From the Sector

Reset
75 results
Hexcel at JEC World 2020
Hexcel at JEC World 2020
25.02.2020

Hexcel at JEC World 2020

Hexcel’s Leading Position in Aerospace and Automotive Makes Hexcel a Trusted Partner for Urban Air Mobility

At this year’s JEC World in Paris on March 3-5, Hexcel will highlight the growing need for innovations in composite materials to support the emerging Urban Air Mobility (UAM) market.

Urban air mobility – urban transportation systems that move people by air or enable cargo deliveries – is the next big transportation innovation. Similar to taxis or ride sharing today, UAM will help remove congestion from our streets and provide a convenient, rapid method for travel in urban centers as well as in remote areas.

Advanced composite materials will be at the heart of UAM vehicles by providing lightweight, efficient, reliable, and cost-competitive options for manufacturing. “Materials have been a key driver of efficiency for aircraft today, and they will be even more important for the emerging UAM marketplace,” said Imad Atallah, Director of Strategic Marketing for Aerospace and Urban Air Mobility at Hexcel.

Hexcel’s Leading Position in Aerospace and Automotive Makes Hexcel a Trusted Partner for Urban Air Mobility

At this year’s JEC World in Paris on March 3-5, Hexcel will highlight the growing need for innovations in composite materials to support the emerging Urban Air Mobility (UAM) market.

Urban air mobility – urban transportation systems that move people by air or enable cargo deliveries – is the next big transportation innovation. Similar to taxis or ride sharing today, UAM will help remove congestion from our streets and provide a convenient, rapid method for travel in urban centers as well as in remote areas.

Advanced composite materials will be at the heart of UAM vehicles by providing lightweight, efficient, reliable, and cost-competitive options for manufacturing. “Materials have been a key driver of efficiency for aircraft today, and they will be even more important for the emerging UAM marketplace,” said Imad Atallah, Director of Strategic Marketing for Aerospace and Urban Air Mobility at Hexcel.

Already, Hexcel is a leader in advanced composite materials for the aerospace market and is a key supplier of composite materials to the automotive industry. So, the company is well positioned to offer solutions to meet the critical needs of high-rate and quick-part manufacturing cycles, in addition to low-cost needs for this space. Hexcel’s materials solutions approach for UAM is to make it greener and more sustainable, safer, more comfortable, and more affordable.

Hexcel’s broad range of carbon fiber and HexPly® prepreg solutions, including snap cure thermosets and thermoplastics, coupled with the most qualified positions on aerospace programs in the industry make the company a trusted partner for UAM. In addition to offering composite materials from carbon fibers, prepregs, honeycomb and reinforcements, Hexcel’s best-performing market solution in noise absorption on aircraft jet engines, Acousti-Cap®, provides a strong position of innovation to solve one of the most critical problems in the UAM space – community noise. “We are applying our technologies to the unique needs of urban air mobility vehicles,” Atallah said.

Hexcel’s ability to bring materials technology from the aerospace and automotive industries represents a unique strength in solving the critical challenges of UAM, especially around high-rate manufacturing, low-cost materials, light weighting, and noise. “Both thermoplastics and quick-cure thermoset materials are expected to have applications on UAM vehicles,” Atallah said. Furthermore, Hexcel’s broad product portfolio including unsized carbon fiber has proven to be the most compatible with thermoplastic resins from a consolidation perspective.

More information:
Hexcel JEC World
Source:

AGENCE APOCOPE

Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany (c) SGL Carbon
Tailor-made large-scale fabrics production at SGL Carbon in Wackersdorf, Germany
07.02.2020

JEC World 2020: SGL Carbon presents new solutions

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

At this year’s JEC World, the largest trade fair for composites held from March 3-5, 2020 in Paris, SGL Carbon will focus on the topic of serial production for the automotive, aerospace and industrial sectors. The key is customized solutions with individual component designs combined with tailored materials and production processes ready for large scale production. Under the motto “The Solution Provider,” the company will present selective innovative component solutions from all three areas in Hall 6, Booth D25. Furthermore, as an example for industrial applications, SGL Carbon will showcase at the JEC world a crossbeam made of carbon fiber reinforced plastics (CFRP) used in automated Schuler press lines.

  •    Composite battery enclosures for e-mobility
  •    Flexible new leaf spring generation for rear axles
  •    Innovative component designs for passenger airplanes, helicopters and air taxis
  •    Extremely lightweight and stable transfer beam for mechanical engineering

Selective applications with focus on serial production
In the field of automotive applications, SGL Carbon will present at the JEC World composite battery enclosures as a promising new application driven by increasing demand for electric vehicles and the resulting new flexible chassis platforms. The company demonstrates a prototype of a battery enclosure based on carbon fibers. However, hybrid composites with a mixture of glass and carbon fibers are also possible.

In the aerospace sector, SGL Carbon is also expanding its portfolio of realized projects and expertise relying on the trend to use more efficient materials and processes in this industry too.
In the area of primary structure components, the company will present a demo exhibit for the door frame of a passenger airplane realized in collaboration with external partners and based on 50k carbon fiber from the SGL Carbon, which is suitable for serial production.

Live simulations and intense exchange at the booth
Visitors can experience live how their ideas can be implemented both sustainably and cost-effectively in composites thanks to simulations. Experts from the company’s own Lightweight and Application Center demonstrate the path from the concept to virtual prototypes using simulation software, with the result visible either to the entire audience or just individual visitors. To prepare, interested parties can contact the team now at the following link: https://www.sglcarbon.com/anmeldung-jec.

On March 4, 2020, the SGL Carbon stand will host its traditional get-together for customers and friends starting at 4 p.m. – no registration necessary.
 

More information:
SGL Carbon JEC World
Source:

SGL Carbon

(c) Edward C. Gregor Associates
03.02.2020

Dynamic Modifiers: Highest flame retardancy with new coating

A new non-halogenated FR compound called PAL...VersaCHARTM can achieve a new level of flame retardant performance as a coating for nonwovens and technical textiles.

PAL...VersaCHARTM has been tested to 1,950°C – the highest to date – and shown to prevent all flaming drips of polymer. Char bodies form on the compound surface, protecting against flame creation and delaying heat transfer. Rapid self- extinguishing burn behaviour protects any underlying substrate to which it is adhered.

The compound has passed ASTM E84 (Class A) with a 15/10 rating, which includes ‘clean’ smoke generation of only 2.3% of the allowable ASTM smoke limits. In addition, the compound is light weight, at a specific gravity of 1.0, and 100% non-toxic in every respect, being free from heavy metals, halogens and VOCs. 

Other properties include excellent cold crack performance, hydrophobicity, printability, extreme chemical resistance and the ability to be custom tailored for specific needs such as UV or antimicrobial performance, as volume warrants. The compound is also very competitively priced.

A new non-halogenated FR compound called PAL...VersaCHARTM can achieve a new level of flame retardant performance as a coating for nonwovens and technical textiles.

PAL...VersaCHARTM has been tested to 1,950°C – the highest to date – and shown to prevent all flaming drips of polymer. Char bodies form on the compound surface, protecting against flame creation and delaying heat transfer. Rapid self- extinguishing burn behaviour protects any underlying substrate to which it is adhered.

The compound has passed ASTM E84 (Class A) with a 15/10 rating, which includes ‘clean’ smoke generation of only 2.3% of the allowable ASTM smoke limits. In addition, the compound is light weight, at a specific gravity of 1.0, and 100% non-toxic in every respect, being free from heavy metals, halogens and VOCs. 

Other properties include excellent cold crack performance, hydrophobicity, printability, extreme chemical resistance and the ability to be custom tailored for specific needs such as UV or antimicrobial performance, as volume warrants. The compound is also very competitively priced.

In addition to its use as a coating, PAL...VersaCHARTM compound can be produced as a flexible film or sheet and moulded to shape or over-moulded to most materials, including metal for corrosion resistance. As a polymeric compound it can be cast or calendered and typical durometers from 80-99A for flexible-to-high rigid formats are practical. 

Separately, an adhesive has been created which bonds to many surfaces. In internal evaluations of two laminated plies of woven carbon fibre and two plies of glass fabrics, both passed a 60 second vertical burn with no ply separation, distortion or flaming drips from the adhesive.

Dynamic Modifiers envisages many uses for PAL...VersaCHARTM, from aerospace to the protection of rigid structural materials in building interiors etc.   
 

Ultra-light landing gear made of carbon fiber composites for air taxis (c) SGL Carbon
Ultra-light landing gear made of carbon fiber composites for air taxis
20.01.2020

SGL Carbon: Ultra-light landing gear made of carbon fiber composites for air taxis

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

  • Series order for a total of 500 units
  • First SGL Carbon component project for manned autonomous aviation

SGL Carbon will begin serial production of landing gear made from braided carbon fiber material early this year. The landing skids will be installed in around 500 air taxis worldwide over the next two years.

The air taxis will be powered by several electric motors. To optimize the range of the taxis, every single gram counts. Measuring about two meters in length and 1.5 meters in width, the ultra-light landing skid will weigh less than three kilograms, making it about 15 percent lighter than a similar component made from aluminum. This increases the potential flight time capacity of the air taxi which is a key differentiator for the air taxi operator.

“With with our landing gear we help to shape this very new, promising application of manned, autonomous civil aviation. This involvement also demonstrates our wide range of services. From engineering, to prototype manufacture, to serial production with our own materials – all of our competences along the entire value chain made a contribution to the project ,” emphasizes Dr. Andreas Erber, Head of the Aerospace segment of the Composites – Fibers & Materials business unit at SGL Carbon.

The landing gear was developed in close collaboration between customer experts and specialists from SGL Carbon. The carbon fibers for the component are produced at the SGL Carbon plant in Muir of Ord, Scotland. The final part is being manufactured at the SGL Carbon site in Innkreis, Austria.

 

More information:
SGL Carbon
Source:

SGL Carbon

SGL Carbon und Solvay schließen Kooperation zur Entwicklung von im hohen Maße konkurrenzfähigen und fortschrittlichen Carbonfaser-Verbundwerkstoffen für Primärstrukturen in der Luftfahrt (c) SGL CARBON SE
SGL Carbon Large-Tow-IM-Carbonfaser Produktion am US-Standort Moses Lake
03.12.2019

Collaboration between SGL Carbon and Solvay

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

SGL Carbon and Solvay collaborate to develop highly-competitive advanced carbon fiber composites for aerospace primary structures

SGL Carbon and Solvay have entered into a joint development agreement (JDA) to bring to market the first composite materials based on large-tow intermediate modulus (IM) carbon fiber. These materials, which address the need to reduce costs and CO2 emissions, and improve the production process and fuel efficiency of next-generation commercial aircraft, will be based on SGL Carbon’s large-tow IM carbon fiber and Solvay’s primary structure resin systems.

The agreement encompasses both thermoset and thermoplastic composite technologies. It builds on Solvay’s leadership in supplying advanced materials to the aerospace industry and SGL Carbon’s expertise in high-volume carbon fiber manufacturing.

“For Solvay, this is an opportunity to lead the aerospace adoption of a composite material based on 50K IM carbon fiber. This is a highly competitive value proposition that brings more affordable high-performance solutions to our customers. We see this as the first step in a long-term partnership,” said Augusto Di Donfrancesco, member of Solvay’s executive committee.

“By combining SGL’s carbon fiber expertise in our newly developed, unique 50K IM fiber with Solvay’s resin formulation and aerospace market expertise, both partners are aiming to develop an advanced aerospace material system. This alliance supports our strategic direction and accelerates our growth in the attractive aerospace market,” said Dr. Michael Majerus, spokesman of the management board of SGL Carbon.

Composite materials for aerospace applications represent a multi-billion-dollar market that is expected to grow strongly in the coming decade. Solvay and SGL Carbon are uniquely positioned to develop solutions to address the needs of this market.

More information:
Solvay SGL Carbon Carbonfaser
Source:

SGL CARBON SE

(c) Eric RAZ, Airbus Helicopters
25.11.2019

SGL Carbon serially delivers composite materials for rotor blades to Airbus Helicopters

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

  • Glass fiber textiles for helicopter type H145
  • First ever material supply for primary structural components in the aerospace segment

Since August of this year, SGL Carbon delivers two special glass fiber textiles, so-called non-crimped fabrics, for the new version of helicopter model H145 from Airbus Helicopters. These materials are used in the new, especially efficient five-blade rotor. Developed in close collaboration with Airbus Helicopters, the material has been qualified for the application for the next years to come.  

Thanks to their unidirectional fiber orientation, the fabrics are extremely resistant, providing optimal support for the new geometry of the especially long H145 rotor blades. The fabrics are manufactured at the SGL Carbon site in Willich near Düsseldorf in a multi-stage process and delivered to Airbus Helicopters in Paris.  

“The order emphasizes our growing presence in the aerospace business. With the fabrics for Airbus Helicopters, we have realized, qualified, and started serial production for a material concept for primary structural components for the first time,” underscores Dr. Andreas Erber, Head of the Aerospace segment in the business unit Composites – Fibers & Materials at SGL Carbon.

The current deliveries are part of a framework contract with Airbus Helicopters, intended to gradually intensify collaboration. Besides the current development of materials for helicopter components, Airbus Helicopters and SGL Carbon have worked together in the area of component material processing for Airbus group aircraft doors for years. In addition, Airbus and SGL Carbon are jointly involved in various associations and research projects in the area of components, such as Carbon Composites e.V.

 

More information:
SGL Carbon
Source:

SGL CARBON SE

Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation. (c) Porcher Industries
Thermal acoustical insulation materials
18.11.2019

Porcher Industries at the Annual Automotive Exhaust Systems Summit

  • Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation.

The 5th Edition of the Annual Automotive Exhaust Systems Summit, to be held in Dusseldorf on November 28th-29th, will see Porcher Industries showcase the market’s most complete range of high performance thermal and acoustical insulation products.

With a key strategic thrust targeting quiet and clean mobility by developing new insulation applications, Porcher Industries’ range of textiles meet the demands and requirements of the Automotive, Aerospace and other transport sectors by delivering unsurpassed levels of thermal and acoustical management.

On display the group will showcase its Techmat®, SilcoSoft® and ThermoShield® materials – all highly functional non-woven textiles that can be found in key areas of both the hot and cold ends of vehicle exhaust systems.

  • Porcher Industries presents the future of quiet and clean mobility solutions with materials that offer high-performance thermal and acoustical insulation.

The 5th Edition of the Annual Automotive Exhaust Systems Summit, to be held in Dusseldorf on November 28th-29th, will see Porcher Industries showcase the market’s most complete range of high performance thermal and acoustical insulation products.

With a key strategic thrust targeting quiet and clean mobility by developing new insulation applications, Porcher Industries’ range of textiles meet the demands and requirements of the Automotive, Aerospace and other transport sectors by delivering unsurpassed levels of thermal and acoustical management.

On display the group will showcase its Techmat®, SilcoSoft® and ThermoShield® materials – all highly functional non-woven textiles that can be found in key areas of both the hot and cold ends of vehicle exhaust systems.

Produced from 100% non-respirable fibres, these binder free non-wovens are safe to handle and can be tailored to provide application specific thermal insulation and heat shields at temperatures ranging from 650˚C to 1150˚C (1200°F to 2100°F).

Porcher Industries is able to deliver its Techmat®, SilcoSoft® and ThermoShield® materials in a wide range of formats from roll goods, flat or formed shapes through to sub-assemblies and finished parts that combine metallic layers with their insulation materials.

Porcher Industries’ thermal and acoustical insulation solutions will also be on show in Dusseldorf: technical textiles that blend chemistry and fibre processing technology to produce a powerful range of non-woven and glass mat thermoplastics (GMT) materials that can be tailored to a customer’s specific acoustical and thermal insulation requirements.

In addition, Andreas Stoeferle, Technical Support Engineer, EMEA, Porcher Industries, will present a detailed view of the group’s expertise in high performance insulations, their global reach, products and delivery formats on the opening day of the conference.

“As one of the leading manufacturers of specialist technical textiles within the Automotive sector, we have responded to demand and placed significant development time and resource into developing our range of thermal and acoustical material solutions for Automotive and Aerospace.” commented Pierre-Yves Quéfélec, Global Aerospace & Automotive BU Head.

18.11.2019

Hexcel to display 3D printed parts at Space Tech Expo

  • Hexcel  at Space Tech Expo, Bremen Hall 5 - Stand B20

STAMFORD, Conn. – Hexcel is exhibiting for the first time at the Space Tech Expo Europe show in Bremen, Germany on November 19-21 to promote its latest technologies and innovations for space applications. More than 3,000 visitors are expected at this major international forum that is dedicated to new and innovative solutions for space business and technology.

Hexcel is improving the way the world’s spacecraft components are manufactured and will feature a number of 3D-printed flight-ready carbon fiber parts manufactured from HexAM® additive manufacturing technology, combining Hexcel’s proprietary high performance PEKK thermoplastics with aerospace grade carbon fiber. HexPEKK® structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

Other Hexcel solutions for space applications that will be presented include carbon fiber, prepregs and honeycomb materials with proven performance for satellite structures and launchers.

  • Hexcel  at Space Tech Expo, Bremen Hall 5 - Stand B20

STAMFORD, Conn. – Hexcel is exhibiting for the first time at the Space Tech Expo Europe show in Bremen, Germany on November 19-21 to promote its latest technologies and innovations for space applications. More than 3,000 visitors are expected at this major international forum that is dedicated to new and innovative solutions for space business and technology.

Hexcel is improving the way the world’s spacecraft components are manufactured and will feature a number of 3D-printed flight-ready carbon fiber parts manufactured from HexAM® additive manufacturing technology, combining Hexcel’s proprietary high performance PEKK thermoplastics with aerospace grade carbon fiber. HexPEKK® structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

Other Hexcel solutions for space applications that will be presented include carbon fiber, prepregs and honeycomb materials with proven performance for satellite structures and launchers.

Airborne / AMAC GmbH (c) AMAC GmbH
28.10.2019

Airborne strengthens its activities in the D-A-CH region with AMAC

As of October 1st, 2019, the Netherlands-based global market leading manufacturer of advanced automation equipment and solutions for composites, Airborne, strengthens its activities particularly in German speaking countries, the so-called D-A-CH region, comprising Germany, Austria and Switzerland with Dr. Michael Effing from AMAC. The Dutch company is looking for specialised partnerships to develop and deepen its international business opportunities in the aerospace and automotive markets.

As of October 1st, 2019, the Netherlands-based global market leading manufacturer of advanced automation equipment and solutions for composites, Airborne, strengthens its activities particularly in German speaking countries, the so-called D-A-CH region, comprising Germany, Austria and Switzerland with Dr. Michael Effing from AMAC. The Dutch company is looking for specialised partnerships to develop and deepen its international business opportunities in the aerospace and automotive markets.

Airborne’s focus is on high-end composite components, at high production rates at radically low conversion costs. Airborne is building up a suite of automated solutions for the manufacturing of composites with the aim to radically reduce costs and touch labour, minimize the footprint and use of material, and improve the time to market for their clients. The company offers i.a. solutions in automated honeycomb potting, automated kitting and automated lamination of thermosets and thermoplastics. In order to develop new business opportunities in the D-A-CH region for the end-markets aerospace and automotive, Airborne is cooperating with AMAC to accelerate the process of locating suitable partnerships.

Dr. Effing, CEO of AMAC GmbH confirms: "As a first step for the establishment of Airborne on the German market, we just signed their membership at AZL in Aachen which will help to connect with over 80 companies and latest research developments. In the framework of theirstrategy to strengthen the supply to the aircraft sector, Airborne will also exhibit at the Aircraft Interiors Expo in Hamburg from March 31st to April 2nd 2020.”

 

25.10.2019

SGC Carbon SE: Update on the preliminary status of the new five-year plan;

Deterioration in market segments Textile Fibers and Industrial Applications in the business unit CFM will be counteracted with various measures; strategic growth markets remain intact

Deterioration in market segments Textile Fibers and Industrial Applications in the business unit CFM will be counteracted with various measures; strategic growth markets remain intact

  • Continued weakness in the business unit Composites – Fibers & Materials (CFM) in the final quarter of 2019 due to the further weakening in the market segment Textile Fibers as well as the deteriorated economic environment in the market segment Industrial Applications leads to a guidance adjustment for the full year 2019
  • Earnings deterioration at CFM triggers an impairment testing; impairment charge will become necessary
  • Initial outlook for 2020
  • Comprehensive measures initiated to improve earnings of the CFM business unit
  • CFM strategic growth markets automotive and aerospace remain intact
  • Growth in higher-margin aerospace business to be accelerated

While the preliminary results for the first nine months 2019 remain, overall, within the scope of the full year outlook outlined in the ad-hoc notification of August 14, 2019 (preliminary 9M/2019 recurring EBIT: Group: approx. €54 million, CFM: approx. minus €2 million, GMS: approx. €71 million, Corporate: approx. minus €15 million), continued weakness is becoming apparent for the final quarter 2019 in the reporting segment Composites – Fibers & Materials (CFM). This is due to the further weakening in the market segment Textile Fibers as well as the deteriorated economic environment in the market segment Industrial Applications.

SGL Carbon therefore now expects for the full year 2019 a recurring EBIT in the reporting segment CFM in a negative mid to high single digit million € amount (previous guidance: positive mid-single digit million € amount). This results in a Group recurring EBIT for the full year 2019 in the magnitude of €45 to 50 million (previous guidance: approx. €55 million).

The earnings deterioration at CFM triggers an impairment testing. Based on the preliminary status of the new five-year plan, a non-cash impairment charge of €70 to 80 million is becoming apparent in CFM mainly due to the lower starting point in 2019 as well as the ongoing weakness in the market segments Textile Fibers and Industrial Applications. This impairment charge will be recorded in the third quarter 2019. In recent years acquired assets of the former joint ventures with BMW and Benteler are not affected by this impairment.

 

 

More information:
SGL Carbon
Source:

SGL Carbon SE

18.09.2019

Hexcel to Exhibit at CAMX 2019

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

STAMFORD, Conn. – At this year’s CAMX conference, taking place on September 24-26 in Anaheim, CA (Booth L42), Hexcel will promote its broad portfolio of composite innovations for aerospace and industrial applications.

On display at the Hexcel booth, visitors will see an integrated wing panel demonstrator made with HiMax™ non-crimp reinforcements that were specially developed to complement a new generation of infusion resin systems. Visitors will also see a wing box demonstrator made from HiTape® dry carbon reinforcements. Both parts were injected with Hexcel’s RTM6 infusion resin and incorporate a toughening veil to enhance mechanical properties to meet the structural requirements for aerospace parts.

With 50 years of experience and the most qualified carbon fiber positions on aerospace programs in the industry with its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate and is introducing a new fiber to its portfolio. HexTow® HM54 combines high modulus and high tensile strength, which allows structural designers to achieve higher safety margins for both stiffness and strength-critical applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications. HexTow® carbon fibers are excellent not only for aerospace applications but also industrial and recreational applications, examples of golfing applications will be on display.

Additive manufacturing is on the forefront of innovation for composite technologies, and Hexcel is leading the way with its HexAM® additive manufacturing process. HexAM® additive manufacturing combines high performance PEKK thermoplastics with carbon fiber to produce flight-ready 3D printed HexPEKK® parts. HexPEKK® structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts in highly demanding aerospace, satellite and defense applications.

HexPly® M77 snap-cure prepregs are yet another example of Hexcel technology leading the way. HexPly® M77HF, the latest member of this quick-curing prepreg family, is revolutionizing the world of composites for high-performance sporting goods with its faster production times and excellent surface quality. It will be featured in the Hexcel booth in two products – a carbon fiber Goode water ski which is setting records in the competitive world with its precision and durability, and in a HED cycling wheel noted for its aerodynamics and light weight.

Among Hexcel’s latest technologies are the RF Interference Control materials made by ARC Technologies, a Hexcel company. A selection of these industry-leading custom RF / EMI and microwave absorbing composite materials for military, aerospace and industrial applications will be on display at the Hexcel booth.

HexForce® bias weave woven reinforcements are a patented solution to optimize material usage. These bias weave reinforcements are continuous rolls of carbon fiber fabric in which the warp and weft yarns are oriented on the bias at +/- 45° which can reduce prepreg waste up to 60%. Visitors at CAMX will be able to see this new woven reinforcement and learn more.

Source:

AGENCE APOCOPE

09.09.2019

Hexcel’s HexAM™ Additive Manufacturing Approved by Boeing

Hexcel Corporation has been approved by Boeing to produce HexPEKK™-100 aerospace structures for major commercial aircraft platforms.

After rigorous review of Hexcel’s proprietary poly-ether-ketone-ketone and carbon fiber material formulation, Hexcel’s superior HexPEKK™-100 end-use components – as well as its highly-controlled HexAM™ additive manufacturing process (which uses selective laser sintering) – are now obtainable through Boeing’s Qualified Provider List (QPL). These HexPEKK™ components will be manufactured-to-print for commercial aerospace applications where complexity, weight reduction, and strong mechanical performance are critical.

Hexcel provides high-rate serial part production with reduced lead-time and at a lower cost than traditional intricately machined aluminum or composite structures. HexPEKK™-100 parts meet interior aircraft smoke and toxicity requirements and are ideal for complex components such as optimized brackets, environmental control system ducts, and castings.

Hexcel Corporation has been approved by Boeing to produce HexPEKK™-100 aerospace structures for major commercial aircraft platforms.

After rigorous review of Hexcel’s proprietary poly-ether-ketone-ketone and carbon fiber material formulation, Hexcel’s superior HexPEKK™-100 end-use components – as well as its highly-controlled HexAM™ additive manufacturing process (which uses selective laser sintering) – are now obtainable through Boeing’s Qualified Provider List (QPL). These HexPEKK™ components will be manufactured-to-print for commercial aerospace applications where complexity, weight reduction, and strong mechanical performance are critical.

Hexcel provides high-rate serial part production with reduced lead-time and at a lower cost than traditional intricately machined aluminum or composite structures. HexPEKK™-100 parts meet interior aircraft smoke and toxicity requirements and are ideal for complex components such as optimized brackets, environmental control system ducts, and castings.

More information:
Hexcel, Airbus Hexcel HexPEKK
Source:

APOCOPE Agency

10.07.2019

New Consortium HAICoPAS targets innovative solutions for carbon thermoplastic composite structures

Hexcel, Arkema and their partners are pleased to announce that their joint collaborative project “HAICoPAS” has received approval from Bpifrance and the support (grant of 6 million euros) of France’s Investissements d’Avenir program.

HAICoPAS project is a collaborative project with a total amount of 13.5 million euros lead by Hexcel and Arkema and their industrial partners (Ingecal, Coriolis Composites, Pinette Emidecau Industries (PEI) et l'Institut de Soudure), and academia lead by CNRS (PIMM (CNRS - Arts et Métiers ParisTech - le Cnam), LTEN (CNRS - Université de Nantes). This project follows last year’s announcement of the strategic partnership between Hexcel and Arkema to develop high performance PEKK/carbon fiber UD tapes targeting composite parts for primary aerospace structures.

Hexcel, Arkema and their partners are pleased to announce that their joint collaborative project “HAICoPAS” has received approval from Bpifrance and the support (grant of 6 million euros) of France’s Investissements d’Avenir program.

HAICoPAS project is a collaborative project with a total amount of 13.5 million euros lead by Hexcel and Arkema and their industrial partners (Ingecal, Coriolis Composites, Pinette Emidecau Industries (PEI) et l'Institut de Soudure), and academia lead by CNRS (PIMM (CNRS - Arts et Métiers ParisTech - le Cnam), LTEN (CNRS - Université de Nantes). This project follows last year’s announcement of the strategic partnership between Hexcel and Arkema to develop high performance PEKK/carbon fiber UD tapes targeting composite parts for primary aerospace structures.

Source:

AGENCE APOCOPE

(c) HEXCEL
27.06.2019

HEXCEL ANNOUNCES OFFICIAL OPENING OF FAHCCT LABORATORY IN SHANGHAI

Hexcel, Progen and Future Aerospace today celebrated the official opening of their new joint venture laboratory and materials testing facility in Shanghai, China.

Future Aerospace Hexcel Commercial Composite Testing Limited (FAHCCT) will provide China with a world-class aerospace standard materials testing laboratory that provides technical services including support with materials qualification for commercial aircraft programs. Planned activities at the site will include mechanical and chemical testing of composite laminate specimens (including fatigue performance), material qualifications, and provision of support for customer supply chains in China.

Hexcel, Progen and Future Aerospace today celebrated the official opening of their new joint venture laboratory and materials testing facility in Shanghai, China.

Future Aerospace Hexcel Commercial Composite Testing Limited (FAHCCT) will provide China with a world-class aerospace standard materials testing laboratory that provides technical services including support with materials qualification for commercial aircraft programs. Planned activities at the site will include mechanical and chemical testing of composite laminate specimens (including fatigue performance), material qualifications, and provision of support for customer supply chains in China.

More information:
Hexcel
Source:

AGENCE APOCOPE

11.06.2019

Hexcel at Paris Air Show 2019: Le Bourget, 17 – 23 June

STAMFORD, Conn. – At this year's Paris Airshow [Le Bourget, June 17-23] Hexcel will promote a range of carbon fibers and composite materials used to manufacture high-performance weight-saving structures in civil aircraft, engines, helicopters, and space applications.

Visitors to the Hexcel stand will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® carbon fiber reinforcements. HiTape® dry carbon reinforcements were developed for the automated lay-up of preforms and to complement a new generation of HiFlow™ resin systems, producing high-quality aerospace structures using the resin infusion process. The reinforcements incorporate a toughening veil to enhance mechanical properties and meet the structural requirements for aerospace parts. The I-Beam was manufactured using C-RTM (Compression Resin Transfer Molding) and was injected with Hexcel’s RTM6 resin in a process taking less than five minutes.

STAMFORD, Conn. – At this year's Paris Airshow [Le Bourget, June 17-23] Hexcel will promote a range of carbon fibers and composite materials used to manufacture high-performance weight-saving structures in civil aircraft, engines, helicopters, and space applications.

Visitors to the Hexcel stand will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® carbon fiber reinforcements. HiTape® dry carbon reinforcements were developed for the automated lay-up of preforms and to complement a new generation of HiFlow™ resin systems, producing high-quality aerospace structures using the resin infusion process. The reinforcements incorporate a toughening veil to enhance mechanical properties and meet the structural requirements for aerospace parts. The I-Beam was manufactured using C-RTM (Compression Resin Transfer Molding) and was injected with Hexcel’s RTM6 resin in a process taking less than five minutes.

Hexcel honeycomb saves weight and enhances stiffness in composite structures, and the company provides a range of engineered core solutions that enable highly contoured parts with precision profiling to be produced to exact customer specifications. A sample part made from aluminum FlexCore® that is CNC machined on both sides and formed and stabilized with both peel ply and flyaway layers of stabilization will be on display.

Another honeycomb innovation is Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb that significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.
Another Hexcel technology to benefit aircraft engines is HexShield™ honeycomb which provides high-temperature resistance in nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential reuse of material after a fire.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

Another area of expertise that uses HexTow® carbon fiber is additive manufacturing, where Hexcel uses PEKK ultrahigh performance polymers and HexAM™ technology to manufacture carbon reinforced 3D printed parts. This innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Later this year Hexcel will open a joint research and development laboratory in Les Avenières (Isère), France with Arkema to develop carbon fiber-reinforced thermoplastic prepreg tapes for aerospace, space and defense applications. A spool of thermoplastic prepreg tape will be on display on Hexcel’s stand to showcase this cost-effective technology that enables lightweight parts to be produced in faster production cycles for future generations of aircraft.

Hexcel’s stand is located next to Hexcel’s official distributor for aerospace products, Groupe Gazechim Composites. In 2018, Hexcel and Gazechim formed a joint venture, HexCut Services, to provide aerospace and defense customers with customized kitting services that include Hexcel’s innovative carbon fiber prepreg, fabrics and adhesives. Pre-cut kits save customers time and investment, reduce inventory and minimize material losses through scrap reduction.

More information:
Hexcel Paris Air Show Composites
Source:

AGENCE APOCOPE

12.03.2019

Hexcel and Lavoisier Composites: Alliance to Up-Cycle Composite By-Products from the Aerospace Manufacturing Cycle

Hexcel has joined forces with a Lyon-based startup, LAVOISIER COMPOSITES. This company has developed CARBONIUM®, a new generation of material sourced entirely from carbon composite by-products generated by the French aerospace sector.

Hexcel supplies high-performance composite materials for the latest generation of aircraft such as the Airbus A350 XWB (53% composite structure). This has greatly contributed to the reduction of the aircraft's weight, thereby reducing its fuel consumption and carbon footprint. Composites are a significant first step toward tackling environmental and economic challenges, and eco-sourcing of the industry by-products also plays a key role.

Hexcel has joined forces with a Lyon-based startup, LAVOISIER COMPOSITES. This company has developed CARBONIUM®, a new generation of material sourced entirely from carbon composite by-products generated by the French aerospace sector.

Hexcel supplies high-performance composite materials for the latest generation of aircraft such as the Airbus A350 XWB (53% composite structure). This has greatly contributed to the reduction of the aircraft's weight, thereby reducing its fuel consumption and carbon footprint. Composites are a significant first step toward tackling environmental and economic challenges, and eco-sourcing of the industry by-products also plays a key role.

CARBONIUM®, which was developed with a process based on three patents pending, reduces overall environmental impact by 40-50%, compared to equivalent products derived from virgin materials. Based on the "climate change" factor, the life cycle assessment carried out with Hexcel revealed that the up-cycling of by-products from the aerospace composites industry leads to a reduction in CO2 emissions of 13kg per kg of CARBONIUM® used.
In its first year of operation, LAVOISIER COMPOSITES has already enjoyed commercial success, including the launch of two top-of-the-range watch models by Swiss luxury watchmaker ULYSSE NARDIN using this new material.

From aircraft fuselages to watchmaking, the composites manufacturing cycle presents opportunities for reducing our impact on the environment.

More information:
Hexcel Hexcel, Airbus
Source:

AGENCE APOCOPE

12.03.2019

JEC WORLD 2019: 3 winners of the Startup Booster competition

JEC WORLD 2019 is turning Paris into the composites capital of the world.

As well as dozens of conferences, composites circles and live demos, plus hundreds of other events, the first day of the show was marked by the announcement of the three winners of the largest international startup competition in the composites field!

In the last three years, 270 projects have been picked out from over 30 countries, with 30 finalists and a total of nine winners.

THREE WINNERS
Ten finalists selected from 120 entries pitched to an international jury. The pitch session opened with an inspiring speech by Enrico Palermo, President of The Spaceship Company. He introduced the next generation of reusable space vehicles and their impact on costs, safety and the environment during the launch into space.
The programme incited enthusiasm from Peter Hopwood, founder of Hopwood Communications, who encouraged the finalists to develop their stage presence and galvanise their pitches.

At the afternoon’s award ceremony, three competitors were selected for the following prizes:

JEC WORLD 2019 is turning Paris into the composites capital of the world.

As well as dozens of conferences, composites circles and live demos, plus hundreds of other events, the first day of the show was marked by the announcement of the three winners of the largest international startup competition in the composites field!

In the last three years, 270 projects have been picked out from over 30 countries, with 30 finalists and a total of nine winners.

THREE WINNERS
Ten finalists selected from 120 entries pitched to an international jury. The pitch session opened with an inspiring speech by Enrico Palermo, President of The Spaceship Company. He introduced the next generation of reusable space vehicles and their impact on costs, safety and the environment during the launch into space.
The programme incited enthusiasm from Peter Hopwood, founder of Hopwood Communications, who encouraged the finalists to develop their stage presence and galvanise their pitches.

At the afternoon’s award ceremony, three competitors were selected for the following prizes:

AIRGO DESIGN (Singapore)
World's first full composite economy class passenger seat developer.
www.airgodesign.com

AREVO (USA)
Delivering the future of composite manufacturing today through breakthrough advancements in software, materials, and robotics. Through enabling the 3D printing of large, mass-produced parts and structures, AREVO is revolutionizing mainstream manufacturing and the global supply chain.
www.arevo.com

WOODOO (France)
Augmented wood.
https://woodoo.fr

The public vote: LAVOISIER COMPOSITES (France)
New generation of material entirely sourced from the French aerospace transformation sector.
www.lavoisier-composites.com

More information:
JEC World
Source:

Apocope Agency

12.03.2019

Hexcel and Arkema open joint research and development laboratory

Hexcel and Arkema have announced that they will open a joint research and development laboratory in Les Avenières (Isère), France in April.

This follows the companies’ previous announcement in March 2018 that they were forming a strategic alliance to develop thermoplastic composite solutions for the aerospace sector, combining the expertise of Hexcel in carbon fiber and Arkema in PEKK.

The companies’ objective at this new lab is to develop carbon fiber-reinforced thermoplastic prepreg tapes to enable lightweight parts to be produced for future generations of aircraft. These solutions will provide lightweight and cost effective technologies including faster production cycles for customers in the aerospace and the space and defense sectors.

Thanks to Hexcel and Arkema’s close collaboration, an initial industrial pilot line will be installed in the new lab in the coming weeks. The companies expect to start supplying carbon/thermoplastic UD tapes from this pilot line to customers for evaluation beginning in Q3 2019.

Hexcel and Arkema have announced that they will open a joint research and development laboratory in Les Avenières (Isère), France in April.

This follows the companies’ previous announcement in March 2018 that they were forming a strategic alliance to develop thermoplastic composite solutions for the aerospace sector, combining the expertise of Hexcel in carbon fiber and Arkema in PEKK.

The companies’ objective at this new lab is to develop carbon fiber-reinforced thermoplastic prepreg tapes to enable lightweight parts to be produced for future generations of aircraft. These solutions will provide lightweight and cost effective technologies including faster production cycles for customers in the aerospace and the space and defense sectors.

Thanks to Hexcel and Arkema’s close collaboration, an initial industrial pilot line will be installed in the new lab in the coming weeks. The companies expect to start supplying carbon/thermoplastic UD tapes from this pilot line to customers for evaluation beginning in Q3 2019.

More information:
Hexcel
Source:

AGENCE APOCOPE

(c) CHOMARAT
04.03.2019

Chomarat Carbon Reinforcements at JEC WORLD 2019

Composite reinforcement specialist Chomarat will exhibit its latest woven and multiaxial carbon fibre reinforcements at JEC World 2019. "Prepregs are used in the most demanding markets, such as aerospace or the automotive industry. Due to their high performance, Chomarat’s carbon fabrics are highly considered by prepreggers. Compared to standard solutions, the multiaxial reinforcements developed by the group offer Chomarat’s converter customers significant productivity gains. With its production sites in France, Asia and the United States, Chomarat is able to supply its customers and guarantee the same high level of quality in all countries," explains Group Managing Director Michel Cognet.

Composite reinforcement specialist Chomarat will exhibit its latest woven and multiaxial carbon fibre reinforcements at JEC World 2019. "Prepregs are used in the most demanding markets, such as aerospace or the automotive industry. Due to their high performance, Chomarat’s carbon fabrics are highly considered by prepreggers. Compared to standard solutions, the multiaxial reinforcements developed by the group offer Chomarat’s converter customers significant productivity gains. With its production sites in France, Asia and the United States, Chomarat is able to supply its customers and guarantee the same high level of quality in all countries," explains Group Managing Director Michel Cognet.

C-WEAVE™ - THE QUALITY AND RELIABILITY BENCHMARK
In just a few years, prepreggers have come to consider Chomarat's C-WEAVE™ carbon-fibre fabrics as a benchmark for surface-finish quality and processability.
The reinforcement contributes to productivity and reliability during the prepregging process. Helen Doughty, Director at SHD Composites, testifies: “The consistent high quality of C-WEAVE™ has been a key part of SHD Composite Materials continued success and growth.”
"Prepreg users often manufacture Class A surface parts for demanding applications, and they need excellence and reproducibility," explains Chomarat’s Prepreg Market Manager Ulrike Salmon.

C-PLY™: GOING FURTHER WITH CARBON MULTIAXIALS
The advantages of multi-axial reinforcements are now well established - oriented axes, absence of resin-rich areas allowing a high fibre content, and improved mechanical tensile and/or bending performance thanks to the non-crimp fibres.
By developing its C-PLY™ range, Chomarat further demonstrates that multiaxials are a real asset in terms of performance and appearance. "Chomarat strives to minimize marking on parts and to optimize surface quality through fibre spreading and the use of suitable stitches. C-PLY™ can also integrate aesthetic functions by using the assembly seam as a graphic design", continues Ulrike Salmon.
These new advantages are important for the automotive, sports-equipment and consumer-electronics markets, which seek to combine premium quality and productivity.

 

Source:

AGENCE APOCOPE

(c) Hexcel
04.03.2019

Hexcel at JEC World 2019

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

  • Hexcel’s Composite Innovations For Aerospace, Automotive, Energy And Marine Applications At JEC World 2019 Hall 5 - Stand J41

STAMFORD, Conn. – At this year’s JEC World taking place in Paris on March 12-14, Hexcel will promote a wide range of composite innovations for customer applications in aerospace, automotive, energy and marine markets.

Aerospace Innovations

Hexcel’s HiTape® and HiMax™ dry carbon reinforcements were developed to complement a new generation of HiFlow™ resin systems, producing high quality aerospace structures using the resin infusion process. HiTape® was developed for the automated lay-up of preforms and HiMax™ is a range of optimized non-crimp fabrics (NCF). Both products incorporate a toughening veil to enhance mechanical properties, meeting the structural requirements for aerospace parts.

Visitors to JEC will see an Integrated Wing Panel demonstrator and an I-beam, both made with HiTape® reinforcements, and an Opticoms rib made with HiMax™ NCF. The Opticoms rib and I Beam were both manufactured using C-RTM (Compression Resin Transfer Molding). They were injected with Hexcel’s RTM6 resin in a process taking less than 5 minutes. The total manufacturing cycle for both parts was just 4.5 hours.

Also among the Aerospace exhibits, Hexcel will display a composite petal for a satellite antenna, manufactured by Thales Alenia Space Italia. The petal is part of a set of 24 deployable structural elements that form the large area reflector assembly used on board Low Earth Orbit (LEO) observation satellites. Thales Alenia Space Italia selected Hexcel’s HexPly® M18 prepreg for this application, acknowledging the superior mechanical and outgassing properties provided.

Another Hexcel prepreg application on show is a “zero” frame, manufactured by Aerofonctions for the engine area of Daher’s TBM 910/930 single-engine turboprop aircraft. Hexcel’s HexPly® M56 prepreg was selected by Daher for the “zero” frame – a product developed for Out of Autoclave applications that provides the same high quality and performance as autoclave-cured prepregs, from a simple vacuum bag cure in an oven.

With 50 years of experience behind its comprehensive range of high-strength, high-strain PAN-based carbon fibers, Hexcel continues to innovate, and is introducing two new fibers to its portfolio. HexTow® HM50 combines high modulus and high tensile strength, making it ideal for commercial and defense aircraft and engines. HexTow® 85 was developed specifically to replace rayon-based carbon fiber for ablative applications.

HexTow® carbon fiber holds the most qualified carbon fiber positions on aerospace programs in the industry and is the best unsized fiber available on the market. It provides excellent bonding interfacial properties with thermoplastic matrices and is the best-performing fiber for 3D printing applications.

Additive manufacturing is another area of expertise for Hexcel, using PEKK ultra-high performance polymers and HexAM™ technology to manufacture carbon-reinforced 3D printed parts. This
innovative process provides a weight-saving solution for intricate parts in highly demanding aerospace, satellite and defense applications. HexPEKK™ structures offer significant weight, cost and time-to-market reductions, replacing traditional cast or machined metallic parts with a new technology.

Hexcel is well known for its range of weight-saving, stiffness-enhancing honeycombs and the company adds value by providing a range of engineered core solutions to customers from facilities in the USA, Belgium and the newly opened Casablanca plant in Morocco. Hexcel’s engineered core capabilities enable highly contoured parts with precision profiling to be produced to exacting customer specifications. An example of such a part will be on display at JEC. Made from Aluminum FlexCore®, the part is CNC machined on both sides, and formed and stabilized with both peel ply and flyaway layers of stabilization. Aircraft engines benefit from a number of Hexcel core technologies including HexShield™ honeycomb that provides high temperature resistance in aircraft engine nacelles. By inserting a thermally resistant material into honeycomb cells, Hexcel provides a core product with unique heat-shielding capabilities that allows for the potential re-use of material after a fire event.

Hexcel’s Acousti-Cap® broadband noise-reducing honeycomb significantly improves acoustic absorption in aircraft engine nacelles. The acoustic treatment may be positioned at a consistent depth and resistance within the core, or can be placed in a pattern of varying depths and/or resistances (Multi-Degrees of Freedom and 3 Degrees Of Freedom), offering an acoustic liner that is precisely tuned to the engine operating conditions. These technologies have been tested at NASA on a full engine test rig and meet all 16 design conditions without trade-offs.

HexBond™ – the new name in Adhesives

Hexcel’s range of high performance adhesives has expanded considerably following the company’s acquisition of Structil. The company has now decided to unite the range by marketing all of its adhesive products using HexBond™ branding. The comprehensive range of HexBond™ structural film adhesives, foaming adhesive films, paste adhesives, liquid shims, epoxy fillets and Chromium free liquid primers is suitable for a wide range of applications in combination with Hexcel’s prepreg and honeycomb products.

Automotive Innovations

Hexcel’s carbon prepreg patch technology provides an innovative way of locally stiffening and reinforcing metal parts, providing noise and vibration management functionality. HexPly® prepreg patches consist of unidirectional carbon fiber impregnated with a fast curing epoxy matrix that has self-adhesive properties, enabling it to bond to metal in a highly efficient one-step process. These key technology properties are demonstrated in an 18.5kg aluminum subframe (that is 50% lighter than steel equivalents), which was reinforced with 500 grams of HexPly® prepreg and tested by Saint Jean Industries. The part demonstrates a significant reduction in noise, vibration and harshness (NVH). Other benefits include lower production costs, energy savings, increased driver comfort, production flexibility and part count reduction. With this technology Hexcel is a finalist in the JEC Innovation Awards 2019 in the Automotive Applications category.

HexPly® prepreg patch technology was also applied to a hybrid side sill demonstrator developed with Volkswagen and Dresden University to address future crash test requirements, specifically for electric cars. Combining fiber-reinforced plastic (FRP) with metal, the hybrid construction allows for optimum performance including weight savings, enhanced safety, increased energy absorption, battery protection in a crash situation and production flexibility.

Hexcel will also display a lightweight CFRP transmission crossmember produced from Hexcel’s high performance HexMC®-i 2000 molding compound. The transmission crossmember was developed in partnership with the Institute of Polymer Product Engineering (at Linz University), Engel and Alpex. As the part connects the chassis together and supports transmission it has to be stiff and strong, resisting fatigue and corrosion. Hexcel’s HexMC®-i 2000 was selected as the best-performing molding compound on the market, curing in as little as two minutes to produce lightweight, strong and stiff parts.
To produce the transmission crossmember HexMC®-i 2000 preforms are laid up in Alpex molds and compression-molded in a v-duo press that was tailored for the application by Engel. Ribs, aluminum inserts and other functions can be molded into the part using the single-stage process, reducing component-count. Any offcuts from the preforms can be interleaved between the plies of material to provide additional reinforcement in key areas - meaning that the process generates no waste.

Other Automotive promotions on Hexcel’s stand at JEC World include a composite leaf spring manufactured by ZF using HexPly® M901 prepreg. In contrast to steel leaf springs, composite versions offer many advantages including weight savings of up to 70%, high corrosion resistance, optimized system integration and superior performance. HexPly® M901 prepreg reduces the cure cycle to below 15 minutes and provides 15% higher mechanical performance, with enhanced fatigue properties. It also operates at high temperatures, providing a Tg of up to 200°C following a post cure.

Marine Innovations

Hexcel has a comprehensive range of products aimed at racing yacht and luxury boat builders that include America’s Cup, IMOCA class and DNV GL-approved prepregs, woven reinforcements and multiaxial fabrics for hull and deck structures, masts and appendages.

At JEC World Hexcel will display an IMOCA yacht mast manufactured by Lorima using HexPly® high modulus and high strength carbon fiber prepreg from Hexcel Vert-Le-Petit. Lorima is the exclusive official supplier of masts for IMOCA 60 class racing boats.

Hexcel’s HexTow® IM8 carbon fiber has been selected as the highest performing industrial carbon fiber on the market and will be used by spar and rigging manufacturer Future Fibres to manufacture their AEROrazr solid carbon rigging for all the teams in the 36th America’s Cup.

Hexcel’s HiMax™ DPA (Dot Pattern Adhesive) reinforcements are non-crimp fabrics supplied pre-tacked, allowing multiple fabrics to be laid-up more easily in preparation for resin infusion. Providing an optimal, consistent level of adhesion, they allow a faster and more consistent resin flow, as well as eliminating the use of spray adhesive for a healthier working environment and lower risk of contamination. Simply unrolled and applied to the mold or core layer before the introduction of resin, HiMax™ DPA fabrics are widely used in boat building, where lay-up times can be reduced by up to 50%.

Wind Energy Innovations

Hexcel has developed a range of HexPly® surface finishing prepregs and semi-pregs for wind turbine blades and marine applications. Providing a tough, durable and ready-to-paint surface without using in-mold coats, these products shorten the manufacturing cycle and reduce material costs. HexPly® XF2(P) prepreg is optimized for wind blades and has a ready-to-paint surface, straight from the mold, saving at least 2 hours of takt time.

Polyspeed® pultruded carbon laminates were developed for load-carrying elements in a blade structure and are manufactured with a polyurethane matrix that provides outstanding mechanical performance in terms of stiffness and durability. The blade manufacturing process is optimized, with increased throughput. The pultruded laminates are supplied in coils as continuous cross section profiles.
HiMax™ non-crimp fabrics using E-glass, high modulus glass and carbon fibers are also available in a wide range of unidirectional, biaxial and triaxial constructions. HiMax™ fabrics have applications throughout the turbine, from the stitched carbon fiber UDs used in the main structural elements, to glass fabrics and hybrids for blade shells and nacelles. There are also specialist applications such as lightweight fabrics for heated leading edge de-icing zones.

Source:

AGENCE APOCOPE