From the Sector

Reset
47 results
Professor Dr.-Ing. Markus Milwich Photo: DITF
Professor Dr.-Ing. Markus Milwich.
19.03.2024

Markus Milwich represents "Lightweight Design Agency for Baden-Württemberg"

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

Lightweight design is a key enabler for addressing the energy transition and sustainable economy. Following the liquidation of the state agency Leichtbau BW GmbH, a consortium consisting of the Allianz Faserbasierter Werkstoffe Baden-Württtemberg (AFBW), the Leichtbauzentrum Baden-Württemberg (LBZ e.V. -BW) and Composites United Baden-Württemberg (CU BW) now represents the interests of the lightweight construction community in the State.

The Lightweight Design Agency for Baden-Württemberg is set up for this purpose on behalf of and with the support of the State. The Lightweight Construction Alliance BW is the central point of contact for all players in the field of lightweight construction in the State and acts in their interests at national and international level. Professor Markus Milwich from the German Institutes of Textile and Fiber Research Denkendorf (DITF) represents the agency.

The use of lightweight materials in combination with new production technologies will significantly reduce energy consumption in transportation, the manufacturing industry and the construction sector. Resources can be saved through the use of new materials. As a cross-functional technology, lightweight construction covers entire value chain from production and use to recycling and reuse.

The aim of the state government is to establish Baden-Württemberg as a leading provider of innovative lightweight construction technologies in order to strengthen the local economy and secure high-quality jobs.

Among others, the "Lightweight Construction Alliance Baden-Württemberg" will continue the nationally renowned "Lightweight Construction Day", which acts as an important source of inspiration for a wide range of lightweight construction topics among business and scientific community.

Professor Milwich, an expert with many years of experience and an excellent network beyond the State's borders, has been recruited for this task. In his role, Milwich also represents the state of Baden-Württemberg on the Strategy Advisory Board of the Lightweight Construction Initiative of the Federal Ministry for Economic Affairs and Climate Action, which supports the cross functional-technology and efficient transfer of knowledge between the various nationwide players in lightweight construction and serves as a central point of contact for entrepreneurs nationwide for all relevant questions.

From 2005 to 2020, Professor Milwich headed the Composite Technology research at the DITF, which was integrated into the Competence Center Polymers and Fiber Composites in 2020. He is also an honorary professor at Reutlingen University, where he teaches hybrid materials and composites. "Lightweight design is an essential aspect for sustainability, environmental and resource conservation. I always showcase this in research and teaching and now also as a representative of the lightweight construction community in Baden-Württemberg," emphasizes Professor Milwich.

Source:

Deutsche Institute für Textil- und Faserforschung

05.03.2024

Denim Expert's Goal: 100% wastewater recycling

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

The announcement of a new effluent treatment plant (ETP) marks a milestone in Denim Expert's journey towards sustainability. This upcoming facility is a testament to the company's dedication to reducing its ecological footprint and safeguarding local ecosystems through advanced water management techniques.

The new Effluent Treatment Plant (ETP) being developed by Denim Expert strives for 100% wastewater recycling. As the ETP rises from concept to reality, Denim Expert embarks on a transition towards its next horizon: aligning with the Zero Discharge of Hazardous Chemicals (ZDHC) Wastewater Guidelines Version 2.0.

Denim Expert's proactive approach to sustainability has been recognized on a global scale. The company has been named 'New Champion' by the World Economic Forum and has partnered with organizations such as the Sustainable Apparel Coalition (SAC), the United Nations Framework Convention on Climate Change (UNFCCC), and the Ellen MacArthur Foundation's Jeans Redesign program. As one of the first factories to join the Partnership for Cleaner Textile (PaCT) and in the process of implementing the 3E program, Denim Expert is dedicated to achieving 100% water reuse and full reliance on solar energy, further solidifying its commitment to driving positive environmental change.

29.01.2024

Refashion: Renewal of accreditation for 2023-2028

Refashion, a textile industry’s eco-organisation, has renewed its authority approval until 2028. 6 years during which it will continue to transform the industry in keeping with the objectives set by the French Ministry of Ecological Transition and the French Ministry of the Economy, including the objective to collect 60% of CHF (clothing, household linen and footwear textiles) placed on the market by 2028. This new period is reflected in an ambitious road map and significantly increased investment. Nearly 1.2 billion euros, financed by the marketers, will be spent on transforming the industry during this new period of authority approval.

Refashion, a textile industry’s eco-organisation, has renewed its authority approval until 2028. 6 years during which it will continue to transform the industry in keeping with the objectives set by the French Ministry of Ecological Transition and the French Ministry of the Economy, including the objective to collect 60% of CHF (clothing, household linen and footwear textiles) placed on the market by 2028. This new period is reflected in an ambitious road map and significantly increased investment. Nearly 1.2 billion euros, financed by the marketers, will be spent on transforming the industry during this new period of authority approval.

Determined to achieve the objectives set out in the ambitious specifications set down by the Secretary of State at the Ministry of Ecological Transition, Berangère Couillard, Refashion has worked on a road map with all of its stakeholders involved in the transformation that is underway. Maud Hardy, nominated as the eco-organisation’s CEO in January 2022, started a collaborative working method that will continue throughout this new period to support areas that are key in this transformation. In the next few months, projects will begin and will visibly highlight the progress made in the three phases of a product’s life cycle: production consumption, regeneration.

Production

  • Recognising eco-design initiatives through the eco-modulation of the fees paid by marketers (durability, environmental information labelling, integration of recycled materials). For marketers, these initiatives should represent the scheme’s cornerstone. The aim is to involve all stakeholders in reducing the environmental impact of products.

Consumption

  • As from 2023, Refashion will spend 5 million euros minimum per year in awareness-raising activities and on information to the general public by supporting an array of local authority initiatives.
  • The launch of a repair fund in 2023, in particular to prolong the usage of textiles and footwear products. More than 150 million euros will be invested between 2023 and 2028 to change the habits of the French population to increase repairs by 35% (guideline target by the ADEME 2019).

Regeneration

  • Accelerating clothing, household linen and footwear collection, in particular thanks to an operational mix in the sector. Funding traditional sorting operators will remain central, but Refashion will also develop an additional operational system in order to achieve the collection target of 60% of products placed onto the market (versus 34% in 2021).
  • 5% of fees paid to Refashion will go towards the redeployment/reuse funds to provide support for reuse within the remit of stakeholders in the Social and Solidarity Economy. In addition to this funding, additional funding arrangements open to all stakeholders will be established. The total budget throughout the authority approval period represents 135 million euros.
  • 5% of fees, i.e., 58 million euros in 6 years, will be spent on R&D to help achieve these milestones in order to industrialise the recycling of used CHF: recyclability that is considered during the design stage; automated sorting and recycling.
Source:

Refashion

Selection of looks of the What Goes Around Comes Around exhibition Photographer: Elzo Bonam
Selection of looks of the What Goes Around Comes Around exhibition
25.01.2024

Fashion for Good Museum: Final exhibition “What goes around comes around”

The Fashion for Good museum in Amsterdam marks its 6 year journey with a special fashion exhibition focused on circularity, called What Goes Around Comes Around. Honing in on how circularity plays out in different circles of influence, the exhibition showcases inspirational displays that make tangible what a circular fashion industry will look like.

What Goes Around Comes Around pays homage to the extraordinary work of pioneering artists, innovators and designers working to shift the fashion industry with new solutions. The exhibition opens January 27, 2024 and will be open to the public for 5 months. It is the grand finale, as the Museum is closing its doors. As such it will be the Museum’s final call to collective action, which the fashion industry still so highly needs.

The Fashion for Good museum in Amsterdam marks its 6 year journey with a special fashion exhibition focused on circularity, called What Goes Around Comes Around. Honing in on how circularity plays out in different circles of influence, the exhibition showcases inspirational displays that make tangible what a circular fashion industry will look like.

What Goes Around Comes Around pays homage to the extraordinary work of pioneering artists, innovators and designers working to shift the fashion industry with new solutions. The exhibition opens January 27, 2024 and will be open to the public for 5 months. It is the grand finale, as the Museum is closing its doors. As such it will be the Museum’s final call to collective action, which the fashion industry still so highly needs.

“We are highlighting three areas in What Goes Around Comes Around", explains curator Sophie Jager-van Duren at the Fashion for Good Museum. “First: new work by local artists Atelier Reservé and The Patchwork Family, design collectives working towards circularity, demonstrating what is happening right now. We are also showing looks from established designers BOTTER, Ronald van der Kemp and Marga Weimans, Yuima Nakazato and Nicole McLaughlin. Second, the community, with an installation for visitors to participate in, planting the seed that we need each other to change the fashion system. Lastly, the industry - honing in on examples of innovations and technologies. We invited designers to create new work with circular materials including Living Ink, MIRUM, Altmat and Biophilica.”

Today’s fashion industry is caught in a vicious cycle of ‘take-make-waste’ and this system has a growing negative impact on people and the planet. For instance, in Europe, the average consumer is responsible for 15 kilos of textile waste per year and these numbers are increasing. To address this, we need action from individuals, the industry and society alike to go from a linear take-make-waste model into one that is circular by design.

The Fashion for Good Museum is inviting anybody to come visit its final exhibition and learn from concrete examples, to understand the current state of the fashion industry, gain the tools for taking individual or collective action and be inspired by circular fashion available today.

Designing for circularity means designing without creating waste or pollution, as all materials are continually reused instead of discarded. A circular system is restorative and regenerative and reduces pressure on natural resources. The ultimate goal of the exhibition is to put circularity into practice, help people envision a circular economy based on community practices and empower visitors to take collective action, starting in the museum but extending to their homes and daily lives.

Through the exhibition and its public programme, which consists of interactive workshops and educational events, the museum functions as a community space where visitors are invited to learn, gain new perspectives and are exposed to inspiring examples, building the skills and knowledge to create positive change. The upcoming few months there are multiple events, educational toolkits and other opportunities to join us, all open for the public, keep an eye out on our website and social media channels for the latest updates.

The exhibition is open for the public from Saturday 27th of January until June 5th 2024, marking World Environment Day on June 5th as the final closing day of the museum.

Source:

Fashion for Good 

Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta. Abbildung 1 © W. Barthlott, M. Mail/Universität Bonn
Figure 1: Adsorption of a drop of waste oil within seconds by a leaf of the floating fern Salvinia molesta.
14.12.2023

Self-driven and sustainable removal of oil spills in water using textiles

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

Researchers at the ITA, the University of Bonn and Heimbach GmbH have developed a new method for removing oil spills from water surfaces in an energy-saving, cost-effective way and without the use of toxic substances. The method is made possible by a technical textile that is integrated into a floating container. A single small device can remove up to 4 liters of diesel within an hour. This corresponds to about 100 m2 of oil film on a water surface.
 
Despite the steady expansion of renewable energies, global oil production, oil consumption and the risk of oil pollution have increased steadily over the last two decades. In 2022, global oil production amounted to 4.4 billion tons! Accidents often occur during the extraction, transportation and use of oil, resulting in serious and sometimes irreversible environmental pollution and harm to humans.

There are various methods for removing this oil pollution from water surfaces. However, all methods have various shortcomings that make them difficult to use and, in particular, limit the removal of oil from inland waters.

For many technical applications, unexpected solutions come from the field of biology. Millions of years of evolution led to optimized surfaces of living organisms for their interaction with the environment. Solutions - often rather unfamiliar to materials scientists and difficult to accept. The long-time routine examination of around 20,000 different species showed that there is an almost infinite variety of structures and functionalities. Some species in particular stand out for their excellent oil adsorption properties. It was shown that, e.g., leaves of the floating fern Salvinia molesta, adsorb oil, separate it from water surfaces and transport it on their surfaces (Figure 1, see also the video of the phenomon.).

The observations inspired them to transfer the effect to technical textiles for separating oil and water. The result is a superhydrophobic spacer fabric that can be produced industrially and is therefore easily scalable.

The bio-inspired textile can be integrated into a device for oil-water separation. This entire device is called a Bionic Oil Adsorber (BOA). Figure 2: Cross-section of computer-aided (CAD) model of the Bionic Oil Adsorber. The scheme shows an oil film (red) on a water surface (light blue). In the floating cotainer(gray), the textile (orange) is fixed so that it is in contact with the oil film and the end protrudes into the container. The oil is adsorbed and transported by the BOA textile. As shown in the cross-section, it enters the contain-er, where it is released again and accumulates at the bottom of the container. See also the video regarding the oil absorption on the textile, source ITA).
 
Starting from the contamination in the form of an oil film on the water surface, the separation and collection process works according to the following steps:

  • The BOA is introduced into the oil film.
  • The oil is adsorbed by the textile and separated from the water at the same time.
  • The oil is transported through the textile into the collection container.
  • The oil drips from the textile into the collection container.
  • The oil is collected until the container is emptied.

The advantage of this novel oil separation device is that no additional energy has to be applied to operate the BOA. The oil is separated from the surrounding water by the surface properties of the textile and transported through the textile driven solely by capillary forces, even against gravity. When it reaches the end of the textile in the collection container, the oil desorbs without any further external influence due to gravitational forces. With the current scale approximately 4 L of diesel can be separated from water by one device of the Bionic Oil Adsorber per hour.

  • It seems unlikely that a functionalized knitted spacer textile is cheaper than a conventional nonwoven, like it is commonly used for oil sorbents. However, since it is a functional material, the costs must be related to the amount of oil removed. In this respect, if we compare the sales price of the BOA textile with the sales prices of various oil-binding nonwovens, the former is 5 to 13 times cheaper with 10 ct/L oil removed.
    Overall, the BOA device offers a cost-effective and sustainable method of oil-water separation in contrast to conventional cleaning methods due to the following advantages:
  • No additional energy requirements, such as with oil skimmers, are necessary
  • No toxic substances are introduced into the water body, such as with oil dispersants
  • The textiles and equipment can be reused multiple times
  • No waste remains inside the water body
  • Inexpensive in terms of the amount of oil removed.
  • The team of researchers from the ITA, the University of Bonn and Heimbach GmbH was able to prove that the novel biomimetic BOA technology is surprisingly efficient and sustainable for a self-controlled separation and automatic collection of oil films including their complete removal from the water. BOA can be asapted for open water application but also for the use in inland waters. Furthermore, it is promising, that the textile can be used in various related separation processes. The product is currently being further developed so that it can be launched on the market in 2-3 years.

 

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

Fußballstadion Bild von Pexels auf Pixabay
20.11.2023

University of Manchester academics criticising UK government

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Sustainable fashion and sportswear must be high on the political agenda:
Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

In an article published by the University’s policy engagement unit Policy@Manchester to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry.

And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

Pressdee, Benstead and Conlon stress the importance of establishing “sustainable behaviour throughout the supply chain” and praise the European Commission for proposing an “extended producer responsibility (EPR)” for textiles in the EU which “aims to create appropriate incentives to encourage producers to design products that have a reduced environmental impact at the end of their life.”

This contrasts with the UK where, they argue, “tackling sustainability in the fashion industry has lost its place on the political agenda.”

"We are calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”
Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon

The University of Manchester academics contend that there has been “disappointing lack of progress from the UK Government” following the House of Commons Environmental Audit Committee’s Fixing Fashion report in 2019.

They continue: “This report included a call for the use of EPR as well as other important recommendations such as a ban on incinerating or landfilling unsold stock that can be reused or recycled and a tax system that shifts the balance of incentives in favour of reuse, repair and recycling to support responsible companies. We urge the Government to think again and drive forward the Committee’s recommendations in order to put sustainable fashion back on the political agenda.”

Pressdee, Benstead and Conlon also criticise Ministers for abolishing the standalone GCSE in textiles which provided many young people with the ability to mend clothing such as football kits instead of throwing them away.

They write: “We are therefore calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”

The University of Manchester has launched a new project dedicated to tackling the impact of textile waste in the football industry through the provision of workshops tasked with transforming surplus football shirts into unique reusable tote bags, whilst educating local communities on the environmental impacts of textile waste and how to extend the life of garments. The initiative aims to provide a fun, responsible way to keep kits in circulation while shining a light on the problem.

More information:
United Kingdom politics
Source:

University of Manchester

CEO of Jet Technology Howard Ju with Alfred Deakin Professor and Deakin Chair in Biotechnology Colin Barrow. Photo: Deakin University
CEO of Jet Technology Howard Ju with Alfred Deakin Professor and Deakin Chair in Biotechnology Colin Barrow.
11.10.2023

New Deakin REACH partnership: Textiles made from organic waste?

Australia is one of the highest waste generators in the world, with over 7.6 million tonnes of food ending up in landfill each year, costing over $36.6 billion and producing 17.5 million tonnes of greenhouse gas.

Deakin’s partnership with Jet Technology through REACH will explore ways to transform industry-generated organic waste into new products like organic textiles and stock feed using a rapid composting system.

Jet Technology’s Environmental Recycling System (ERS) will build a circular economy by creating valuable products for a range of industry sectors.

Australia is continuing to generate more landfill each year. A new partnership between Deakin’s Recycling and Clean Energy Commercialisation Hub (REACH) and Japanese-based company Jet Technology aims to turn this around by repurposing organic waste and transforming it into new products.

Australia contributes more than 7.6 million tonnes of food to landfill annually, costing over $36.6 billion and producing 17.5 million tonnes of CO2.

Australia is one of the highest waste generators in the world, with over 7.6 million tonnes of food ending up in landfill each year, costing over $36.6 billion and producing 17.5 million tonnes of greenhouse gas.

Deakin’s partnership with Jet Technology through REACH will explore ways to transform industry-generated organic waste into new products like organic textiles and stock feed using a rapid composting system.

Jet Technology’s Environmental Recycling System (ERS) will build a circular economy by creating valuable products for a range of industry sectors.

Australia is continuing to generate more landfill each year. A new partnership between Deakin’s Recycling and Clean Energy Commercialisation Hub (REACH) and Japanese-based company Jet Technology aims to turn this around by repurposing organic waste and transforming it into new products.

Australia contributes more than 7.6 million tonnes of food to landfill annually, costing over $36.6 billion and producing 17.5 million tonnes of CO2.

Deakin University scientist Alfred Deakin Professor and Chair in Biotechnology Colin Barrow and his team from the Centre for Sustainable Bioproducts will work with Jet Technology to explore the possible reuses of organic waste using Jet Technology’s Environmental Recycling System (ERS). The project will focus on converting organic waste from the agriculture, dairy and fishery sectors by drastically shortening composting time so it can be used to make new products.

The four-year research project will be undertaken at the BioFactory at Deakin’s Waurn Ponds campus. It will initially focus on processing agricultural waste, converting apple pomace into a bioproduct for the textile industry. Apple pomace consists of the apple skin, pulp, seeds and stems left over from apple juice manufacturing. Its disposal in landfill can lead to greenhouse gas emissions and potential contamination of soil and groundwater.

If successful, it could lead to the establishment of a local multi-million-dollar bioeconomy where organisations such as councils, supermarkets and food and beverage businesses could cut costs while generating new revenue streams and job opportunities.

Deakin’s REACH initiative collaborates with progressive industry, government, and education partners to establish a multi-billion-dollar bioeconomy in Victoria and push the limits of technological innovation to deliver energy and recycling solutions that reduce landfill, fossil fuel emissions, and the devastating costs of global warming.

Flachs-Koeper-Band (c) vombaur
Flachs-Koeper-Band
20.09.2023

Technical textiles made of natural fibres: Sustainable textiles for lightweight design

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

The combination of high strength and rigidity with sustainability and a neutral carbon footprint makes flax the ideal raw material for natural fibre-reinforced plastics. vombaur offers composite textiles made of this natural fibre for the automotive, wind power, construction or sports industries and many other sectors.

Flax fibres are rigid and tear-proof. They have natural bactericidal properties, are virtually antistatic, stain resistant and easy to spin. Humans have taken advantage of these properties to manufacture robust, stain-resistant and lint-free textiles. Between the late 19th and late 20th centuries, cotton largely replaced natural fibres. Because flax can be grown in Europe and consumes less energy and water than cotton production, the material's importance is currently growing again, for both clothing and composites. Regional textile value added chains in Europe – flax makes them possible.

Ideal mechanical properties
vombaur makes the mechanical properties of flax usable for lightweight design. Because flax fibres are particularly rigid and tear-resistant, they ensure great stability in natural fibre-reinforced plastics (NFRPs). And thanks to their low density of 1.50 g/cm3, the fibres weigh virtually nothing. On top of this, fibre-reinforced plastics are less prone to splintering than glass fibre-reinforced plastics.

Excellent carbon footprint
The cultivation of flax binds CO2 and the production of natural fibre-reinforced plastics (NFRPs) generates approximately one third less CO2 emissions compared with conventional fibre-reinforced plastics. Energy consumption is substantially lower. This saves resources. The use of flax fibre tapes by vombaur in lightweight design applications also improves the product's carbon footprint and contributes to a secure, regional supply chain.

Recycling without impacting on quality
Flax offers another sustainability benefit: more recycling cycles than glass- or carbon fibre-reinforced plastics – without impacting on quality. Thermoplastic fibre-matrix prepregs are melted and reused in the recycling process. The natural fibres can be used in other products such as natural fibre-reinforced injection moulded parts.

Sustainable product developments for many industries
"Orthoses for high-performance sports, high-tech skis, wind turbines, components for the automotive industry or aerospace, but also modern window profiles – the application scope for our lightweight design flax tapes is amazingly diverse", as Carl Mrusek, Chief Sales Officer at vombaur explains. "After all, wherever flax tapes are used, three key properties come together: light weight, strength and sustainability".

More information:
CO2
Source:

vombaur

(c) Eastman Naia
03.08.2023

Yarn made with Naia™ fibers standing for sustainability and style

The priority of sweater manufacturers has always been to select ingredients and fibers that are soft, hypoallergenic, and of the finest quality to meet consumer expectations that their sweaters are comfortable yet durable and easy to care for. According to the recent Eastman consumer study of sweater lovers, the sweaters consumers want to add to their wardrobes are soft, comfortable, stylish, and versatile. However, consumers are very disappointed when their sweaters look and feel differently after wearing and washing. Choosing fibers and materials that deliver comfort, quality and ease of care is essential to win with consumers. Today, these are compounded by the ever-present consumer demand for a sustainable paradigm. The promise of Naia™ from Eastman is exactly to make sustainable style accessible to brands and inclusive for everyone through a portfolio of fibers that doesn’t compromise on quality, comfort, or garment care.

The priority of sweater manufacturers has always been to select ingredients and fibers that are soft, hypoallergenic, and of the finest quality to meet consumer expectations that their sweaters are comfortable yet durable and easy to care for. According to the recent Eastman consumer study of sweater lovers, the sweaters consumers want to add to their wardrobes are soft, comfortable, stylish, and versatile. However, consumers are very disappointed when their sweaters look and feel differently after wearing and washing. Choosing fibers and materials that deliver comfort, quality and ease of care is essential to win with consumers. Today, these are compounded by the ever-present consumer demand for a sustainable paradigm. The promise of Naia™ from Eastman is exactly to make sustainable style accessible to brands and inclusive for everyone through a portfolio of fibers that doesn’t compromise on quality, comfort, or garment care.

The results of soft and cozy blends between the versatile Naia™ fibers and other materials can be appreciated in the collections of Naadam and The Gap, which this year presented its third collection of men's sweaters blended with Naia™ and cotton. By using Naia™ blended knits in their collections, brands are not just choosing a sustainable ingredient, but also a certified and circular supply chain: all Naia™ cellulosic fiber is produced in a safe, closed-loop process where solvents are recycled back into the system for reuse. Eastman Naia™ partners with Textiles Genesis to provide track and trace solutions for brands. All Naia™ fibers are OEKO-TEX™ STANDARD 100 certified, ensuring no use of hazardous chemicals, and certified by TÜV AUSTRIA as biodegradable and compostable, also in the ocean, as supported by a recently published ocean degradation study conducted by Woods Hole Oceanographic Institution (WHOI).

Naia™ fibers are designed to create unlimited possibilities for uncompromising, sustainable style: among these, Naia™ Renew staple fiber permits to create eco-conscious blends that are supremely soft, quick-drying and consistently reduce pilling which are ideal for T-shirts, casual wear, sweaters, comfy pants and home textiles. Produced from 60% sustainably sourced wood pulp and 40% certified* recycled waste materials, Naia™ Renew creates the same top-quality fabrics as traditional Naia™ fibers, but with a reduced carbon footprint of around 35% — and it’s available at scale. The innovative cellulosic acetate materials can be blended with cotton, modal, merino wool, recycled polyester, or multiple content fancy yarns. Naia™ blended yarns deliver super softness for supreme wearing comfort in knitwear, and sweaters made with Naia™ Renew can have good dimensional stability and shape retention even after multiple washes. Versatile Naia™ denier sizes can be used in different yarn spinning processes, giving the yarn spinners freedom of creativity for trendy yarn designs perfect for year-round basic sweaters with good quality and a durable look. The unique cross section of Naia™ staple fibers enables designs that accommodate four seasons of wearing comfort.

 

Source:

Menabo for Eastman

16.05.2023

DiloGroup cooperates with Dell’Orco & Villani and TechnoPlants

With regard to current and imminent requirements to strengthen and promote the recycling of garment waste in order to safe valuable textile fibre in the European but also worldwide textile economy DiloGroup announces the start of a close cooperation between Dilo, Germany and the Italian companies Dell’Orco & Villani and TechnoPlants. This cooperation forms a group of expertise to supply complete projects in the area of textile recycling.

Dell’Orco & Villani is a long term highly experienced and innovative specialist in the field of tearing equipment to recycle textile garment clippings. This technology maintains as much as possible the staple length of reopened fibre from yarn in knitted and woven textiles. This special tearing process avoids the downgrading and shortening of the staple.

TechnoPlants is a highly experienced specialist in the field of aerodynamic web forming and through air technology with particular emphasis on reclaimed fibre for various applications as for example in acoustic and thermal insulation, car parts, upholstery and bedding.

With regard to current and imminent requirements to strengthen and promote the recycling of garment waste in order to safe valuable textile fibre in the European but also worldwide textile economy DiloGroup announces the start of a close cooperation between Dilo, Germany and the Italian companies Dell’Orco & Villani and TechnoPlants. This cooperation forms a group of expertise to supply complete projects in the area of textile recycling.

Dell’Orco & Villani is a long term highly experienced and innovative specialist in the field of tearing equipment to recycle textile garment clippings. This technology maintains as much as possible the staple length of reopened fibre from yarn in knitted and woven textiles. This special tearing process avoids the downgrading and shortening of the staple.

TechnoPlants is a highly experienced specialist in the field of aerodynamic web forming and through air technology with particular emphasis on reclaimed fibre for various applications as for example in acoustic and thermal insulation, car parts, upholstery and bedding.

DiloGroup with DiloSystems GmbH is a general contractor who is specialized in the area of fibre preparation, carding, cross-lapping and needling who will act as a turnkey general provider of complete projects including Dell’Orco & Villani components to reclaim wasted fibre as well as TechnoPlants components when aerodynamic web forming is included or when carding, cross-lapping is selected together with through-air ovens and end-of-line equipment including packaging from TechnoPlants.

The expertise of the three companies together is a source for the complete know-how in this large area of applications to reuse fibre from textile waste in new nonwoven material.

With the beginning of upcoming ITMA 23, more details of the organizational structure of this cooperation among the three companies will be released and project engineering will be started.

More information:
Dilo DiloGroup textile recycling
Source:

Oskar Dilo Maschinenfabrik KG

05.05.2023

Perstorp: Actionable plans in place for reaching 2030 sustainability targets

Sustainable solutions provider Perstorp has turned its ambitious sustainability targets for 2030 into actionable roadmaps on the corporate level as well as for each of its production plants, outlining hands-on activities to lower greenhouse gas emissions, reduce waste, save fresh water and enable sustainable transformation throughout the value chain.

Over the last year, Perstorp has presented ambitious sustainability targets for greenhouse gas emissions (Scope 1, 2 and 3), as well as for water and waste, to be reached by 2030. The company has now supplemented those targets with roadmaps outlining the steps and actions needed to fulfil them and support customers in reducing their carbon footprint as well as lead Perstorp toward its long-term ambition of becoming Finite Material Neutral.

Sustainable solutions provider Perstorp has turned its ambitious sustainability targets for 2030 into actionable roadmaps on the corporate level as well as for each of its production plants, outlining hands-on activities to lower greenhouse gas emissions, reduce waste, save fresh water and enable sustainable transformation throughout the value chain.

Over the last year, Perstorp has presented ambitious sustainability targets for greenhouse gas emissions (Scope 1, 2 and 3), as well as for water and waste, to be reached by 2030. The company has now supplemented those targets with roadmaps outlining the steps and actions needed to fulfil them and support customers in reducing their carbon footprint as well as lead Perstorp toward its long-term ambition of becoming Finite Material Neutral.

The largest greenhouse gas emissions are found in Scope 3, which includes raw materials and end-of-life treatment of Perstorp’s products. The Scope 3 roadmap includes the steps necessary to drive the transition of the product portfolio from fossil-based to more sustainable, lower carbon footprint alternatives. This, in turn, will help enable Perstorp’s customers to achieve their own sustainable transition. One key project in this roadmap is Project Air, an initiative aiming to replace all the fossil methanol that Perstorp uses in Europe with methanol produced from residue streams such as carbon capture and utilization (CCU) and renewable sources like biogas. This alone is expected to reduce carbon dioxide emissions by 500,000 tons per year.

The corporate Scope 1 & 2 targets (direct greenhouse gas emissions from Perstorp´s production plants and purchased energy), as well as the targets for water and waste, have been broken down into local targets and roadmaps, firmly anchored in the specific prerequisites for each production plant.

Initiatives on reducing energy consumption and shifting to energy from non-fossil or recovered sources can, for example, be found in the local roadmaps, while the steps to reach those targets are tailored specifically to each location. Among the planned local activities are also initiatives to replace fresh water used in the production with purified wastewater and to find different ways to reuse and recycle waste from production.

Source:

Perstorp

02.03.2023

Recycling Atelier Augsburg and Kelheim Fibres cooperate

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, has joined Recycling Atelier Augsburg. Recycling Atelier Augsburg is a unique centre for research and development in the field of textile recycling. It is located at the Institut für Textiltechnik Augsburg an affiliated institute of Augsburg University of Applied Sciences. The two institutions founded the Recycling Atelier in June 2022 together with twelve partners from the German textile industry.

In the Recycling Atelier, the focus is on the triad of technical and ecological sense as well as economic benefit. In this way, the partners of the Recycling Atelier are standing up against fast fashion, outsourced corporate responsibility and a general decline in raw material quality, which often fuels downcycling - the low-quality reuse - of materials.

Kelheim Fibres, a leading manufacturer of viscose speciality fibres, has joined Recycling Atelier Augsburg. Recycling Atelier Augsburg is a unique centre for research and development in the field of textile recycling. It is located at the Institut für Textiltechnik Augsburg an affiliated institute of Augsburg University of Applied Sciences. The two institutions founded the Recycling Atelier in June 2022 together with twelve partners from the German textile industry.

In the Recycling Atelier, the focus is on the triad of technical and ecological sense as well as economic benefit. In this way, the partners of the Recycling Atelier are standing up against fast fashion, outsourced corporate responsibility and a general decline in raw material quality, which often fuels downcycling - the low-quality reuse - of materials.

As a model factory, the Recycling Atelier Augsburg combines the most important processes of textile recycling and offers holistic and comprehensive research along the value chain," explains Georg Stegschuster, head of the Recycling Atelier Augsburg. The scientists research on all process steps of textile recycling: from material analysis to sorting, preparation and textile processing to sustainable product design. Comprehensive data collection and the use of artificial intelligence as well as innovative materials play a central role.

Kelheim Fibres is a producer of high-quality viscose fibres, which consist of cellulose, the main component of the renewable raw material wood, and are used worldwide for products in areas such as hygiene, textiles, and technical applications.

"In New Business Development as well as Fibre and Application Development, we follow the Open Innovation concept - the cooperation with the Recycling Atelier offers us an ideal platform for this. Here we work with partners to advance sustainability and performance," explains Maik Thiel, project manager at Kelheim Fibres.

Recycled cotton fibres are often very short or of uneven length, which makes further processing of 100 % recycled material a challenge. Adding speciality fibres from Kelheim Fibres should enable the production of high-quality new products, such as nonwovens. In the future, the fibres provided by Kelheim Fibres will also be made from recycled pulp.

Source:

Kelheim Fibres GmbH

Texaid
02.03.2023

New project “Transform Textile Waste into Feedstock”

Textile waste is a problem in Europe. Out of 7-7.5 million tonnes of textiles discarded every year, 30-35 % are collected separately – and of that quantity, 15-20 % are sorted by medium and larger sorting facilities within the EU. After sorting, 60 % still qualify as wearable clothes, however after a second or third collection-loop, all of the textiles become non-wearable sooner or later. Therefore, fibre-to-fibre recycling is becoming increasingly important to preserve the valuable resources.
 
The textile recycling value chain is not yet mature, but we are on the verge of a turning point, as different fibre-recycling technologies are deployed on a large scale. If successful, the textile recycling industry could reach a recycling rate of 18 to 26 percent of gross textile waste in 2030. This would create economic, social and environmental value that could total 3.5 to 4.5 billion euros in 2030.

Textile waste is a problem in Europe. Out of 7-7.5 million tonnes of textiles discarded every year, 30-35 % are collected separately – and of that quantity, 15-20 % are sorted by medium and larger sorting facilities within the EU. After sorting, 60 % still qualify as wearable clothes, however after a second or third collection-loop, all of the textiles become non-wearable sooner or later. Therefore, fibre-to-fibre recycling is becoming increasingly important to preserve the valuable resources.
 
The textile recycling value chain is not yet mature, but we are on the verge of a turning point, as different fibre-recycling technologies are deployed on a large scale. If successful, the textile recycling industry could reach a recycling rate of 18 to 26 percent of gross textile waste in 2030. This would create economic, social and environmental value that could total 3.5 to 4.5 billion euros in 2030.

Today, there is a sorting gap to achieve a circular economy for textiles in Europe. To feed this new circular value chain, a significant sorting-capacity increase is needed with 150 to 250 sorting and recycling facilities nearby, as the McKinsey-study “turning waste into value” assessed.

There is also a technology and capacity gap in sorting for reuse and recycling to ensure that high quality raw materials from non-wearable textile waste can be made available on a large scale. This is why the “Transform Textile Waste into Feedstock” project was initiated by TEXAID, within the ReHubs initiative together with well-known stakeholders of the textile value chain.

The major outcome of this project will be a sorting-factory blueprint fulfilling the requirements to the future needs of fibre-to-fibre recycling, enabling the future of more sustainable textiles by using recycled fibres. TEXAID, who is leading the project, is committed to build and operate scalable sorting facilities across Europe, the first with a capacity of 50,000 tonnes by the end of 2024.

Companies like Concordia, CuRe Technology, Decathlon, Inditex, Indorama Ventures, L’Atelier des Matières, Lenzing, Marchi & Fildi, PurFi, Södra, Worn Again and others are taking part in the project to jointly evaluate technologies and the business case for scaled sorting for reuse and recycling. ITA Academy GmbH (in cooperation with RWTH Aachen) together with CETIA has been commissioned for the assessment of technologies. The outcome will be an innovative sorting system 4.0, building on cross-functional technologies with digitalization and automation are at the heart.

20.01.2023

Third edition of the project "CirculART"

Art meets sustainable fashion in the third edition of the project "CirculART", the initiative that sees companies, artists and fashion designers working together with Cittadellarte - Fondazione Pistoletto, showing how new balanced forms of production, design and sharing can be explored through a careful choice of materials and of sustainable supply chains. Three key concepts underpin the circularity of sustainable fashion and therefore this project: Reduce - reducing the consumption of raw materials, Reuse - reuse of raw materials, Recycling - regeneration.

The project CirculART is conceived and developed in collaboration between Fashion B.E.S.T. and UNIDEE Residency Programs, and led by the Foundation's team of curators.

Art meets sustainable fashion in the third edition of the project "CirculART", the initiative that sees companies, artists and fashion designers working together with Cittadellarte - Fondazione Pistoletto, showing how new balanced forms of production, design and sharing can be explored through a careful choice of materials and of sustainable supply chains. Three key concepts underpin the circularity of sustainable fashion and therefore this project: Reduce - reducing the consumption of raw materials, Reuse - reuse of raw materials, Recycling - regeneration.

The project CirculART is conceived and developed in collaboration between Fashion B.E.S.T. and UNIDEE Residency Programs, and led by the Foundation's team of curators.

Fashion B.E.S.T. - Better Ethical Sustainable Think-Tank, Cittadellarte - Fondazione Pistoletto’ sustainable fashion office, was created by artist Michelangelo Pistoletto and Franca Sozzani. Since 2009, B.E.S.T. has been working on the development of sustainability in the textile sector, to lead to a contamination between art, which assumes social responsibility, and the world of fashion, which is looking to define a new ethical and sustainable model.

CirculART proposes a new link between fashion and art, engaging both in a conscious and innovative combination of sustainability, sensitivity, beauty and union. The project links territory and production factories, bringing together actors from the different sectors making up the textile supply chain that work on the basis of a circular economy with companies that have chosen to embrace the ideal of sustainability and develop an innovative business model.

The protagonists of this year’s edition are two international artists and two international fashion designers, selected through an open call launched by Cittadellarte: Augustina Bottoni, Lucia Chain, Huge Sillytoe and Rebecca Sforzani, young talents called upon to create a work with fabrics produced by partner companies, focusing on dialogue and on the enhancement of the textile industry production chain.

In early 2023, the programme will give the four selected artists the opportunity to visit and work actively with the partner companies that have joined the initiative.
These are: Achille Pinto S.p.a, manufacturer of textiles and textile accessories for the main international fashion brands; Albini Group, Europe's largest manufacturer of cotton fabrics for shirts; Erica Industria Tessile, a leading company in the creation of textile prints, original and customised designs; Filatura Astro, eco-sustainable regenerated yarns; G2B S.r.l., a chemical and environmental analysis laboratory working with vertical cultivation from which indigo is obtained; Lampo by Ditta Giovanni Lanfranchi S.p.A., leader in the creation and production of zips for fashion; Lanificio Fratelli Cerruti, a Biella-based weaver for haute couture; Lenzing, world leader in the production of fabrics made from fibres derived from renewable wood raw material; Milior, a producer of high quality fabrics; Officina +39 – Chemistry plus creativity, a chemical company with thirty years' experience dedicated to research and chemical application in textiles; Tessuti di Sondrio, a factory inspired by the century-old local textile tradition of processing cotton, linen, hemp and wool; Tintoria Emiliana, garment-dyed production and sustainable practices; Zegna Baruffa Lane Borgosesia, a manufacturer of 100% Made in Italy fine combed and carded yarns.

 

Source:

Officina +39 / Menabò Group srl

Graphik Freudenberg Performance Materials
10.01.2023

Freudenberg: Technical packaging textiles with less CO2 emissions

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

By using a high share of recycled content in its Evolon® materials, Freudenberg Performance Materials (Freudenberg) offers technical packaging textiles with a carbon footprint decreased by 35%. An independent LCA study showed additional benefits such as energy resource savings and lower water use. Furthermore, Evolon® fabrics provide sustainability benefits over the packaging entire life cycle thanks to high end performance and durability.

By replacing virgin PET with recycled PET, the cradle-to-gate carbon footprint of Evolon® packaging textile materials decreased by 35%. This is the result of a study by an independent LCA and eco-design consultancy firm, which made a Cradle-to-Gate assessment of several Evolon® products using virgin PET or recycled PET. The study was finalized in 2022 and conducted according to the principles of ISO 14040/ ISO 14044 standards, following the recommendations of the Product Environmental Footprint and the Circular Footprint Formula.

Evolon® microfilament textiles have a small carbon footprint because their manufacturing process uses low CO2 energy sources. The fabrics are lightweight and can be reused throughout entire production programs, e.g. of a car model when it is about the automotive industry. Furthermore, the new Evolon® RE fabrics contain up to 85% of recycled PET which is produced in-house out of post-consumer PET bottles.

Evolon® textiles are suitable for reusable technical packaging, which eliminate the use of thousands of disposable packaging materials. Evolon® fabrics offer scratch-free, lint-free, high-end surface protection for molded plastic parts, painted parts and other sensitive industrial and automotive parts during transport. This contributes to lower the scrap rate of parts and provide both financial and ecological benefits. By using Evolon® reusable packaging to transport highly-sensitive parts, customers can increase their efficiency and save resources.

Source:

Freudenberg Performance Materials

(c) TEXAID
21.12.2022

TEXAID introduces recycled tote bag with a digital product passport

With the aim of increasing the use of post-consumer fibers in textiles, TEXAID launches a white tote bag. The fabric is a mixture of 50% used textile waste collected by TEXAID in Switzerland and Germany. At TEXAID's largest sorting facility in Apolda, Germany, white cotton textiles that can no longer be worn were sorted out and later spun, woven, and manufactured in Italy. Plastic waste makes up the other 50%. Unifi rescued this ocean-bound plastic waste and recycled it into fiber.

The cotton material was transformed into a fiber by Marchi & Fildi in Biella, IT, which was then spun into a yarn using recycled cotton and recycled polyester fibers. This yarn was woven into textile by Tessitura Casoni.T.F.C.. The care label and flag label were produced by the German company Bornemann-Etiketten GmbH, and an NFC chip from circular.fashion was also integrated into the product. All components were then assembled into this bag in Tuscany by benefit company Alisea Srl Società Benefit with their partner Paimex SRL and also screen printed with our design on it.

With the aim of increasing the use of post-consumer fibers in textiles, TEXAID launches a white tote bag. The fabric is a mixture of 50% used textile waste collected by TEXAID in Switzerland and Germany. At TEXAID's largest sorting facility in Apolda, Germany, white cotton textiles that can no longer be worn were sorted out and later spun, woven, and manufactured in Italy. Plastic waste makes up the other 50%. Unifi rescued this ocean-bound plastic waste and recycled it into fiber.

The cotton material was transformed into a fiber by Marchi & Fildi in Biella, IT, which was then spun into a yarn using recycled cotton and recycled polyester fibers. This yarn was woven into textile by Tessitura Casoni.T.F.C.. The care label and flag label were produced by the German company Bornemann-Etiketten GmbH, and an NFC chip from circular.fashion was also integrated into the product. All components were then assembled into this bag in Tuscany by benefit company Alisea Srl Società Benefit with their partner Paimex SRL and also screen printed with our design on it.

This NFC chip is a circularity.IDⓇ digital product passport, developed by the Berlin-based company, circular.fashion. By scanning the NFC chip on the bag with a cell phone, customers are redirected to the circularity.IDⓇ product platform. On this platform, they can find further information on the supply chain as well as instructions on how to refurbish or return the bag for proper recycling. Through this digital product passport, a total transparency over the entire bag production is enabled and for customers it is an easy and quick way to get the information they need.

The chip also allows the manual sorters to getthe product information much faster to make a better sorting decision, e.g. the fiber composition. For this purpose, circular.fashion's intelligent sorting stations are used to scan the chip. Several of these stations have been installed at TEXAID's sorting facility in Apolda, Germany, to facilitate optimized reuse and recycling decisions and ensure another life for the product or fiber.

Source:

TEXAID

Photo: Freudenberg Performance Apparel
24.11.2022

Freudenberg Performance Materials Apparel: Rooftop photovoltaic coverage at Nantong

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Freudenberg recently completed the installation of 13,000m2 of photovoltaic cells on the roof of its new Nantong factory. With a total capacity of 1.6 MW, the new rooftop installation is projected to produce 1.5 million kWh of green electricity each year. In addition to reduced energy consumption from the grid, this new installation will lower CO2 emissions by approximately 1,200 tons/year.

Beyond the photovoltaic installation, Freudenberg has integrated sustainability into the Nantong factory’s design, with advances in energy conservation and emissions and loss reduction.
The factory uses valley voltage to cool water in its reservoir that is applied to A/C and machine temperature management during working hours. The new waste gas treatment technology enables hot water collected by heat exchangers to be directly reused in production, thereby reducing thermal energy waste. Furthermore, the factory applies a new multi-phase waste gas treatment technology to reduce volatile organic compounds (VOC) emissions. The factory has also incorporated new methods to improve the A-grade rates of bi-elastic interlinings and shirt interlinings, further reducing waste while improving garment quality.

As part of the Group’s sustainable development strategy, Freudenberg Apparel has also launched its House of Sustainability to minimize the impact of production processes on the environment and help customers achieve their sustainability goals, with responsible products across the seasons.

Source:

Freudenberg Performance Apparel

Photo: EREMA
21.10.2022

EREMA: Circular economy for PET fibres

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

The textile industry is the third largest consumer of plastics. While growth rates in the production of fibres and textiles are high, the circular economy has hardly become established in this segment. The EREMA Group is now intensifying development of recycling solutions for this application with their new fibres and textiles business unit. Currently, the focus is on PET fibre materials from fibre production and subsequent processing steps. Technologies for recycling mixed fibre textiles from textile collection sources are to follow in a follow-up project phase.

"With EREMA's VACUREMA® and INTAREMA® technology and PURE LOOP's ISEC evo technology, our company group already has an extensive range of machines for fibre and PET recycling applications. For ecologically and economically sound recycling, however, new technological solutions are needed to use the recycled fibres in higher-value end applications and to achieve a functioning circular economy," explains Wolfgang Hermann, Business Development Manager Application Fibres & Textiles, EREMA Group GmbH. The initial focus will be on PET, regarded as a key material for the production of synthetic fibres. The aim is to find recycling solutions that allow PET fibre materials to be prepared for reuse in PET fibre production processes. This is a significant step for the circular economy because PET fibres in textiles account for about two-thirds of the total volume of PET.

In this development work, the EREMA Group can build on existing know-how. Proven recycling technologies have been combined with a new IV optimiser. "This extends the residence time of the PET melt, which is particularly necessary in fibre recycling to efficiently remove spinning oils. Our recycling process also increases the IV value of the PET melt after extrusion back to the specific level that is essential for production of the fibre," explains Hermann. Waste PET fibre from production processes can therefore be further processed into rPET filament fibre, carpet yarn and staple fibre.

Fibre test centre with plant to test customers' materials
In order to accelerate development work, EREMA opened its own fibre test centre a few months ago, where a cross-company team is working on recycling solutions for fibre-to-fibre applications.

Source:

EREMA Gruppe

(c) Carbios
20.10.2022

Carbios publishes results of consumer research study about plastic circularity

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

The research results demonstrated that European and US respondents find Carbios’ biorecycling technology more unique and innovative than traditional PET recycling (i.e. thermo-mechanical recycling), as well as more relevant in its ability to address their concerns and challenges regarding recycling.

In the second research study, conducted in the US, respondents were also exposed to Carbios’ biodegradation technology: an innovative enzymatic solution by which an enzyme is incorporated into plastics during the production process of bio-sourced PLA plastics (corn, sugar cane). This approach makes the material made from plants 100% compostable at ambient temperatures and degradable like plants with the built-in enzyme biologically breaking the bioplastic down in less than eight weeks without microplastics or toxic residues; creating a fully organic circularity.

Similarly to Carbios’ biorecycling technology, Carbios’ PLA biodegradation innovation caught US respondents’ attention with 64% overall liking it. Additionally, 93% of the respondents sampled described the concept as innovative, unique, easy to understand (49%), and believable (43%). Up to 82% of the most environmentally engaged respondents declared they would definitely buy more products made with Carbios’ fully circular biodegradable bioplastic.

Consumers: No other choice but to make plastic fully circular
The research says 99% of the respondents consider it important to protect the environment, while plastic pollution is now ranked the third most-concerning environmental issues after climate change and ocean pollution.

This awareness brings most of these consumers to be environmentally active when it comes to purchasing goods and sorting. For the US respondents, eco-friendly packaging comes in the fourth place in terms of purchase drivers for packaged goods and 65% of them declare sorting plastic from general waste on a regular basis, which makes plastic the most sorted type of waste.

Nevertheless, for a vast majority of the respondents across geographies, even if they would like to reduce their plastic consumption most of the time there is no suitable alternative that is as convenient, light, and cost-efficient as plastics. Hence in an ideal world, consumers would like all plastic waste in landfills and oceans to be collected, cleaned, reused and recycled.

More information:
Carbios study circularity plastics
Source:

Carbios

29.09.2022

CISUTAC: New European innovation project on circular & sustainable textiles

Launched this September, the new Horizon Europe project CISUTAC will support the transition to a circular and sustainable textile sector. As part of a consortium of 27 partners working on the project, TEXAID will among others support the project with sorting, disassembly and repair trials.

The production and consumption of textile products continue to grow, together with their impact on the environment, due to a lack of reuse, repair and recycling of materials. Quality, durability, and recyclability are often not being set as priorities in the design and manufacturing of clothing (EU Strategy for Sustainable and Circular Textiles, March 2022).  

CISUTAC aims to remove current bottlenecks in order to increase textile circularity in Europe. The objective is to minimise the sector’s total environmental impact by developing sustainable, novel, and inclusive large-scale European value chains.  

Launched this September, the new Horizon Europe project CISUTAC will support the transition to a circular and sustainable textile sector. As part of a consortium of 27 partners working on the project, TEXAID will among others support the project with sorting, disassembly and repair trials.

The production and consumption of textile products continue to grow, together with their impact on the environment, due to a lack of reuse, repair and recycling of materials. Quality, durability, and recyclability are often not being set as priorities in the design and manufacturing of clothing (EU Strategy for Sustainable and Circular Textiles, March 2022).  

CISUTAC aims to remove current bottlenecks in order to increase textile circularity in Europe. The objective is to minimise the sector’s total environmental impact by developing sustainable, novel, and inclusive large-scale European value chains.  

The project will cover most parts of the textile sector by working on two material groups representing almost 90% of all textile fibre materials (polyester, and cotton/cellulosic fibres), and focusing on products from three sub-sectors experiencing varying circularity bottlenecks (fashion garments, sports and outdoor goods, and workwear).  

CISUTAC will follow a holistic approach covering the technical, sectoral and socio-economic aspects, and will perform three pilots to demonstrate the feasibility and value of:

  • Repair and disassembly
  • Sorting (for reuse and recycling)
  • Circular garments through fibre-to-fibre recycling and design for circularity

To realise these pilots, the consortium partners will:

  • Develop semi-automated workstations
  • Analyse the infrastructure and material flows
  • Digitally enhance sorting operations (for reuse and recycling)
  • Raise awareness among the consumers and the textile industry

As part of the CISUTAC consortium, TEXAID, will conduct different trials of sorting, repair, and disassembly, and be active in the LCA and Standardisation work packages.

Source:

TEXAID Textilverwertungs-AG