency, faulty production can even lead to plant fires. For this reason, and to ensure good production quality, the system is run at 15 m/min below its production capacity for safety reasons. However, 30 m/min or more would be possible. With the sensor-based online monitoring of CarboScreen, the production capacity can be doubled to 30 /min. This would lead to higher production, resulting in lower manufacturing costs and wider use of carbon fibres in mass markets such as automotive, aerospace and wind energy.

More information:
carbon fibers sensors Startup
Source:

ITA – Institut für Textiltechnik of RWTH Aachen University