From the Sector

Reset
2 results
Dr Ioana Slabu and Benedict Bauer with the nanomodified stent. Photo Peter Winandy
30.03.2023

Nanomodified polymerstent: Novel technology for tumour therapy

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

  • Electromagnetically heatable nanomodified stent for the treatment of hollow organ tumours wins second place at the RWTH Innovation Award

Almost every fourth person who dies of cancer has a hollow organ tumour, for example in the bile duct or in the oesophagus. Such a tumour cannot usually be removed surgically. It is only possible to open the hollow organ for a short time using a stent, i.e. a tubeshaped prosthesis. However, the tumour grows back and penetrates the hollow organ through the stent. Ioana Slabu from the Institute of Applied Medical Technology and Benedict Bauer from the Institut für Textiltechnik of RWTH Aachen University have now developed a novel technology for the therapy of hollow organ tumours, which was awarded second place in the RWTH Innovation Award. This involves a polymerstent that contains magnetic nanoparticles. When electromagnetic fields are applied, these nanoparticles lead to a controlled heating of the stent material and thus of the tumour. Because the tumour reacts much more sensitively to heat than healthy tissue, it is destroyed and the hollow organ remains open. Thus, the stent develops a self-cleaning effect.  

Ioana Slabu of the AME explains: "Not only can we drastically reduce treatment costs, but above all we can provide relief for millions of patients worldwide.
 
A manufacturing process and proof of concept for magnetic hyperthermia are already in place. This novel technology has a very high development potential because it can also be used for tumours in other parts of the body such as the prostate, stomach, intestine or urinary bladder or for cardiovascular diseases.  

The AiF/IGF project started under the project title "ProNano" funded by BMWK. Now the approval for the follow-up project "ProNano2" has also been received. The approved project is called: "Validation of the innovation potential of heatable stents for heat-induced treatment of cavity tumours" and is funded by BMBF in course of the VIP+ program. With the Clinic for General, Visceral and Transplantation Surgery of the University Hospital Aachen and the Institute for Technology and Innovation Management at RWTH Aachen University, the consortium is enriched by clinical and economic expertise. Every year, RWTH Aachen University honours particularly innovative university projects with the Innovation Award. Professor Malte Brettel, Prorector for Business and Industry, presented the certificates to four outstanding projects as part of RWTHtransparent.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen University

© ITM/TU Dresden
Woven hemisphere for usage in radome antennaes
15.12.2022

AVK Innovation Award 2022 to young engineers from ITM at TU Dresden

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

  • Award for near-net-shape 3D meshes for use in fibre-reinforced plastics

As part of the JEC FORUM DACH 2022, the AVK Innovation Awards were presented in Augsburg on November 29th. The innovation price in the category "Research/Science" (first place) was awarded to the team of scientists Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald and Prof. Dr.-Ing. habil. Chokri Cherif.

With the development of the pull-off-free Jacquard weaving technology including the technological know-how in the field of highly complex 2D and 3D fabric geometries, which has been established at the ITM of the TU Dresden for many years, Dominik Nuss has succeeded in including different yarn lengths locally into the fabric structure solely through targeted variation of the fabric weave. There-fore, it is now possible to produce completely new types of fabrics without additional draping, especially spherically curved fabrics, but also large-format spiral or even curved fabrics. The fact that the required near-net-shape geometry of the component to be reinforced can be reproduced with significantly reduced preforming steps is to be emphasized.

Continuous simulation aided engineering from CAD design to integrally woven 2D and 3D preforms by means of highly complex weave development for spatial constructions is a unique at the ITM, which was indispensable for the development of these promising woven high-tech structures. This technology is completely new and has never been carried out in this way before. The fabric structures are characterised by a high innovation level due to their geometric diversity and purposes. It can be used in numerous applications and further more contributes to the development of completely new fields of application. The technology can be implemented on all Jacquard weaving machines with only an additional device and the preform geometry is only determined by the control of the Jacquard machine. The preform geometry can be used in the full working width of the weaving machine.

Professor Chokri Cherif, Institute Director of the ITM, and his team are very pleased about these continuous research success in the constantly growing research field of 3D weaving technology, which are achieved at the ITM in close cooperation with industry and users. "This award is a special honour for our institute and confirms that the many years of our excellent research in the field of near-net-shape 3D weaving for the fibre-reinforced plastics sector plays a significant role and that we are making a significant contribution to the sustainable and resource-efficient production of lightweight structures with our development".

Source:

ITM/TU Dresden